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Abstract. In this paper we study e-proper efficiency in multiobjective
optimization. We introduce various new definitions of e-proper efficiency,
relate them with existing ones, study various concepts and develop very
general necessary optimality conditions for a few of them.

1 Extended Abstract

Approximate solutions are referred to as e-efficient solutions where ¢ refers to the
precision parameter. Several authors have studied e-efficiency in multiobjective
optimization see for example [6], [2], [10]. The concept of e-efficiency is practically
useful from the fact that to a decision maker good approximate solutions are very
practical and helpful in decision making. However like Pareto points or efficient
points there are also e-Pareto points with undesirable preperties. Thus even in
the approximate case we need to filter out the bad ones and keep the so called
e-proper Pareto solutions.

Consider the following vector optimization problem (V P):

Minimize f(l') = (fl(x)a f2(x)7 R fm(x))

subject to x € X

where each f; : R* = R, X C R". In what follows we will consider ¢ € R,
ie. e = (e1,-..,€m), & > 0 for all 7. In some cases we will set ¢; = &', for all ¢
and then € = e’ where e = (1,...,1) € R}.

Definition 1 e-Pareto optimality Let € € R} be given then a point z* € X
is said to be an e-Pareto optimal of (VP) if there exists no x € X such that,

fz(.CE) < fz(.'lf*) —&;, Vi€ {1,2,...,m}. (1)
and with strict inequality holding for at least one indez.

Let us denote the set of all Pareto optimal solutions as Xp,,. Observe that if
€ = 0, the above definition reduces to that of a Pareto optimal solution. Let us
denote the set of e-Pareto points as X, pqr.

Definition 2 Geoffrion proper Pareto optimality [3] zo € X is called
Geoffrion proper Pareto optimal if xo is Pareto optimal and if there exists a

Dagstuhl Seminar Proceedings 04461
Practical Approaches to Multi-Objective Optimization
http://drops.dagstuhl.de/opus/volltexte/2005/240



2 Shukla, Dutta, and Deb

number M > 0 such that for all i and v € X satisfying fi(x) < fi(xo), there
exists an indez j such that f;(zo) < f;(x) and moreover (fi(xo)— fi(z))/(f;(x)—
fi(zo)) < M.

Let us denote the set of all Geoffrion properly Pareto optimal solutions as Xg.

Lemma 1 A point xo € Xg if and only if there exists M > 0 such that the
following system is inconsistent (for all i =1,2,...,m and for all x € X ).

—fi(zo) + fi(z) <0
—fi(zo) + fi(x) < M(fj(z0) — fi(z)) Vj#i.

Note that in Geoffrion’s definition z € X. However as shown in next lemma,
when Y = f(X) is R compact (i.e. the sections (y — RT*) NY are compact for
all y € Y) then this can be replaced by z € X,

Lemma 2 Suppose that Y = f(X) is R}* compact, then 2° € Xg if zy is Pareto
optimal and if there exists a number M > 0 such that for all i and x € Xper
satisfying fi(z) < fi(x°), there ezists an index j such that f;(z°) < f;(z) and
moreover (fi(z°) — fi(z))/(f;(=) — f;(°)) < M.

Definition 3 Liu e-properly Pareto optimality (Liu [7]) A point, 2* € X
is called e-proper Pareto optimal in the sense of Liu [7], if x* is e-Pareto optimal
and there exists a number M > 0 such that for all i and x € X satisfying
fi(z) < fi(z*) — €i, there exists an index j such that f;j(x*) —e; < fj(x) and
moreover (f3(z*) — fi(x) — £0)/(f3(z) — £5(z*) +£;) < M.

Observe that if e = 0, the above definition reduces to that of a Geoffrion proper
Pareto optimal. Let us denote the set of all Liu properly Pareto optimal solutions
as X (e).

Remark 1 Let us however observe in the above definition and definition 2.2, M
is arbitrary. On the other side M provides a bound on the trade-offs betwen the
components of the objective vector. It is more natural to expect in practice the
decision maker will provide a bound on such trade offs. Thus we are motivated
to define the following.

Definition 4 Geoffrion M properly Pareto optimality Given a positive
number M > 0, 2° € X is called Geoffrion M proper Pareto optimal if 20 is
Pareto optimal and if for alli and x € X satisfying fi(z) < fi(x°), there exists an
inde j such that f;(a®) < f;(x) and morcover (£,(a°)— £3(2))/ (f;(2)—£; &) <
M.

Let us denote the set of all Geoffrion M properly Pareto optimal solutions
as Xpr. It is to be noted that a similar modified definition is also possible for
Liu e-proper Pareto optimal solutions. Let us denote the set of all M e-proper
Pareto optimal solutions as X /().
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Theorem 1 Lete =¢c'e wheree' € R, €' >0 ande = (1,1,...,1), then for any
fized M,

Xm =Ner>0Xm(e) (2)

Proposition 11 Consider a (V P) in which X is a finite set. Then there exists
an € > 0, such that Xar = Xp(e).

Definition 5 Benson’s e-proper Pareto optimality A point 2° € X is
called Benson’s e-proper Pareto optimal, if

cl(cone(f(X) + (C +¢) — (£(2%)))) N(-C) = {0}

where C is the ordering cone.

This definition is a modification of Benson’s proper efficiency (Benson [1])

Lemma 3 If a point ©¢ is Benson’s € proper-Pareto optimal then its also e-
Pareto optimal.

Definition 6 Henig e-efficiency A point ©* € X is Henig e-Pareto optimal if

1 (f(z*)—e—=C\{0}) N f(X) =0, or equivalently
2. (f(X)+e—fa")n(=C\{0}) =0, or

where C' is the ordering cone, such that RT \ {0} C intC

Definition 7 Henig e-weak efficiency A point x* € X is Henig e-weak effi-
cient point if

1. (f(z*) —e—intC)N f(X) =0, or equivalently
2. 3nox e X, st f(x*)— f(x) —e €intC

where as usual C is the ordering cone, and R \ {0} C intC

Thus Henig e-weak efficient points can be seen as weak points obtained when
intC' is perturbed by an amount €.

Theorem 2 Let us consider the problem (VP) where f : R* — R™ 4s o C-
convex and X be a closed convexr set. Let ¢ = €'e, where &' > 0 &' € R. Let
2o € X be Henig e-weak minimum, then there erists p € C*, with (u,e) =1
such that zo is a e-minimum for the following scalar minimum problem (M P)

min(u, f(z))

zeX

Definition 8 Henig e-proper efficiency The Henig e-proper Pareto optimal
set (with respect to cone C) is defined as

Xepu(f( X)) ={2z€ X | (f(z) —e—(©\{0}))N f(X) =0} where C is the
ordering cone with C{0} C int®.

This definition is a modification of Henig’s global proper efficiency (Henig [4])
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Lemma 4 Let e = ¢'e and H denote the set of all Henig weak minimum of the
program (VP) and for any given € > 0, let H. denote the set of all Henig e-weak
minimum of (VP). Then,

H= mE'>0HE (3)

When the ordering cone is R}, the above theorem reduces to

Corollary 1 Lemaire [5]

Let e = €'e and E denote the set of all weak vector minimum of the program
(VP) and for any given € > 0, let E. denote the set of all e-weak minimum of
(VP). Then,

E= Ne>or E. (4)

Let ( fi);(w; d) denote the e-directional derivative of a convex function f; at
z in the direction d.

Lemma 5 Consider the problem (VP). Let e = €'e. If

(F) 32 —4)s -y (fn)o(y; 5 — ) €W =R™ \ (—intC) Yz e X  (5)

then y € H.. When € =0, the converse is also true.

1.1 Kuhn Tucker type optimality conditions for Benson e-efficiency.

We can derive the necessary and sufficient Kuhn Tucker type optimality condi-
tions for Benson e-proper Pareto optimal solutions.

Theorem 3 Consider the problem (VP) and let f(x) = (f1(z), f2(z),. .., fm(z))
and let the set X be given by inequality constraints g(x) = (g1(x), g2(x), ..., gi(x)).
Suppose that f is a convex function with respect to C' and that 91,92, .., gm are
convex functions. Assume that the Slater Constraint Qualification holds. Then
zo € X is an e-properly Pareto optimal in Benson’s sense if and only if there
ezists scalars p; € intC*,j € T ={1,2,...,m}, \; >0,i € L ={1,2,...,1},
0+ >0, €T ={1,2,..,m} and &;» > 0,i € L ={1,2,...,1} such that

1.0 YT 85,0 (1 fi)(@0) + Yty O, (Migi) (o), and
2. 35ty 0 + Sy = (pye) < 0y Aigi(mo) <0

The concept of M e-proper Pareto optimality is useful among other concepts
like e-Pareto optimality, weak e-Pareto optimality and proper e-Pareto optimal-
ity. The above lemma shows that if we take the limit of any M e-proper Pareto
solutions as € — 0, then it will give only the set of M proper solutions. This
cannot be said of any other concepts like e-Pareto optimality, weak e-Pareto
optimality and proper e-Pareto optimality, in the limit they get to weak Pareto
optimal solutions. In MOEA’s the concept of e-Henig efficiency can be thought
of as combining an e-MOEA with Branke’s guidance approach.
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