A MDA Approach to Model & Implement
Transformations

Jean-Marc Jézéquel

Irisa (INRIA & Université de Rennes), France

Abstract Only in software and in linguistics a model has the same
nature as the thing it models. In software at least, this opens the possi-
bility to automatically derive software from its model. This property is
well known from any compiler writer (and others), but it was recently be
made quite popular with an OMG initiative called the Model Driven Ar-
chitecture (MDA). The model transformations allowing the engineers to
more or less automatically go from platform-independent models (PIM)
to platform-specific models (PSM) are increasingly seen as vital assets
that must be managed with sound software engineering principles. We
believe that transformations should be first-class models in the MDA
world; we propose to adopt the object-oriented approach and to leverage
the expressive power of UML as a metamodel defining the transformation
language.

1 Introduction

Once upon a time, software development looked simple. In the early 80’s, there
was a dream that it was possible to unify everything into just one concept, the
notion of object. ”Fverything is an object” was a powerful vision that led for
instance to Smalltalk, where close to everything, including an integer value such
as b, an instruction, a bank account, a method, a message, a pixel, or a class
was indeed an object. Soon enough however, it was clear that while the no-
tion of object could really be a building block, software development required
complementary notions. For example if objects are modular entities made to be
as simple as possible, then we find complexity lurking in the way objects col-
laborate to implement a functionality. Trying to document these collaborations
in order to make the most interesting ones reusable ultimately led to the very
important notion of Design Patterns. Another dimension of complexity lied in
the poor marriage between objects and distribution: allowing distributed ob-
ject to communicate smoothly revealed itself surprisingly difficult and led to the
development of middle-ware such as CORBA, or DCOM and now .NET.

So we started with a simple idea (”Everything is an object”) and for good
reasons we ended up with a fairly complex situation in software development. It
is then natural that people resorted to modelling to try to master this complexity.
According to Jeff Rothenberg,

Modeling, in the broadest sense, is the cost-effective use of something in
place of something else for some cognitive purpose. It allows us to use

Dagstuhl Seminar Proceedings 04101
http://drops.dagstuhl.de/opus/volltexte/2005/20

2 J.-M. Jezequel

something that is simpler, safer or cheaper than reality instead of reality
for some purpose. A model represents reality for the given purpose; the
model is an abstraction of reality in the sense that it cannot represent all
aspects of reality. This allows us to deal with the world in a simplified
manner, avoiding the complezity, danger and irreversibility of reality.

Usually in science, a model has a different nature that the thing it models
("do not take the map for the reality” as Sun Tse put it many centuries ago).
Only in software and in linguistics a model has the same nature as the thing it
models. In software at least, this opens the possibility to automatically derive
software from its model. This property is well known from any compiler writer
(and others), but it was recently be made quite popular with an OMG initiative
called the Model Driven Architecture (MDA) [6].

The OMG has built a meta-data management framework to support the
MDA. It is mainly based on a unique M3 “meta-meta-model” called the Meta-
Object Facility (MOF) [5] and a library of M2 meta-models, such as the Unified
Modeling Language (UML) (or SPEM for software process engineering), in which
the user can base his M1 model.

2 Complex Model Transformations

Large companies having to develop, maintain and evolve large scale software
systems over long periods of time are considering strongly the OMG initiative
on Model Driven Architecture (MDA) [6]. In the air traffic management domain
for instance, the domain specific models are less likely to change rapidly than
platform-specific ones. So the MDA core idea that it should be possible to cap-
italize on platform-independent models (PIM), and more or less automatically
derive platform-specific models (PSM) —and ultimately code— from PIM through
model transformations is extremely appealing. But in some business areas in-
volving fault-tolerant, distributed real-time computations, there is a growing
concern that the added value of a company not only lies in its know-how of the
business domain (the PIM) but also in the design know-how needed to make
these systems work in the field (the transformation to go from PIM to PSM).
Reasons making it complex to go from a simple and stable business model to a
complex implementation include:

— Various modeling languages used beyond UML

— As many points of views as stakeholders

— Deliver software for (many) variants of a platform

— Heterogeneity is the rule

Reuse technical solutions across large product lines (e.g. fault tolerance,
security, etc.)

Customize generic transformations

— Compose reusable transformations

— Evolve and maintain transformations for 15+ years.

A MDA Approach to Model & Implement Transformations 3

Beyond transformations defined as mapping of model level concepts to tar-
get level ones, as it is often the case for code generation, XMI generation, doc-
umentation generation, database schema generation etc., another dimension of
complexity appears when we want to make semantic driven transformations.
Exemple of these more profound transformations are:

— Class Diagrams+Statecharts+Snapshots to Tests [3]
— Design Pattern Applications [7]

— Class Diagrams to Integration Test Plan [9]
Refactorings of UML models [8]

Weaving Design Level Aspects [2]

— Uses Cases+Contracts to Tests for Product Lines [4]
— Specialization of models of Product Lines [11]
HMSCs to StateCharts [10]

Until now, model transformations have in most cases been developed within
modeling tools using tool-specific proprietary languages. This tool adherence
jeopardizes the reusability of domain models which is one of the key advantages
drawn from MDA. For the same reason that domain know-how should not be
tied to a particular platform, it is thus critical that model transformations are
not prisoners of a given CASE tool.

A second approach that has been tried corresponds mainly to the tree-
transformation systems such as XSLT. An XSLT script declaratively specifies
how to explore the input tree and how to generate fragments of the output
tree. Languages like XSLT are heavily used in some domains, but the experience
of using XSLT for implementing complex transformations in an MDA context
proved itself quite negative with respect to issues such as modularity, efficiency,
reusability and above all maintenability.

3 Modeling Transformations

3.1 Requirements for a Transformation Meta-Model

Although models capture the design features of a product, model transformations
capture the model manipulation expertise, e.g. specific mechanizable refinement
steps during the product design, the chain of successive refinements needed to
obtain a concrete product, or how to implement PIM from a given metamodel
using a specific platform.

For large companies, such expertise represents a long-term investment, and
the initial cost of developing model transformations should be balanced over
time, when transformations can be reused at a negligible cost compared to an
ad hoc solution.

However the increasing complexity due to adaptation and evolution of trans-
formations should not jeopardize reuse and thus return on investment. The
problem is therefore to identify techniques and methods enabling transforma-
tion development and maintenance, by addressing at the M2 level standard M1

4 J-M. Jezequel

level notions such as reusability, composability, genericity, customizability and
maintenability.

Because transformations become complex software products, we should de-
velop them using established software engineering techniques. This idea led to
the notion of reflective Model Driven Engineering presented in [1].

3.2 Using UML to Design Transformations

We believe that transformations should be first-class models in the MDA world.
We then propose to adopt the object-oriented approach and to leverage the
expressive power of UML as a metamodel defining the transformation language.
Both as a modeling language and as a management tool, UML provides concepts
useful to analysis, design, and development of transformations:

Model management diagrams address the macro-organization of the trans-
formation components in UML packages.

Class diagrams reveal the structure and the patterns in the transformation
design. Rules are expressed as operations, organized in classes and pack-
ages. Subclassing and dynamic binding can be used to handle variability, for
example by leveraging the classical design patterns.

Activity diagrams express the transformation process by capturing the de-
pendencies between transformation subtasks and can be used to combine
multiple transformations.

Deployment diagrams specify platform-specific aspects, e.g. which CASE tool
should be used to handle models of a given metamodel.

UML alone cannot model transformations directly, so a profile for transforma-
tions should be defined. Besides the use of UML, developers will eventually use
a specific runtime platform to actually transform models; however the choice
of a runtime platform should not impact on the transformation design. This is
in line with the separation of concerns between PIM and PSM in the MDA,
and leads to the concepts of platform-independent transformation (PIT) and
platform-specific transformation (PST).

Platform-independent transformations are models of the transformation pro-
gram, relying on a generic library of simpler transformations and transformation
primitives. They will eventually be refined to the point where they can be used
as the source to generate platform-specific transformations. Then if UML is the
language of PIT, PST are models of tool-specific formalisms or API; for example,
while XSLT is a textual language, it is possible to consider a MOF-compliant
metamodel of XSLT; the PST is then an XSLT model which is actually serialized
behind the scene to its XML representation.

4 Conclusion

Model transformations are increasingly seen as vital assets that must be managed
with sound software engineering principles: they must be analyzed, designed, im-
plemented, tested, maintained and be subject to configuration management. We

A MDA Approach to Model & Implement Transformations 5

believe that transformations should be first-class models in the MDA world. We
propose to adopt the object-oriented approach and to leverage the expressive
power of UML as a metamodel defining the transformation language. This idea
has been implemented in our Model Transformation Language (MTL, available
for downloading from modelware.inria.fr), which is actually an executable subset
of the UML. It is open source software developped in the framework of the CAR-
ROLL research program', launched by Thales and two French public research
laboratories: CEA (Commissariat & 'Energie Atomique) and INRIA (Institut
National de Recherche en Informatique et en Automatique).

References

10.

11.

Jean Bézivin, Nicolas Farcet, Jean-Marc Jézéquel, Benoit Langlois, and Damien
Pollet. Reflective model driven engineering. In G. Booch P. Stevens, J. Whit-
tle, editor, Proceedings of UML 2003, volume 2863 of LNCS, pages 175-189, San
Francisco, October 2003. Springer.

W.M. Ho, J.-M. Jézéquel, F. Pennaneac’h, and N. Plouzeau. A toolkit for weav-
ing aspect oriented UML designs. In Proceedings of 1st ACM International Con-
ference on Aspect Oriented Software Development, AOSD 2002, Enschede, The
Netherlands, April 2002.

Jean-Marc Jézéquel, Alain Le Guennec, and Francois Pennaneac’h. Validating dis-
tributed software modelled with UML. In Proc. Int. Workshop UMLY8, Mulhouse,
France, June 1998.

Clémentine Nebut, Simon Pickin, Yves Le traon, and Jean-Marc Jézéquel. Auto-
mated requirements-based generation of test cases for product families. In Proc.
of the 18th IEEE International Conference on Automated Software Engineering
(ASE’03), 2003.

OMG/MOF. Meta Object Facility (MOF) specification. OMG Document ad/97-
08-14, September 1997.

R. Soley and the OMG Staff. Model-Driven Architecture. OMG Document, Novem-
ber 2000.

G. Sunyé, A. Le Guennec, and J.-M. Jézéquel. Design pattern application in UML.
In E. Bertino, editor, ECOOP’2000 proceedings, number 1850 in LNCS, pages 44—
62. Springer Verlag, June 2000.

Gerson Sunyé, Damien Pollet, Yves Le Traon, and Jean-Marc Jézéquel. Refactoring
UML models. In Proceedings of UML 2001, volume 2185 of LNCS, pages 134-148.
Springer Verlag, 2001.

Yves Le Traon, Thierry Jéron, Jean-Marc Jézéquel, and Pierre Morel. Efficient
OO integration and regression testing. IEEE Trans. on Reliability, 49(1):12-25,
March 2000.

T. Ziadi, L. Hélouét, and J.-M. Jézéquel. Revisiting statechart synthesis with an
algebraic approach. In 26th International Conference on Software Engineering
(ICSE 04), number to be published, 2004.

Tewfik Ziadi, Jean-Marc Jézéquel, and Frédéric Fondement. Product line derivation
with uml. In Proceedings Software Variability Management Workshop, University
of Groningen Departement of Mathematics and Computing Science, February 2003.

1 See www.carroll-research.org for more details.

