Language Engineering in Practice

Martin Grofle-Rhode

Dependable Systems Department, Fraunhofer ISST Berlin, Germany
Martin.Grosse-RhodeQisst.fraunhofer.de
URL: www.isst.fhg.de/~mgrosse

The Dependable Systems Department of the Fraunhofer ISST Berlin creates
methods for the development, integration, and maintenance of embedded auto-
motive systems. Based on a thourough analysis of the existing processes, domain-
and enterprise-specific roles, activities, and artefacts are designed for an immedi-
ate enhancement of the technical, processual, and organsiational infrastructure
that is found at the company. General principles that govern the design of the
methods are continuous model-based engineering and domain engineering. Con-
tinuous model-based engineering first means to focus the development process
on models whose structure is designed in such a way as to optimally support
the activities and roles found in the foregoing analysis. Second, these models
are interconnected via a common core, such that the transitions between the
activities are also fully reflected at the model level. Thereby design decisions
can be traced throughout the whole development process, consistency can be
checked, and changes can be managed. Domain engineering aims at a systematic
reuse by the generation of models or model templates as analysis, design, and
implementation assets and techniques for their reuse within the development of
new products.

As a means to define the abstract modelling language that determines the
structure of the models that are to be used a two-step meta-modelling ap-
proach turned out as most adequate. In the first step class diagrams are used
to introduce the modelling elements and their fundamental relationships. Since
just classes, binary associations with multiplicities, and attributes are used any
object-oriented modelling language or tool can be used for that. To make the
meta-model complete constraints have to be added that define the relation-
ships of the modelling elements more precisely. In principle any logic or ob-
ject constraint language can be used for that purpose. We have chosen the
object-oriented extension ObjectZ of the set-theoretic specification language Z,
although it implied to reformulate the whole class diagram developed before
within the constraint set. This decision was based essentially on the clarity of
the language, the time constraints of the projects, and the previous knowledge
of the team members.

Within the development and integration process the following main views
are distinguished and supported by appropriate models: requirements, logical
architecture, and technical architecture including hardware and software archi-
tecture. As mentioned above, also the interconnections of the views are specified
by models. That means that there are realisation models that connect differ-
ent requirements models (like user requirements, legal requirements, or system

Dagstuhl Seminar Proceedings 04101
http://drops.dagstuhl.de/opus/volltexte/2005/15



requirements) among each other and with the other models (logical and tech-
nical architecture), and that there are models for the partitioning of the logical
components onto the technical (software and hardware) components.

Flexibility in the design of the modelling languages (and thus the models) is
achieved by a layered meta-modelling approach. Thereby the modelling elements
are introduced within a hierarchy, with most general elements at the top and
stepwise refinements to introduce more domain-, enterprise-, and role-specific
concepts. Concerning requirements models for example at the top layer the gen-
eral structure of requriements is defined: a requrirement consists of a subject
or stake holder (the one who requires the feature), a feature that is required,
possibly a mode (the feature must or may be included), and an object or target,
i.e. the system or the group of systems under development that shall have this
feature. These constituents can than be refined, for example by saying which
groups of stake holders are relevant, which kinds of featuers are to be distin-
guished (functional, non-functional, safety, etc.), which modes are there, which
kinds of groups of systems are considered and how are they described. Analogu-
ously the modelling concepts for the other views and the modelling concepts
for the domain models that capture the reusable analysis, design, and imple-
mentation assets are introduced. The experience of our projects with industrial
partners shows that this kind of language engineering is an adequate means for
the introduction of continuous model-based software development processes in
the industrial practice.

Technical reports on method developments including the corresponding meta-
models will be made available soon via the web page of the author.



