License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ISAAC.2022.23
URN: urn:nbn:de:0030-drops-173086
Go to the corresponding LIPIcs Volume Portal

Bekos, Michael A. ; Da Lozzo, Giordano ; Hliněný, Petr ; Kaufmann, Michael

Graph Product Structure for h-Framed Graphs

LIPIcs-ISAAC-2022-23.pdf (1 MB)


Graph product structure theory expresses certain graphs as subgraphs of the strong product of much simpler graphs. In particular, an elegant formulation for the corresponding structural theorems involves the strong product of a path and of a bounded treewidth graph, and allows to lift combinatorial results for bounded treewidth graphs to graph classes for which the product structure holds, such as to planar graphs [Dujmović et al., J. ACM, 67(4), 22:1-38, 2020].
In this paper, we join the search for extensions of this powerful tool beyond planarity by considering the h-framed graphs, a graph class that includes 1-planar, optimal 2-planar, and k-map graphs (for appropriate values of h). We establish a graph product structure theorem for h-framed graphs stating that the graphs in this class are subgraphs of the strong product of a path, of a planar graph of treewidth at most 3, and of a clique of size 3⌊ h/2 ⌋+⌊ h/3 ⌋-1. This allows us to improve over the previous structural theorems for 1-planar and k-map graphs. Our results constitute significant progress over the previous bounds on the queue number, non-repetitive chromatic number, and p-centered chromatic number of these graph classes, e.g., we lower the currently best upper bound on the queue number of 1-planar graphs and k-map graphs from 115 to 82 and from ⌊ 33/2(k+3 ⌊ k/2⌋ -3)⌋ to ⌊ 33/2 (3⌊ k/2 ⌋+⌊ k/3 ⌋-1) ⌋, respectively. We also employ the product structure machinery to improve the current upper bounds on the twin-width of 1-planar graphs from O(1) to 80. All our structural results are constructive and yield efficient algorithms to obtain the corresponding decompositions.

BibTeX - Entry

  author =	{Bekos, Michael A. and Da Lozzo, Giordano and Hlin\v{e}n\'{y}, Petr and Kaufmann, Michael},
  title =	{{Graph Product Structure for h-Framed Graphs}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{23:1--23:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-173086},
  doi =		{10.4230/LIPIcs.ISAAC.2022.23},
  annote =	{Keywords: Graph product structure theory, h-framed graphs, k-map graphs, queue number, twin-width}

Keywords: Graph product structure theory, h-framed graphs, k-map graphs, queue number, twin-width
Collection: 33rd International Symposium on Algorithms and Computation (ISAAC 2022)
Issue Date: 2022
Date of publication: 14.12.2022

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI