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Abstract. Multiple-core processors set the new hardware standard for
typical scientific computing platforms thus driving the need for algo-
rithms making extensive use of Thread Level Parallelism (TLP). On
the other spectrum end of concurrent platforms, large-scale distributed
systems dictate the design of novel algorithms with minimum synchro-
nization constraints and maximum self-adaptation to inevitable dynamic
changes in their execution environment.

We advocate the asynchronous computation model [1] as a suitable frame-
work for building such algorithms and propose Jylab [2] as an interactive
multithreading workbench for comfortably exploring their behaviour. We
demonstrate the flexibility of this environment in the asynchronous com-
putation of PageRank and comment on some interesting properties of the
computation itself. In this context a multicore machine naturally boosts
the performance of an application consisting of asynchronously comput-
ing threads and Jylab facilitates such multithreaded designs.

Ultimately concurrency at CPU level can drive decisions for alternative
ways of organizing concurrency at Internet level but can also serve as
the final execution platform. 3 4

1 Introduction

1.1 Overview

Traditionally concurrent computations are implemented either over shared- or
distributed- memory hardware architectures. These are either directly exposed
to the application layer or used to build virtualizations of alternative but more
convenient programming models. Both have found their way to commodity scien-
tific computing platforms through Symmetric MultiProcessing (SMP) machines
and Beowulf clusters.
3 Partial support by a Pythagoras-I (EPEAEK-II) research grant-Code No:B365016
4 Work conducted in collaboration with Daniel Szyld
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However in recent years opportunities for parallel execution have broadened
their scope: Availability of increasingly faster network connections within Inter-
net make it practical to engage existing local clusters or even isolated machines to
distributed computations and multicore processors, literally realizing performant
clusters within a desktop machine, dramatically lower the barrier -basically in
terms of deployment and maintenance- in developing parallel solutions to prob-
lems.

These advances introduce new challenges in algorithm design and usabil-
ity. E.g. Internet-scale distributed computations should not be direct ports of
cluster-based (especially tightly-coupled parallel) scientific computations; per
step synchronization and all-to-all communication, although possibly dictated
by its sequential analog, could raise excessively long idle phases and unaccept-
able network overload. On the other hand a monolithic sequential implementa-
tion of an algorithm would lose the performance speedup offered by available
CPU cores. Complementary usability issues are also important: In a typical sce-
nario a scientist uses an interactive workbench for algorithm developement and
he should be isolated by intricacies (e.g. fault and security management) of the
underlying platforms he uses; nonetheless he should be given friendly access to
their fundamental user-level abstractions.

Multicore machines encourage organizing an algorithm into interacting tasks
(to be scheduled by the operating system to individual cores at runtime). Tasks
are typically realized by processes or threads; in fact, the thread model is closer
to multicore design. So the interactive use of threads during development should
be regarded as a compelling feature of modern scientific workbenches, especially
when run over multicore machines; the user can easily test alternative ways of
“keeping his cores busy” and, perhaps more importantly, deepens his perception
of algorithm parallelization issues. This is expected to be an important skill
in software practice in years to come since fundamental limits in CPU design
migrate the emphasis from increasingly more powerful CPUs to just increasingly
more CPUs packaged together. Software approaches already accomodate this
shift: OpenMP standard compiler directives [3], shared memory implementations
of MPI specification, language dialects [4] and new languages [5].

1.2 Paper focus

Jylab [2] offers such interactive multithreading capabilities to the user. We use
this system to conveniently evaluate the behavior of the asynchronous computa-
tional model as applied to a commonly encountered problem in Internet algorith-
mics, namely PageRank calculation. The emphasis is twofold: Demonstrate the
flexibility of Jylab in building a multithreaded simulation environment and also
stress some virtues of asynchronous computations -as drawn from subsequent
experimentation- which make them attractive for large-scale parallel computa-
tions involving naturally distributed data-sets.

This paper is organized as follows: In the first two sections we present Jylab
and PageRank computation within an asynchronous setting. These are followed
by an extensive section containing information on experimentation setup and
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numerical results interspersed with comments. We conclude with a synopsis of
the main points in our approach and future research directions.

2 Jylab

Jylab is a new system built to enable access to parallel programming methodolo-
gies in scientific computing (multithreading, multiprocessing), however keeping
attractive features of common workbench-type environments [6,7,8].

– Interactive environment and a language for composing scripts (all above sys-
tems have this feature). Such a language, rising in popularity and support-
ing object-oriented, procedural and even functional programming features is
Python [9], which comes also with an interactive shell.

– Maximum portability which made Java attractive; Jython [10,11], i.e. Python
implemented in Java has these features.

– Support for interprocess communication across machine boundaries, numer-
ical computations (especially matrix based), visualization and symbolics; we
integrated corresponding open-source class libraries from the Web.

It is important to note that it is always possible to speedup a computation
by coding it in Java (recent versions of JVM rival even C++ performance [12]).

Jylab is actually an implementation of a portable Problem Solving Envi-
ronment (PSE) [13] targeting a broad and extensible group of disciplines; PSEs
can dramatically reduce the time-to-solution-by-computer for problems in sci-
ence, by exposing computing capabilities in a most comprehensive, flexible and
application-domain-friendly way.

Its core functionality is supported by a suite of packages for scripting (Jython),
numerical linear algebra (NLA) computations (Colt [14], MTJ) [15]), interprocess
communication (Ibis [16]), interactive visualization (VisAD [17]) and minimal
computer algebra manipulations (MathEclipse [18]). However a collection of
extension packages have also been successsfully tested within Jylab context to
facilitate e.g. Grid computing (JavaGAT [19] and ProActive [20]), search engine
pipelines (Nutch [21]) and Web graph analysis (WebGraph [22]).

3 Asynchonous PageRank computation

There are several ideas being used today for Web information retrieval, and
specifically in Web search engines [23]. The PageRank algorithm [24] is one of
those that introduce a content-neutral ranking function over Web pages. This
ranking is applied to the set of pages returned by the Google search engine in
response to posting a search query. PageRank is based in part on two simple
common sense concepts: (i) A page is important if many important pages in-
clude links to it. (ii) A page containing many links has reduced impact on the
importance of the pages it links to.
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In order to compute PageRank a matrix representation of the Web link struc-
ture (Web matrix) is typically employed. However due to the size of such a
-sparse- Web Matrix (representing more than 1010 pages with 1011 nonzero ele-
ments and 1012 bytes for storage) distributed memory, parallel implementations
are commonly developed with each processor hosting part of this matrix in its
memory and engaged in a long iterative computation with a tight-coupling com-
munication pattern, also introducing synchronizing phases and corresponding
delays. The main intention of this paper is to demonstrate that a PageRank
computation can readily be ported to the asynchronous communication model
which permits deployment to loosely-coupled distributted platforms with no syn-
chronization constraints. Under this model a processor iterates without stepwise
blocking in waiting for update information from other processors but instead
carries on computing with whatever -most recent data- is available.

3.1 PageRank

In order to appreciate the PageRank computation, we present its standard for-
mulation using the following set of four n × n matrices, where n is the number
of pages being modeled.

An adjacency matrix A can be obtained through a web crawl or synthetically
generated using statistical results, e.g., as in [25]. Thus, αij = 1 iff page i points
to page j, and αij = 0 otherwise.

A transition matrix P has nonzero elements πij = αij/deg(i) when deg(i) 6=
0, and zero otherwise (in which case page i is called a dangling page); here
deg(i) =

∑
j αij is the outdegree of page i.

A stochastic matrix S is given by S = P>+w d>; w = 1
ne, where e is the size

n vector of all 1’s, and d is the dangling index vector whose nonzero elements
are δi = 1 iff deg(i) = 0.

The Google matrix G is 5 G = µ S + (1 − µ) v e>. For a random web
surfer about to visit his next page, the relaxation parameter µ is the probability
of choosing a link-accessible page. In choosing otherwise, i.e., with probability
1− µ, from the complete Web page set vector v contains respective conditional
probabilities of such teleportations. Typically v = w and µ = 0.85.

The PageRank vector x is the solution of the linear system

x = G x , (1)

where the matrix G is an irreducible stochastic matrix, and thus its largest
eigenvalue in magnitude is λmax = 1 [26]. Thus, the PageRank vector x is the
eigenvector corresponding to λmax = 1, and when normalized, it is the stationary
probability distribution over pages under a random walk on the Web, i.e., the

5 For the sake of consistency with the Householder’s notational conventions, we opt
to use µ rather than α for the relaxation parameter, since the latter might mistaken
as an element of A.
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invariant measure of a Markov process modeled by matrix G. To make the com-
putation of x practical for the problem sizes we are considering, it is necessary
to employ an iterative method, e.g. executing until convergence

x(t + 1) = G x(t), x(0) given. (2)

This is the well-known power method for finding the eigenvector of G corre-
sponding to the eigenvalue of largest magnitude [26]

In a parallel implementation one usually partitions G into sets of rows and
suitably distributes them to available units of executions (UEs); in a typical syn-
chronous setting each of them will produce corresponding x fragments which will
have to be communicated to all other peers in lockstep. Alternative approaches
reformulate PageRank as the solution to a linear system of equations [27] and
parallelize its computation accordingly [28]. For synchronous parallel PageRank
implementations we refer to [29,30]

3.2 Asynchronous computation model

For an environment with p UEs, denote by x{i} the set of indices assigned to ith

UE during the iterative computation, T i the set of times at which x{i} is updated
(i.e., ith UE finishes its computation) and τ i

j(t) the time when the fragment x{j},
which is available at time t in the ith UE, was actually produced at its respective
jth UE. Then for t ∈ T i, the ith UE updates

x{i}(t + 1)← fi(x{1}(τ i
1(t)), . . . , x{p}(τ

i
p(t))), (3)

while x{i}(t + 1) = x{i}(t) at other times. Delays due to omission of synchro-
nization phases are expressed as differences t − τ i

j(t) ≥ 0; here fi expresses the
distributed operator component executing at the ith UE. Obviously the form
of fi is independent of the asynchronism introduced. It thus follows that the
normalization-free power method for PageRank computation at the ith UE reads

x{i}(t + 1) = gi [x>{1}(τ
i
1(t)), . . . , x

>
{p}(τ

i
p(t))]

> (4)

for t ∈ T i, and x{i}(t + 1) = x{i}(t) at other times, where gi is a set of rows
of the Google matrix G indexed by {i}. The lack of synchronization annuls
the semantics of the original mathematical algorithm. Therefore, it becomes
necessary to discuss the convergence properties of the asynchronous scheme (3).
Basically, convergence of asynchronous iterative algorithms is usually established
through constructing a sequence of nested boxed sets in the spirit of the following
theorem [31]:

Theorem 1. Let {X(k)} : . . . ⊂ X(k + 1) ⊂ X(k) ⊂ . . . ⊂ X, with the
following two conditions.
Synchronous Convergence Condition: For all k = 1, . . ., x ∈ X(k), f(x) ∈ X(k +
1), and for {yk}, yk ∈ X(k) : the limit points of {yk} are fixed points of f .
Box Condition: For all k = 1, . . ., X(k) = X1(k)× . . .×Xn(k).
Then if x(0) ∈ X(0), the limit points of {x(t)} are fixed points of f , where {x(t)}
are given by (3).
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Process (4) involves a nonnegative matrix of unit spectral radius; it is proved
in [32] that the corresponding asynchronous iteration converges to the true solu-
tion within a multiplicative factor that can easily be factored out at the end by
renormalization; cf. [33]. In [34] a cluster-based implementation of (4) is evalu-
ated; interesting P2P simulations have also been developed [35,36].

4 Experimentation

4.1 Setup

We used a notebook equipped with Intel dual-core T7200 processor (2GHz, 4MB
L2 cache) and 2GB RAM, running Linux (kernel v2.6.17). Java virtual machine
(v1.5.0) hosted Jylab’s scripting component, Jython (v2.1) and multithreaded
code was conveniently developed in supported Python syntax making extensive
use of a webmatrix class library separately coded in Java(see Fig 1). The tran-
sition matrix used in the experiments is mainly the Stanford Web matrix [37],
generated from an actual web-crawl (n = 281, 903 pages, 2, 312, 497 non-zero
elements, 172 dangling nodes) but in at least one test case, synthetic Barabasi-
Albert [38] graphs were alternatively used. Local convergence threshold was set
to 10−4 (|| · ||1). Note that in each case, blocks of consecutive [n/p] rows were
distributed among p computing peers (executing on a thread each); therefore,
no load balancing was specifically attempted. Termination detection was deter-
mined by checking special global flags, set whenever “converged” status persisted
locally (i.e. within a peer’s execution context).

Fig. 1. Multithreaded code organization: class and method names are given
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4.2 Results

Various configurations of up to 192 concurrently executing asynchronous peers
were tested and convergence to PageRank vector was observed at all cases. All
experiments are controlled by two parameter vectors:

startdelays[] contains values of time delays (in secs) for the respective peer
to join the computation. A value of None at its ith position simply states that
peer with ID = i started with no delay. This is very useful since it permits us
to investigate the behavior of asynchronous PageRank under dynamic changes
in the computation; a delayed peer when started introduces its corresponding
part of the web link structure along. So this parameter can determine timing of
massive and abrupt changes in processed data.

stepdelays[] contains values of delays (in secs) synthetically injected at
each step of the iteration performed by peer with corresponding ID. This pa-
rameterizes heterogeneous machines in terms of speed: large values simulate slow
machines. It follows that None lets the underlying (fair) thread scheduler decide.

iterations[] is an output vector of the total number of iterations per-
formed by each asynchronously executing peer to reach convergence. Although
large numbers are sometimes recorded here (in cases of either strong heterogene-
ity or late startup peers) the decisive comparison metric (e.g. to the synchronous
parallel-synchronous case) then, should be the lowest number of iterations, be-
cause in a synchronous setting, execution time finish is governed by the last UE
to converge (typically the slowest) and its start by the last UE to join (in a
synchronous setting all peers should be simultaneously available at start).

Figure 2 shows a distinctive feature of asynchronous computations compared
to their synchronous counterparts: In the course of an asynchronous iterative
process a peer can enter and exit ‘converged’ status multiple times quite inde-
pendently from other UEs. This happens as a possibly ‘converged’ process re-
ceives data -completely out of sync- from either asynchronous ‘futures’ or ‘pasts’
(i.e. other processes respectively having performed more or less iterations). Con-
vergence in PageRank case is finally attained across all peers and this comes as
a numerical verification of the general theoretical result in [32], as mentioned
earlier. Predicting exact number of iteration steps per peer seems impossible.
Contrast it to the synchronous case when convergence is ‘synchronously’ reached
(in a precomputable number of steps).

startdelays[] stepdelays[] iterations[]

None [None, 1., 2., 3.] [2071, 82, 42, 28]

None [None, 2., 4., 6.] [4605, 83, 42, 28]

None None [58, 50, 57, 48]

[10.,None,20.,None] None [241, 307, 105, 260]

Table 1. Experiments (4 peers, Stanford Web matrix) for a variety of
startdelays[] and stepdelays[] (in secs). Number of iterations to conver-
gence for each peer (iterations[] vector) is given.
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Fig. 2. Asynchronous convergence patterns: a vertical column represent the
timeline of convergence status for a specific peer, with black denoting non-
convergence, white that convergence has been reached. Global time runs down-
wards starting when less than half of the total number of peers were left in
non-converget state for the first time. Left is for 32 peers (synthetic Barabasi-
Albert Web matrix, 100k pages), right is for 192 peers (Stanford Web matrix).
startdelays=None, stepdelays=None.

Tables 1 and 2 summarize some experiments with 4 peers. E.g. table 2 focuses
on the scenario that one of the peers starts computing long after the others. In
the extreme case when this peer is the slowest too, we can draw a very important
conclusion: Note that this slow and late processor needs less than 39 iterations
(this is for the sequential-synchronous case for the same error threshold). But
since this processor decides results delivery time, we can say that it seems advan-
tageous to start up computation immediately in the absence of slow machines
to be available later on, rather than deferring calculation launch. Other results
(some from table 1 also) generally suggest the following strategy: prefer to asyn-
chronously start computing (if the alternative is to wait for all peers to become
available) and although small the gain towards convergence per iteration (note
the large iteration numbers at ‘fast’ machines) certainly it does no harm; on the
contrary this helps to critically reduce iterations at slow peers.

Figure 3 graphs error evolution in the case of simultaneously started peers
computing at different speeds: fastest one exhibits most variations in its graph.
In Figure 3, on the other hand, peers are homogeneous but started at different
times. We observe that the introduction of ‘new’ computing threads is clearly
sensed by ‘old’ ones in the form of abrupt changes in their error profile (these
points of change can also be used for translating iteration steps to real time inter-
vals). The important thing here is that although severely perturbed, no special
treatment is needed for the computation (e.g. no need to restart or checkpoint
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startdelays[] stepdelays[] iterations[]

[3 x None, 15.] None [202, 207, 213, 52]

[3 x None, 15.] [3 x None, 1.] [486, 445, 475, 28]

[3 x None, 15.] [3 x None, 2.] [743, 757, 801, 28]

[3 x None, 15.] [1., 1., 1., None] [53, 53, 53, 1009]

[3 x None, 15.] [2., 2., 2., None] [46, 46, 46, 2068]

Table 2. Experiments (4 peers, Stanford Web matrix) for a variety of
stepdelays[] when one of the peers joins the computation after it has started.
Number of iterations to convergence for each peer (iterations[] vector) is
given.

it); asynchronous computing seems to automatically adapt to dynamic changes
(here more peers and drastic changes in link structure) and find its way to con-
vergence.

5 Conclusions

Asynchronous computing is an alternative, albeit not a substitute, for the paral-
lel synchronous model, especially suited whenever the latter becomes infeasible
or impractical. Mature message passing technology both in terms of software
libraries and hardware infrastructure is well established for the synchronous
model; however when considering it we make an assumption that data to oper-
ate on is available at computation site.

On the other hand the asynchronous model appears to be the only way to go
when one of the following applies: Data are naturally distributed and no central
infrastructure exists for collecting and processing it, the underlying processing
algorithms ideally demand tight communication between computing elements
(but communication links are slow), hardware failures are very likely while a
restart protocol is prohibitive, or participating peers are not all guaranteed to
be readily available at the start.

One could perhaps point out shortcomings of this model: Not all algorithms
can be correctly expressed under this model, there are difficulties in proving rate
of convergence, common software stacks support it only at low-level. But our
results expose some important features of asynchronous computations:

– they exhibit interesting behavior for slow or delayed-startup peers
– they are robust; dynamic changes are smoothly integrated in the course of

the calculation without need for restarts.
– this is an adaptive and most scalable model; data could be engaged in a

computation in place and communication patterns are drastically relaxed.

Our research so far, however, indicates that it is eminently suitable for problems
of the sizes likely in Internet Algorithmics.

Our future work aims at extracting further numerical evidence on the behav-
ior of the asynchronous model: Porting it to new execution platforms (e.g. Grid
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Fig. 3. The effect of heterogeneity: error vs number of iterations for
4 asynchronous peers working on Stanford Web matrix. All peers
are started simultaneously but we artificially introduce per step delays
(in secs) stepdelays=[1.,2.,3.,4.] for corresponding peers. Note that
iterations=[117,60,40,31]

[39]) looks promising. We are also going to investigate the role of Web updates
to the asynchronous iterative process and the feasibility of concurrent crawling
and asynchronous ranking.

Jylab with its interactive route to full multicore utilization already helps us
to shed light on the pragmatics of the promising asynchronous computational
model and provide arguments for its integration in typical scientific computing
practices.
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