
Multi-Domain Integration with MOF and extended
Triple Graph Grammars

Alexander Königs, Andy Schürr

Real-Time Systems Lab
University of Technology Darmstadt

64283 Darmstadt, Germany
koenigs@es.tu-darmstadt.de, schuerr@es.tu-darmstadt.de

Abstract
One aim of tool integration is designing an
integrated development environment that accesses
the data/models of different tools and keeps them
consistent throughout a project being considered.
Present approaches that aim for data integration
by specifying (graphically denoted) consistency
checking constraints or consistency preserving
transformations are restricted to pairs of
documents. We present an example that motivates
the need for a more general data/model
integration approach which is able to integrate an
arbitrary number of MOF-compliant models.
From a formal point of view this approach is a
generalization of the triple graph grammar
document integration approach. From a practical
point of view it is a proposal how to specify multi-
directional declarative model transformations in
the context of OMG’s model-driven architecture
(MDA) development efforts and its request for
proposals for a MOF-compliant “query, view, and
transformation” (QVT) approach.

1 Introduction
Software development projects are subdivided into
a number of phases. There are lots of different tools
specialised in each of these phases. Thus, the data
of a project as a whole is distributed over the tools
being adopted. Tool integration tries to design an
integrated development environment which offers
uniform access to the data of the different tools and
keeps them consistent.

Present approaches describe dependencies
between data of different tools by specifying
consistency rules. These rules are often written in a
graphical form using a UML-like notation [UML].
All approaches have in common that they fulfil the

task of keeping the data consistent throughout a
project as a whole by considering only pairs of
documents at one time.

The Request for Proposal: MOF 2.0 Query /
View / Transformations RFP of the OMG deals
with queries, views and transformations on models
of two documents. It demands a number of features
which can be used for classifying approaches
[QVT]. Each response to the RFP must:

• offer a language for specifying queries for

selection and filtering of model elements.
• provide a language for model

transformation definitions. These
definitions can be used to generate a target
model from a source model.

• have a MOF 2.0-compliant abstract syntax
of each language.

• have an expressive transformation
language allowing automatic
transformations.

• support the creation of views.
• support incremental change propagation

between source and target model.

Additionally, a response may:

• offer transformations which can be
executed bidirectional.

• provide traceability information.
• use generic transformation definitions for

reuseability purposes.
• provide some sort of transactional

mechanism.
• support the use of additional data which is

not contained in the source model.
• allow transformations for the case that the

source and the target model coincide.

Dagstuhl Seminar Proceedings 04101
http://drops.dagstuhl.de/opus/volltexte/2005/22

Furthermore, approaches can be classified from a
more technical point of view covering the following
issues [CH03]:

• Features of transformation rules (e.g.
syntactically separated left-hand and right-
hand sides, parameterization)

• Features of rule application scoping
• Source-Target Relationship
• Rule application strategies (e.g.

deterministic, non-deterministic)
• Transformation rule scheduling
• Rule organization (e.g. source-oriented,

target-oriented)
• Traceability support
• Directionality

The QVT response from the QVT-partners is

an approach that allows the specification of
consistency and transformation rules [QVTP03].
The consistency rules can be used to check whether
two linked data objects are consistent or not. They
cannot be used to recover consistency, propagate
data changes, or for traceability purposes. The
transformation rules can be used to transform one
document of a source domain into a consistent
document of a target domain in a unidirectional
manner. Both rule types must be specified
separately and are not generated from one
declarative rule. The rules are written down in a
textual format but can be visualised in a UML-like
diagram.

The GReAT approach only defines
transformation rules between source and target
domains [AKS03]. This transformation happens in
a unidirectional way, too. The rules are denoted in a
UML-like format and cannot be used for
consistency recovery, data change propagation, or
traceability due to their transformational character.

In the BOTL approach consistency checking
and transformation rules are specified in a
declarative way and provide bidirectional
transformations [Braun03]. Again, these rules
cannot be used for change propagation or
traceability issues. The notation is UML-like.

Finally, the IMPROVE framework allows the
declarative specification of consistency and
transformation rules [BW03]. These rules provide
bidirectional transformations, consistency checks,

traceability, and incremental change propagation.
This framework uses a UML-like notation for
specification.

As stated before the main common
disadvantage of the presented approaches is the
limitation to pairs of documents at one time. Fig. 1
summarizes the properties of the presented
approaches.

Fig. 1: Properties of related approaches

In this paper we present an example which

motivates the need for a more general data/model
integration approach which is able to
simultaneously integrate an arbitrary number of
documents. Our new approach will be implemented
in the ToolNet framework provided by our
industrial partner from the automotive sector.
[ADDK03].

Sections 2-4 introduce this example. Section 2
presents concrete example data for our project. In
section 3 we derive objects diagrams from them.
These object diagrams are compliant to project-
specific data meta-models as shown in section 4. In
section 5 we will explain which disadvantage
approaches that only consider pairs of documents
suffer from. Section 6 covers triple graph grammars
which form the theoretical background for our
proposal. Section 7 shows the advantage of
declarative multi-domain integration (MDI) rules.
Finally, section 8 concludes this paper and
discusses open issues that arise from our new
approach..

2 A. Königs

Fig. 2: Concrete project’s data with Requirements, Use Case Diagram and Class Diagram documents

2 Concrete project’s data
In this section we will introduce our example by
presenting concrete data stored in the documents
we want to integrate with each other. The example
comes from the automotive sector. Due to lack of
space we had to simplify the example in this paper.
It covers the following domains:

1. Requirements Engineering: We keep the
data of this domain in the tool DOORS
because it is widely used by our industrial
partner and we do have already an adapter
for this tool implemented in our ToolNet
framework [DOORS, ADDK03].

2. Use Case Diagrams: We use Together to
draw our use case diagrams for the same
reasons. [Together].

3. Class Diagrams: Again, we use Together
to draw these diagrams.

The example deals with the development of a

rain sensor-controlled windscreen wiper. As one
simplification we integrate one functional

requirement with one use case as well as one use
case with one class. This does not apply in practice.
Fig. 2 a) shows a screenshot of the data of the
requirements kept in DOORS.

For our purposes it is important to remember
that our requirements are stored as a structured text
in a tree-like manner which offers the opportunity
of nesting elements. We make use of this
opportunity to nest feature groups. A feature group
is either a collection of single features describing
different aspects of one system function, or a
collection of system functions that have similar
characteristics (e.g. pre- and postconditions,
interfaces). From this document we derive a use
case diagram as shown in Fig. 2 b). We also derive
a corresponding class diagram (see Fig. 2 c)).

We learn from the use case and the class
diagram that we have two possibilities to represent
nested structures from the requirements document.
Either we can represent nested feature groups as
(nested) packages (see bubble 1 in Fig. 2). We will
use this for collections of features. Or we can
represent nested feature groups as a generalization
between use cases and accordingly classes (see

Multi-Domain Integration 3

bubbles 2 and 3 in Fig. 2). We will use this for
collections of system functions with similar
characteristics.

3 Object diagrams
From the concrete data introduced in section 2 we
can infer object diagrams for each considered
document. Fig. 3 shows a part of the object diagram
of the use case document as an example.

This figure shows an object which represents a
package. This package contains a diagram which
contains three use cases. The use cases are
associated by generalization relationships.

Accordingly, we can draw object diagrams for
the requirements and the class documents as well.

Our approach as well as related approaches
uses such object diagrams for the specification of
graph-) rules on them.

Fig. 3: Part of the object diagram of the use case document

4 Project specific data meta-models
In order to be able to draw object diagrams as in
section 3 we have to introduce (MOF-compliant)
meta-models which declare the used classes and the
allowed connections between them.

Fig. 4 shows a part of the data meta-model
corresponding to the object diagram from Fig. 3.
This data meta-model specifies that we have
abstract containers which can be packages or
diagrams. Packages can be nested. Diagrams
contain use cases. Use cases can be the source and
the target of abstract relationships. This can be a
generalization relationship for instance. We can
specify similar data meta-models for the
requirements and the class diagram documents as
well.

It is important to remember that this data meta-
model is not the tool’s internal data meta-model.

Usually, tool internal data meta-models are too
generic for our purposes and must be refined to
project specific data meta-models in order to have
type information rich enough to allow the
specification of (graph-) rules. To be able to access
the tool’s data using the project-specific data meta-
model we must provide a mapping from the project-
specific to the tool internal data meta-model. In our
framework this mapping is realised by the tool
adapters.

Fig. 4: Part of the data meta-model of the use case document

5 Considering pairs of documents
We will now investigate if we can keep the three
documents consistent with each other by only
considering pairs of documents at one time. In Fig.
5 we see the alternatives we have to do so.

Fig. 5 a) states that we can try to achieve our
goal by integrating the requirements document with
the use case diagram document and integrating the
use case diagram document with the class diagram
document. This approach fails because the
requirements document contains information on
parameter types which is needed in the class
diagram document but not provided by the use case
document.

In Fig. 5 b) we are trying to integrate the
requirements document with the class diagram
document and the class diagram document with the
use case document. This attempt fails, too. The

4 A. Königs

requirements document contains information on
includes and extends relationships which is needed
by the use case document. In the class diagram
document we represent both relationships as
aggregations. Thus, the class diagram document
does not provide this information.

We avoid the problems from Fig. 5 a) and b) in
Fig. 5 c) by integrating the requirements document
with the use case diagram document and the
requirements document with the class diagram
document. The requirements document provides all
information needed in the use case document as
well as in the class diagram document.
Unfortunately, we experience another kind of
problem. As mentioned in section 2 we have two
possibilities to represent nested structures in the
requirements documents in the use case and class
diagram documents. Fig. 5 c) does not demand that
the choice which possibility to use must be made
accordingly. This permits representing a nested
structure in the requirements document as nested
packages in the use case diagram document and as
a generalization in the class diagram document and
vice versa. Although this solution does not lead to a
data inconsistency between the use case diagram
and the class diagram document it blurs the
correspondence between both documents. We can
see this as a kind of structural inconsistency which
we want to avoid.

We avoid this by using the last alternative
shown in Fig. 5 d). This means that we can
integrate three documents by considering only pairs
of documents at one time. We will now take a look
at the number of sets of rules we need to specify the
integration.

We can easily see that the non-declarative,
unidirectional approaches (e.g. QVT, GReAT) need
three specifications (sets of rules) to specify
consistency checking (if they provide this feature at
all) and additional six sets of specifications to cover
all directions of transformations between the
involved three types of documents. In total these
are nine specifications for integrating three
documents. Declarative and bidirectional
approaches (e.g. BOTL, IMPROVE) still need three
specifications.

The more the number of document types we
want to simultaneously integrate increases the more
the situation gets worse. Thus, considering only
pairs of documents at one time to achieve data
integration is inappropriate for real projects where

the number of to be integrated document types is
large.

Fig. 5: Alternatives to achieve data integration considering

pairs of documents

6 Triple Graph Grammars
In order to cope with the situation described in
section 5 we want to propose a new approach for
specifying data integration rules on the basis of
graph transformations. The theoretical background
for our approach is formed by triple graph
grammars [Sch94].

Triple graph grammars are an extension of pair
graph grammars [Pra71]. They allow the (graphical)
specification of data integration rules considering a
pair of documents. The idea is that the models of
each document can be interpreted as a graph as we
did in section 3. A triple graph grammar specifies
the simultaneous construction of the graphs of both
documents. Additionally, it builds up a third graph
which contains the information on correspondence
of objects of the first document to objects of the
second one. In particular this correspondence graph
can be used for traceability purposes.

At first triple graph grammars were used in the
IPSEN project to build tightly-integrated software
development environments [LS96]. There a triple
graph grammar specification was manually
translated into code. The IMPROVE approach
[BW03] mentioned in section 1 is a continuation of
the IPSEN approach. Later on triple graph
grammars were used to specify the migration of
relational to object-oriented database systems using
the PROGRES environment [JSZ96, Sch91].
Finally, the FUJABA environment adopted triple
graph grammars to realize a consistent management
system for UML-specifications [NNZ00, Wag01].

Multi-Domain Integration 5

7 Proposing MDI-rules
We want to propose a new approach for specifying
data integration rules on the basis of graph
transformations extending the triple graph grammar
approach from section 6. The new rules are not
limited to objects from only two documents but can
use objects of an arbitrary number of documents.
Fig. 6 illustrates this. We call these rules Multi-
Domain Integration rules.

Fig. 6: Concept of MDI-rules

The aim is that we only need one set of rules

for specifying simultaneous data integration for an
arbitrary number of documents. Our approach is
declarative and multi-directional.

To clarify our idea we give one example for
MDI-rules that solve the problem which came up in
section 5 using the alternative from Fig. 5 d). Fig. 7
presents our solution.

The left part of Fig. 7 a) represents the
situation which is searched for in the given
documents. It searches for a feature group FG in the
requirements document RE which is related to a
package P in the use case diagram document UCD
and to a package P in the class diagram document
CD and fulfils the given OCL-expression [OCL]. If
this pattern is found and a new feature or feature
group Fs is inserted in the selected feature group a
new use case UC is simultaneously inserted in the
associated package P as well as a new class Cl in
the corresponding package.

This rule represents the choice to represent a
nested structure in the requirements document as
packages in the use case and the class diagram
documents. In the same way the rule from Fig. 7 b)
represents the choice to represent a nested structure
from the requirements document as generalization
in the use case and the class diagram document.
As these rules use objects from all three considered
documents at the same time we ensure that choices
how to represent nested structures are made
correspondingly.

Fig. 7: Examples for MDI-rules

From a formal point of view our rules are

generalizations of the triple-graph grammar
approach. In the example we used a quadruple-
graph grammar consisting of the following four
graph grammars:

1. The first grammar describes the composition of

the requirements document.
2. The second grammar describes the composition

of the use case diagram document.
3. The third grammar describes the composition

of the class diagram document.
4. Finally, the fourth grammar describes the

composition of the integration document
formed by the integration relationship objects.

For an arbitrary number of documents we can

call our formal approach multi-graph grammars.
Using our proposal we only need to specify one

set of rules that describes the data integration for an
arbitrary number of considered documents. The
price for this is that each rule will be more
complicated.

6 A. Königs

As our approach is declarative we can derive
several operational rules from each MDI-rule by
omitting {new}-tags. Fig. 8 gives examples for such
rules.

Fig. 8 a) is a consistency checking rule. It
searches for the graph pattern as a whole and tests
whether the given OCL-expressions hold or not.
Fig. 8 b) is a rule which links existing objects from
all documents by creating a consistency object
associated to them. Fig. 8 c) is an example for a
rule which creates parts of two documents by using
the third document. In our case we get three of
these rules. Finally, Fig. 8 d) is an example for a
rule which creates parts of one document by using
the others. In our case we are able to generate three
of these rules, too.

Thus, we can totally derive eight operational
rules by specifying a single MDI-rule if we
consider three documents. As the number of
documents increases the number of rules we can
derive increases correspondingly.

To be honest all declarative approaches only
succeed if they can automatically derive attribute
assignments from attribute constraints (e.g. OCL-
expressions). As we point out in section 8 this is an
open issue which is addressed by the ongoing
research on constraint solving strategies [BKPT02].

8 Conclusion
In this paper we give an example of a small data
integration task considering three development
documents. First, we try to enforce data consistency
by specifying consistency rules that only consider
two of the three documents at one time. We see that
we can do it this way.

We learn that the number of specifications
rapidly increases with the number of involved
document types. To cope with this we present a
new approach for specifying consistency rules on
basis of a generalization of the triple-graph
grammar approach. These rules consider objects of
all involved documents at the same time. Thus, we
only need one set of rules for an arbitrary number
of documents. The price for this is that the rules
become more complicated. We are convinced that it
is worth the effort due to the number of operational
rules which can be derived from each declarative
rule.

Compared to the related approaches we
presented in section 1 our MDI-approach will
provide the same features as the IMPROVE

Fig. 8: Examples for derived rules

Multi-Domain Integration 7

approach and adds MOF-compliance as well as
multi document support [BW03]. Our approach will
fulfil all mandatory and most of the optional
requirements (except for transactional mechanisms)
requested by the QVT-RFP of the OMG [QVT].

Among other things we will have to address
the following issues when implementing the
presented MDI-approach as an extension of
FUJABA [NNZ00]:

1. We have to develop new strategies for

processing more than two documents for
efficiently pattern matching purposes.

2. We have to consider how to deal with the
situation when more than one rule is applicable
in a given (graph-) situation. Either the user
will be asked to interactively resolve this
ambiguity, or we allow the specification of
priorities on MDI-rules.

3. We have to examine possibilities to
automatically derive attribute assignments
from consistency checking OCL-expressions to
push our declarative approach as far as
possible. Simple equality constraints are no
problem at all. More complex cases can be
handled by reusing constraint solving strategies
for translating undirected more complex
equations into directed equations. Inequalities
or more complex Boolean expressions are out
of scope at the moment.

4. We want to integrate our approach with the
upcoming MOF 2.0 specification [MOF].

5. Finally, we want to implement incremental
consistency checks and change propagation
instead of the existing batch approach.

References
[ADDK03] Altheide, Dörfel, Dörr, Kanzleiter, An Architecture

for a Sustainable Tool Integration, in: Dörr,
Schürr (eds.), TIS 2003, Workshop on Tool
Integration in System Development, 2003, pp. 29-
32

[AKS03] Agrawal, Karsai, Shi, Graph Transformations on
Domain-Specific Models, Technical report,
Institute for Software Integrated Systems,
Vanderbilt University, Nashville, TN, 2003.

[BKPT02] Bottoni, Koch, Parisi-Presicce, Taenzer, Working
on OCL with Graph Transformation, Proc. of
APPLIGRAPH Workshop on Applied Graph
Transformation (AGT 2002), Grenoble, France,
2002, pp. 1 – 10

[Braun03] Braun, Metamodellbasierte Kopplung von
Werkzeugen in der Softwareentwicklung,
Dissertation, 2003

[BW03] Becker, Westfechtel, Incremental Integration
Tools for Chemical Engineering: An Industrial
Application of Triple Graph Grammars, in Proc.
29th Intl. Workshop Graph-Theoretic Concepts in
Computer Science, Elspeet, Netherlands, 2003

[CH03] Czarnecki, Helsen, Classification of Model
Transformation Approaches, 2nd OOPSLA
Workshop on Generative Techniques in the
context of Model Driven Architecture, Anaheim,
California, 2003

[DOORS] Telelogic, DOORS,
http://www.telelogic.com/products/doorsers/doors

[JSZ96] Jahnke, Schäfer, Zündorf, A Design Environment
for Migrating Relational to Object Oriented
Database Systems, in: Proc. Of the International
Conference on Software Maintenance, IEEE
Computer Society Press, 1996, pp. 163-170

[LS96] Lefering, Schürr, Specification of Integration
Tools, in: Nagl (ed.), Building Tightly-Integrated
Software Development Environments: The IPSEN
approach, LNCS 1170, Berlin, Springer Verlag,
1996, pp. 440-456

[MOF] OMG, MOF2.0 Specification,
http://www.omg.org/cgi-bin/doc?ad/2003-04-07

[NNZ00] Nickel, Niere, Zündorf, The FUJABA
Environment, in: Proc. Of the 22nd Internation
Conference on Software Engineering, ACM Press,
2000, pp. 742-745

[OCL] OMG, OCL Specification,
http://www.omg.org/cgi-bin/doc?ad/2003-01-07

[Pra71] Pratt, Pair Grammars, Graph Languages and
String-to-Graph Translations, in: Journal of
Computer and System Sciences, Vol. 5, Academic
Press, 1971, pp. 560-595

[QVT] OMG, Request for Proposal: MOF 2.0 Query /
Views / Transformations RFP,
http://www.omg.org/cgi-bin/doc?ad/2002-04-10

[QVTP03] QVT-partners, QVT-Partners revised submission
to QVT,
http://qvtp.org/downloads/1.1/qvtpartners1.1.pdf

[Sch91] Schürr, Operationales Spezifizieren mit
programmierten Graphersetzungssystemen,
Dissertation (German), Deutscher
Universitätsverlag, 1991

[Sch94] Schürr, Specification of graph translators with
tripel graph grammars, in: Mayr, Schmidt (eds.),
Proc. WG’94 Workshop on Graph-Theoretic
Concepts in Computer Science, LNCS 903,
Springer, Herrsching, 1994, pp. 151-163

[Together] Borland, Together,
http://www.borland.com/together

[UML] OMG, UML 2.0 superstructure specification,
http://www.omg.org/cgi-bin/doc?ptc/2003-08-02

[Wag01] Wagner, Realisierung eines
diagrammübergreifenden Konsistenzmanagement-
Systems für UML-Spezifikationen, Diploma Thesis
(German), Universität Paderborn, 2001

8 A. Königs

