On Properly Pareto Optimal Solutions

Pradyumn Kumar Shukla, Joydeep Dutta, and Kalyanmoy Deb

Kanpur Genetic Algorithms Laboratory (KanGAL)
Indian Institute of Technology Kanpur
Kanpur, PIN 208016, India
{shukla,jdutta,deb}@iitk.ac.in

Abstract. In this paper we study ε -proper efficiency in multiobjective optimization. We introduce various new definitions of ε -proper efficiency, relate them with existing ones, study various concepts and develop very general necessary optimality conditions for a few of them.

1 Extended Abstract

Approximate solutions are referred to as ε -efficient solutions where ε refers to the precision parameter. Several authors have studied ε -efficiency in multiobjective optimization see for example [6], [2], [10]. The concept of ε -efficiency is practically useful from the fact that to a decision maker good approximate solutions are very practical and helpful in decision making. However like Pareto points or efficient points there are also ε -Pareto points with undesirable preperties. Thus even in the approximate case we need to filter out the bad ones and keep the so called ε -proper Pareto solutions.

Consider the following vector optimization problem (VP): Minimize $f(x) = (f_1(x), f_2(x), \dots, f_m(x))$ subject to $x \in X$

where each $f_i: \mathbb{R}^n \to \mathbb{R}$, $X \subseteq \mathbb{R}^n$. In what follows we will consider $\varepsilon \in \mathbb{R}_+^m$, i.e. $\varepsilon = (\varepsilon_1, \dots, \varepsilon_m)$, $\varepsilon_i \ge 0$ for all i. In some cases we will set $\varepsilon_i = \varepsilon'$, for all i and then $\varepsilon = e\varepsilon'$ where $e = (1, \dots, 1) \in \mathbb{R}_+^m$.

Definition 1 ε -Pareto optimality Let $\varepsilon \in \mathbb{R}^m_+$ be given then a point $x^* \in X$ is said to be an ε -Pareto optimal of (VP) if there exists no $x \in X$ such that,

$$f_i(x) < f_i(x^*) - \varepsilon_i, \quad \forall i \in \{1, 2, \dots, m\}. \tag{1}$$

and with strict inequality holding for at least one index.

Let us denote the set of all Pareto optimal solutions as X_{par} . Observe that if $\varepsilon = 0$, the above definition reduces to that of a Pareto optimal solution. Let us denote the set of ε -Pareto points as $X_{\varepsilon-par}$.

Definition 2 Geoffrion proper Pareto optimality [3] $x_0 \in X$ is called Geoffrion proper Pareto optimal if x_0 is Pareto optimal and if there exists a

Dagstuhl Seminar Proceedings 04461 Practical Approaches to Multi-Objective Optimization http://drops.dagstuhl.de/opus/volltexte/2005/240 number M > 0 such that for all i and $x \in X$ satisfying $f_i(x) < f_i(x_0)$, there exists an index j such that $f_j(x_0) < f_j(x)$ and moreover $(f_i(x_0) - f_i(x))/(f_j(x) - f_i(x_0)) \le M$.

Let us denote the set of all Geoffrion properly Pareto optimal solutions as X_G .

Lemma 1 A point $x_0 \in X_G$ if and only if there exists M > 0 such that the following system is inconsistent (for all i = 1, 2, ..., m and for all $x \in X$).

$$-f_i(x_0) + f_i(x) < 0$$

-f_i(x_0) + f_i(x) < M(f_j(x_0) - f_j(x)) \forall j \neq i.

Note that in Geoffrion's definition $x \in X$. However as shown in next lemma, when Y = f(X) is \mathbb{R}^m_+ compact (i.e. the sections $(y - \mathbb{R}^m_+) \cap Y$ are compact for all $y \in Y$) then this can be replaced by $x \in X_{par}$.

Lemma 2 Suppose that Y = f(X) is \mathbb{R}^m_+ compact, then $x^0 \in X_G$ if x_0 is Pareto optimal and if there exists a number M > 0 such that for all i and $x \in X_{par}$ satisfying $f_i(x) < f_i(x^0)$, there exists an index j such that $f_j(x^0) < f_j(x)$ and moreover $(f_i(x^0) - f_i(x))/(f_j(x) - f_j(x^0)) \leq M$.

Definition 3 Liu ε -properly Pareto optimality (Liu [7]) A point, $x^* \in X$ is called ε -proper Pareto optimal in the sense of Liu [7], if x^* is ε -Pareto optimal and there exists a number M>0 such that for all i and $x\in X$ satisfying $f_i(x)< f_i(x^*)-\varepsilon_i$, there exists an index j such that $f_j(x^*)-\varepsilon_j< f_j(x)$ and moreover $(f_i(x^*)-f_i(x)-\varepsilon_i)/(f_j(x)-f_j(x^*)+\varepsilon_j)\leq M$.

Observe that if $\varepsilon = 0$, the above definition reduces to that of a Geoffrion proper Pareto optimal. Let us denote the set of all Liu properly Pareto optimal solutions as $X_L(\varepsilon)$.

Remark 1 Let us however observe in the above definition and definition 2.2, M is arbitrary. On the other side M provides a bound on the trade-offs betwen the components of the objective vector. It is more natural to expect in practice the decision maker will provide a bound on such trade offs. Thus we are motivated to define the following.

Definition 4 Geoffrion M **properly Pareto optimality** Given a positive number M>0, $x^0\in X$ is called Geoffrion M proper Pareto optimal if x^0 is Pareto optimal and if for all i and $x\in X$ satisfying $f_i(x)< f_i(x^0)$, there exists an index j such that $f_j(x^0)< f_j(x)$ and moreover $(f_i(x^0)-f_i(x))/(f_j(x)-f_j(x^0))\leq M$.

Let us denote the set of all Geoffrion M properly Pareto optimal solutions as X_M . It is to be noted that a similar modified definition is also possible for Liu ε -proper Pareto optimal solutions. Let us denote the set of all M ε -proper Pareto optimal solutions as $X_M(\varepsilon)$.

Theorem 1 Let $\varepsilon = \varepsilon' e$ where $\varepsilon' \in \mathbb{R}$, $\varepsilon' > 0$ and e = (1, 1, ..., 1), then for any fixed M,

$$X_M = \cap_{\varepsilon' > 0} X_M(\varepsilon) \tag{2}$$

Proposition 11 Consider a (VP) in which X is a finite set. Then there exists an $\varepsilon > 0$, such that $X_M = X_M(\varepsilon)$.

Definition 5 Benson's ε -proper Pareto optimality A point $x^0 \in X$ is called Benson's ε -proper Pareto optimal, if

$$cl(cone(f(X) + (C + \varepsilon) - (f(x^0)))) \cap (-C) = \{0\}$$

where C is the ordering cone.

This definition is a modification of Benson's proper efficiency (Benson [1])

Lemma 3 If a point x_0 is Benson's ε proper-Pareto optimal then its also ε -Pareto optimal.

Definition 6 Henig ε -efficiency A point $x^* \in X$ is Henig ε -Pareto optimal if

1.
$$(f(x^*) - \varepsilon - C \setminus \{0\}) \cap f(X) = \emptyset$$
, or equivalently 2. $(f(X) + \varepsilon - f(x^*)) \cap (-C \setminus \{0\}) = \emptyset$, or

where C is the ordering cone, such that $\mathbb{R}^m_+ \setminus \{0\} \subseteq intC$

Definition 7 Henig ε -weak efficiency A point $x^* \in X$ is Henig ε -weak efficient point if

1.
$$(f(x^*) - \varepsilon - intC) \cap f(X) = \emptyset$$
, or equivalently
2. $\exists no \ x \in X$, s.t. $f(x^*) - f(x) - \varepsilon \in intC$

where as usual C is the ordering cone, and $\mathbb{R}^m_+ \setminus \{0\} \subseteq intC$

Thus Henig ε -weak efficient points can be seen as weak points obtained when intC is perturbed by an amount ε .

Theorem 2 Let us consider the problem (VP) where $f: \mathbb{R}^n \to \mathbb{R}^m$ is a C-convex and X be a closed convex set. Let $\varepsilon = \varepsilon' e$, where $\varepsilon' > 0$ $\varepsilon' \in \mathbb{R}$. Let $x_0 \in X$ be Henig ε -weak minimum, then there exists $\mu \in C^*$, with $\langle \mu, e \rangle = 1$ such that x_0 is a ε -minimum for the following scalar minimum problem (MP)

$$\min_{x \in X} \langle \mu, f(x) \rangle$$

Definition 8 Henig ε -proper efficiency The Henig ε -proper Pareto optimal set (with respect to cone C) is defined as

 $X_{\varepsilon,pH}(f(X)) = \{x \in X \mid (f(x) - \varepsilon - (\Theta \setminus \{0\})) \cap f(X) = \emptyset\}$ where C is the ordering cone with $C\{0\} \subseteq int\Theta$.

This definition is a modification of Henig's global proper efficiency (Henig [4])

Lemma 4 Let $\varepsilon = \varepsilon'e$ and H denote the set of all Henig weak minimum of the program (VP) and for any given $\varepsilon > 0$, let H_{ε} denote the set of all Henig ε -weak minimum of (VP). Then,

$$H = \bigcap_{\varepsilon' > 0} H_{\varepsilon} \tag{3}$$

When the ordering cone is \mathbb{R}^m_+ , the above theorem reduces to

Corollary 1 Lemaire [5]

Let $\varepsilon = \varepsilon'e$ and E denote the set of all weak vector minimum of the program (VP) and for any given $\varepsilon > 0$, let E_{ε} denote the set of all ε -weak minimum of (VP). Then,

$$E = \bigcap_{\varepsilon > 0'} E_{\varepsilon} \tag{4}$$

Let $(f_i)'_{\varepsilon}(x;d)$ denote the ε -directional derivative of a convex function f_i at x in the direction d.

Lemma 5 Consider the problem (VP). Let $\varepsilon = \varepsilon'e$. If

$$((f_1)'_{\varepsilon}(y;x-y),\ldots,(f_m)'_{\varepsilon}(y;x-y)) \in W = \mathbb{R}^m \setminus (-intC) \quad \forall x \in X$$
 (5)

then $y \in H_{\varepsilon}$. When $\varepsilon = 0$, the converse is also true.

1.1 Kuhn Tucker type optimality conditions for Benson ε -efficiency.

We can derive the necessary and sufficient Kuhn Tucker type optimality conditions for Benson ε -proper Pareto optimal solutions.

Theorem 3 Consider the problem (VP) and let $f(x) = (f_1(x), f_2(x), \ldots, f_m(x))$ and let the set X be given by inequality constraints $g(x) = (g_1(x), g_2(x), \ldots, g_l(x))$ Suppose that f is a convex function with respect to C and that g_1, g_2, \ldots, g_m are convex functions. Assume that the Slater Constraint Qualification holds. Then $x_0 \in X$ is an ε -properly Pareto optimal in Benson's sense if and only if there exists scalars $\mu_j \in intC^*, j \in T = \{1, 2, \ldots, m\}, \ \lambda_i \geq 0, i \in L = \{1, 2, \ldots, l\}, \ \delta_{j^*} \geq 0, j \in T = \{1, 2, \ldots, m\}$ and $\varepsilon_{i^*} \geq 0, i \in L = \{1, 2, \ldots, l\}$ such that

1.
$$0 \in \sum_{j=1}^{m} \partial_{\delta_{j^*}}(\mu_j f_j)(x_0) + \sum_{i=1}^{l} \partial_{\varepsilon_{i^*}}(\lambda_i g_i)(x_0), \text{ and}$$

2. $\sum_{j=1}^{m} \delta_{j^*} + \sum_{i=1}^{l} \varepsilon_{i^*} - \langle \mu, \varepsilon \rangle \leq \sum_{i=1}^{l} \lambda_i g_i(x_0) \leq 0$

The concept of M ε -proper Pareto optimality is useful among other concepts like ε -Pareto optimality, weak ε -Pareto optimality and proper ε -Pareto optimality. The above lemma shows that if we take the limit of any M ε -proper Pareto solutions as $\varepsilon \to 0$, then it will give only the set of M proper solutions. This cannot be said of any other concepts like ε -Pareto optimality, weak ε -Pareto optimality and proper ε -Pareto optimality, in the limit they get to weak Pareto optimal solutions. In MOEA is the concept of ε -Henig efficiency can be thought of as combining an ε -MOEA with Branke's guidance approach.

References

- BENSON, H.P., An Improved Definition of Proper Efficiency for Vector Maximization with Respect to Cones, Journal of Mathematical Analysis and Applications, Vol. 71 (1979), no. 1, 232-241.
- 2. DENG, S., On Approximate Solutions in Convex Vector Optimization, SIAM Journal of Control and Optimization, Vol 35, No. 6, pp. 2128-2136, 1997.
- 3. GEOFFRION, A. M., Proper Efficiency and the Theory of Vector Maximization, Journal of Mathematical Analysis and Application, Vol. 22:3, pp. 618-630, 1968.
- 4. HENIG, M. I., *Proper Efficiency With Respect to Cones*, Journal of Optimization Theory and Applications, Vol. 36, pp. 387-407, 1982.
- 5. LEMAIRE, B., Approximation in Multiobjective Optimization, Journal of Global Optimization, Vol. 2, pp. 117-132, 1992.
- 6. LORIDAN, P., ε -Solutions in Vector Minimization Problem, Journal of Optimization Theory and Application, Vol. 43, pp. 265-269, 1984.
- 7. LIU, J., ε-Properly Efficient Solutions to Nondifferentiable Multiobjective Programming Problems, Applied Mathematics Letters, Vol. 12, pp. 109-113, 1999.
- 8. LUC, D. T., Theory of vector optimization, Springer Verlag, Berlin, 1989.
- 9. MIETTINEN, K, M., Nonlinear Multiobjectic Optimization, Kluwer Academic Publishers, Boston, 1999.
- 10. WHITE, D. J., *Epsilon Efficiency* Journal of Optimization Theory and Applications, Vol. 49, pp.319-337, 1986.