
Local theory extensions, hierarchical reasoning

and applications to verification

– Preliminary Report –

Viorica Sofronie-Stokkermans, Carsten Ihlemann, Swen Jacobs

Max-Planck-Institut für Informatik, Campus E 1.4, Saarbrücken, Germany
{sofronie,ihlemann,sjacobs}@mpi-inf.mpg.de

Abstract. We present some new results on hierarchical and modular
reasoning in complex theories, as well as several examples of application
domains in which efficient reasoning is possible. We show, in particular,
that various phenomena analyzed in the verification literature can be
explained in a unified way using the notion of local theory extension.

Keywords. automated reasoning, decision procedures, verification

1 Introduction

Many problems occurring in verification can be reduced to proving the satisfia-
bility of conjunctions of literals in a background theory. This can be a concrete
theory (e.g. the theory of real or rational numbers), the extension of a theory
with additional functions (free, monotone, or recursively defined) or a combina-
tion of theories. It is therefore very important to have efficient procedures for
checking the satisfiability of conjunctions of ground literals in such theories. In
particular, it is very important to identify situations where the search space can
be controlled without losing completeness. A class of theories in which this is
possible are the so-called local theories [1,2,3]. In [4,5] we study the more general
notion of locality of extensions of theories with new functions axiomatized by
sets of clauses. Apart from allowing us to address the problem of restricting the
search space, in local theory extensions proof tasks can be reduced, hierarchi-
cally, to proof tasks in the base theory. Various results in verification can be
explained in a unified way – and new results can be obtained – using proper-
ties of local theory extensions. The main results presented in this paper can be
summarized as follows:

(1) We show that theories important in verification (e.g. the theory of arrays in
[6] and the theory of pointer structures in [7]) satisfy locality conditions.

(2) We present a general framework which allows to identify local theories im-
portant in verification. This allows us to handle also fragments which do not
satisfy all syntactical restrictions imposed in previous papers. In particular,
the axiom sets which we consider may contain alternations of quantifiers.

(3) We use these results to give new examples of local theories of data types.

Dagstuhl Seminar Proceedings 07401
Deduction and Decision Procedures
http://drops.dagstuhl.de/opus/volltexte/2007/1250

2 V. Sofronie-Stokkermans, C. Ihlemann, S. Jacobs

(4) We discuss the experiments we made with an implementation.

Structure of the paper. The paper is structured as follows. In Sect. 2 local theories
and local theory extensions are defined. Results on hierarchical reasoning, pa-
rameterized decidability and complexity results, and possibilities of recognizing
local extensions are summarized. Section 3 contains a large number of examples,
ranging from extensions with monotonicity, injectivity and (guarded) bound-
edness properties to theories of data structures (pointers, arrays). A general
framework for recognizing locality in verification – including a description of the
verification problems we address – is presented in Sect. 4. Several examples of
applications are presented in Sect. 5. We describe our implementation and some
experiments in Sect. 6, and present the conclusions and plans for future work in
Sect. 7.

2 Locality

Theories and models. Theories can be regarded as collections of formulae (i.e.
can be described as the consequences of a set of axioms), as collections of models
(the reals/integers; the set of all models of a set of axioms), or both. If T is a
theory and φ, ψ are formulae, we say that T ∧ φ |= ψ (written also φ |=T ψ) if
ψ is true in all models of T which satisfy φ. If T ∧ φ |=⊥ (where ⊥ is false),
there are no models of T which satisfy φ, i.e. φ is unsatisfiable w.r.t. T . In what
follows we will refer both to total and to partial models of a theory (resp. of a
set of clauses). For the necessary definitions (weak validity, Evans validity, weak
partial model, (Evans) partial model) we refer to [5].

Local theories. The notion of local theory was introduced and studied by Givan
and McAllester in [1,2]. A local theory is a set of Horn clauses K such that, for
any ground Horn clause C, K|=C only if K[C]|=C, where K[C] denotes those
instances of K containing only subterms of ground terms in K or C. Therefore,
for local theories validity of ground Horn clauses can be checked in ptime.

Local theory extensions. Let T0 be a theory with signatureΠ0 = (S0, Σ0,Pred),
where S0 is a set of sorts,Σ0 a set of function symbols, and Pred a set of predicate
symbols. We consider extensions T1 of T0 with new sorts and function symbols
(i.e. with signature Π = (S,Σ,Pred), where S = S0 ∪ S1 and Σ = Σ0 ∪ Σ1),
satisfying a set K of (implicitly universally quantified) clauses. An extension
T0 ⊆ T0 ∪ K is local if satisfiability of a set G of clauses with respect to T0 ∪ K
only depends on T0 and those instances K[G] of K in which the terms starting
with extension functions are in the set st(K, G) of ground terms which already
occur in G or K. A weaker notion of locality (stable locality) exists; it allows
to restrict the search to the instances K[G] of K in which the variables below
extension functions are instantiated with terms in the set st(K, G) of ground
terms which already occur in G or K.

The extension axioms may, in addition, contain subformulae with alternations
of quantifiers. To address such situations, we introduced the notions of extended

Local theory extensions in verification 3

locality [5]. We consider extensions T0 ⊆ T0 ∪ K with a set K of (implicitly
universally quantified) axioms of the form (Φ(x1, . . . , xn)∨C(x1, . . . , xn)), where
Φ(x1, . . . , xn) is an arbitrary first-order formula in the base signature Π0 with
free variables x1, . . . , xn, and C(x1, . . . , xn) is a clause in the signature Π . We
extend the notion of local theory extension accordingly. If K is a formula with
free variables x1, . . . , xn, K[Γ] consists of all instances of K in which the terms
starting with extension functions are in the set st(K, G) of ground terms which
already occur in G or K, and K[Γ] consists of all instances of K in which the
variables below a Σ1-symbol are instantiated with terms in TΣ0

(st(K, G)).

(ELoc) For every formula Γ = Γ0 ∪G, where Γ0 is a Π0-sentence and G is
a set of ground clauses, T1 ∪ Γ |=⊥ iff T0 ∪ K[Γ] ∪ Γ has no weak
partial model in which all terms in st(K, G) are defined.

(ESLoc) For every formula Γ = Γ0 ∪G, where Γ0 is a Π0-sentence and G is

a set of ground clauses, T1 ∪ Γ |=⊥ iff T0 ∪ K[Γ] ∪ Γ has no partial
model in which all terms in st(K, G) are defined.

We also identify a class of locality conditions between locality and stable locality.
Let Ψ be a function associating with a set K of axioms and a set of ground terms
T0 a set Ψ(K, T0) of ground terms with (i) All ground subterms in K and T0 are
also in Ψ(K, T0); (ii) Ψ is monotone, i.e. for all sets of ground terms T0 and T ′

0

if T0 ⊆ T ′
0 then Ψ(K, T0) ⊆ Ψ(K, T ′

0); (iii) Ψ defines a closure operation, i.e. for
all sets of ground terms T0, Ψ(K, Ψ(K, T0)) ⊆ Ψ(K, T0). We can assume, without
loss of generality, that Ψ(K, T0) is closed under subterms. Let K[Ψ(K, G)] be
the set of instances of K in which the extension terms are in Ψ(K, subterms(G)),
which here will be denoted by Ψ(K, G). We say that an extension T0 ⊆ T0 ∪ K
satisfies an extended locality condition w.r.t. Ψ if it satisfies confition (ELocΨ):

(ELocΨ) for every formula Γ=Γ0∪G, where Γ0 is a Π0-sentence and G a
set of ground clauses, T1 ∪ Γ |=⊥ iff T0 ∪ K[Ψ(K, G)] ∪ Γ has
no weak partial model in which all terms in Ψ(K, G) are defined.

If we consider only axiomatizations with clauses (i.e. the formulae in K are just
clauses and only satisfiability of sets G of ground clauses is considered) then we
obtain a notion of locality (LocΨ) extending the usual notion (Loc) of locality of
an extension.

2.1 Hierarchical reasoning in local theory extensions

Let T0 ⊆ T1=T0 ∪ K be a theory extension satisfying condition ELoc,ESLoc or
(ELocΨ). To check the satisfiability w.r.t. T1 of a formula Γ = Γ0 ∪G, where Γ0

is a Π0-sentence and G of ground clauses over Π1 we proceed as follows:

Step 1: Use locality. By the locality assumption, T1 ∪ Γ0 ∪ G is satisfiable iff
T0∪K∗[G]∪Γ0∪G has a (weak) partial model with corresponding properties,
where, depending on the type of locality, K∗ [G] is K[G],K[G] or K[Ψ(K, G)].

4 V. Sofronie-Stokkermans, C. Ihlemann, S. Jacobs

Step 2: Purification. We purify K∗[G]∪G by introducing, in a bottom-up man-
ner, new constants ct for subterms t = f(g1, . . . , gn) with f∈Σ1, gi ground
Σ0 ∪Σc-terms (Σc is a set of constants containing the constants introduced
by purification), together with corresponding definitions ct ≈ t. The result of
the transformation is K0∪G0∪Γ0∪D, where K0, G0, Γ0 are formulae without
function symbols in Σ1 and D consists of definitions f(g1, . . . , gn)≈c, where
f ∈ Σ1, c is a constant, g1, . . . , gn are ground Σ0-terms.

Step 3: Reduction to testing satisfiability in T0. We reduce the problem to test-
ing satisfiability in T0 by replacing D with the following set of clauses:

N0 = {
n∧

i=1

ci ≈ di → c = d | f(c1, . . . , cn) ≈ c, f(d1, . . . , dn) ≈ d ∈ D}.

Theorem 1 Let K and Γ = Γ0 ∧ G be as specified above. Assume that T0 ⊆
T0 ∪ K satisfy condition ELoc or ESLoc. Let K0 ∪G0 ∪ Γ0 ∪D be obtained from
K∗ [G]∪Γ0∪G by purification, as explained above. The following are equivalent:

(1) T0∪K∗[G]∪Γ0∪G has a partial model with all terms in st(K, G) defined.
(2) T0∪K0∪G0∪Γ0∪D has a partial model with all terms in st(D) defined.
(3) T0 ∪ K0 ∪G0 ∪ Γ0 ∪N0 has a (total) model.

Locality allows us to obtain decidability and parameterized complexity results:

Theorem 2 Assume that the extension T0 ⊆ T1 either (1) satisfies condition
(ELoc), or (2) satisfies condition (ESLoc) and T0 is locally finite. If the fragment
of T0 in which K0 ∪G0 ∪ Γ0 ∪N0 is contained is decidable, then satisfiability of
ground goals of the form Γ0 ∪G w.r.t. T1 is decidable.

If K consists only of clauses and all variables occur below an extension function
and if Γ is a set of ground clauses then K ∗ [G] ∧ Γ consists of ground clauses
so we can reduce reasoning in T1 to reasoning in an extension of T0 with free
function symbols; an SMT procedure can be used. If Γ0 contains quantifiers or
K ∗ [G] contains free variables it is not possible to use SMT provers.

2.2 Recognizing generalized locality

Theory extensions T0 ⊆ T1 satisfying condition (ELoc) and (ESLoc) can be recog-
nized by showing that certain partial models of T1 can be “completed” to total
models of T1 with elementarily equivalent (or isomorphic) Π0-reducts. These
conditions can be expressed by completability axioms:

(Comp) Every partial model A of T1 with totally defined Σ0-functions and
extension functions with a finite domain of definition weakly embeds
into a total model B of T1 s.t. A|Π0

and B|Π0
are isomorphic.

(Compw) Every weak partial model A of T1 with totally defined Σ0-functions
and extension functions with a finite domain of definition weakly
embeds into a total model B of T1 s.t. A|Π0

and B|Π0
are isomorphic.

Local theory extensions in verification 5

Theorem 3 ([5]) (1) If all terms of K starting with a Σ1-function are flat and
linear and the extension T0 ⊆ T1 satisfies (Compw) then it satisfies (ELoc).

(2) If T0 is a universal theory and T0⊆T1 satisfies (Comp) then it satisfies (ESLoc).

Let Ψ be a function associating with a set K of axioms and a set of ground terms
T0 a set Ψ(K, T0) of ground terms with (i) All ground subterms in K and T0 are
also in Ψ(K, T0); (ii) Ψ is monotone, i.e. for all sets of ground terms T0 and T ′

0

if T0 ⊆ T ′
0 then Ψ(K, T0) ⊆ Ψ(K, T ′

0); (iii) Ψ defines a closure operation, i.e. for
all sets of ground terms T0, Ψ(K, Ψ(K, T0)) ⊆ Ψ(K, T0).

Theorem 4 Assume that K is a family of Σ1-flat clauses in the signature Π.

(1) Assume that T0 is a first-order theory. If every weak partial model A of T1

such that {f(a1, . . . , an) | ai ∈ A, f ∈ Σ1, fA(a1, . . . , an) defined} is closed
under Ψ(K,) weakly embeds into a total model of T1 then the extension
T0 ⊆ T1 := T0 ∪ K satisfies (LocΨ).

(2) To guarantee (ELocΨ) we need to additionally require that each partial model
as in (1) weakly embeds into a total model B such that the reducts to Π0 of
A and B are elementarily equivalent.

A combination of extensions of a theory T0 satisfying condition Comp (Compw)
also satisfies condition Comp (Compw) and hence also condition ESLoc (ELoc).

Theorem 5 ([8]) Let T0 be a first order theory with signature Π0 = (Σ0,Pred)
and (for i ∈ {1, 2}) Ti = T0∪Ki be an extension of T0 with signature Πi = (Σ0∪
Σi,Pred). Assume that both extensions T0 ⊆ T1 and T0 ⊆ T2 satisfy condition
(Compw), and that Σ1∩Σ2 = ∅. Then the extension T0 ⊆ T =T0∪K1∪K2 satisfies
condition (Compw). If, additionally, all terms in Ki which start with a function
symbol in Σi are flat and linear, for i = 1, 2, then the extension is local.

3 Examples of local theory extensions

Theorem 3 allows us to identify many examples of extensions satisfying E(S)Loc.

Free functions and monotone functions. Any extension T0 ∪ Free(Σ) of
a theory T0 with a set Σ of free function symbols satisfies condition (Compw).
Consider the following monotonicity conditions:

(Monσ
f)

∧

i∈I

xi ≤
σi

i yi ∧
∧

i6∈I

xi = yi → f(x1, .., xn) ≤ f(y1, .., yn),

where for i ∈ I , σi∈{−,+}, and for i 6∈ I , σ(i)=0, and ≤+=≤ and ≤−=≥. The
extensions of any (possibly many-sorted) theory whose models are posets with
functions satisfying the axioms Monσ

f satisfy condition (Compw) if the codomains
of the functions have a bounded semilattice reduct or are totally ordered [5,9,10].

Strict monotonicity. Consider the strict monotonicity condition:

(SMon(f)) ∀i, j(i < j → f(i) < f(j)).

6 V. Sofronie-Stokkermans, C. Ihlemann, S. Jacobs

Let T0 be a theory (containing a sort i) and T1 = T0 ∪ SMon(f) be the extension
of T0 with a function f of sort i → e. Assume that in all models of T0 the
support of sort i has an underlying strict total order <, and in all models of T1

the support of sort e has an underlying strict total order <. If in all models of
T1 there exist injective order-preserving maps from any interval of the support
of sort i to any interval of the support e then the extension is local.

Example 1. Let T0 be the combination of T i
0 (the theory of linear integer arith-

metic, sort i) and T num
0 (the theory of real numbers, sort num). The extension

T1 of T0 with a function f of arity i→num satisfying SMon(f) is local.

Note that it is not possible to prove the locality of the extension of the the-
ory of integers with a function satisfying SMon(f). We need to choose another
axiomatization instead:

(SMonZ(f)) ∀i, j, k(i < j ∧ j − i = k → f(i) < f(j) − k).

It can be proved that the extension T1 of the theory of integers with a function
f satisfying (SMonZ(f)) satisfies condition (Compw) and hence is local.

A related axiom is the following (c below is a constant):

(SdMon(f)) ∀i, j, k(i < j ∧ j − i = k → f(i) < f(j) − k ∗ c).

Example 2. Let T0 be the combination of T i
0 (the theory of linear integer arith-

metic, sort i) and T num
0 (the theory of real numbers, sort num). The extension

T1 of T0 with a function f of arity i→num satisfying SdMon(f) (where c can be
a constant of sort i or of sort num) is local.

Injectivity. Let T1 = T0∪ Inj(f), be the extension of the theory T0 with a unary
function f of sort i → e subject to the injectivity condition:

(Inj(f)) ∀i, j(i 6= j → f(i) 6= f(j)).

If in all models of T1 the support of sort i has cardinality lower or equal to the
cardinality of the support of sort e then the extension is local.

Extensions with definitions. We considered extensions of a Π0-theory T0,
where Π0 = (Σ0,Pred), with operators in a set Σ which are defined in terms
of the operations in Σ0 in [9,10]. Let T0 be a Π0-theory and Σ1 be a set of
operation symbols. Let K = {Deff | f ∈ Σ1}, where for every f ∈ Σ1, Deff is a
conjunction of formulae (which can be seen as a definition of f) of the form:

k∧

i=1

∀x(φi(x1, . . . , xn) → f(x1, . . . , xn) = ti(x1, . . . , xn))

where ti are Σ0-terms, and φi are Π0-clauses such that for i 6= j, φi ∧ φj is
unsatisfiable w.r.t. T0. Then the extension T0 ⊆ T1 = T0 ∪ K is local.

Local theory extensions in verification 7

Boundedness conditions. We now consider extensions with functions satisfy-
ing boundedness conditions and possibly also monotonicity [9,10]. Let T0 be a
Π0-theory with a reflexive binary predicate symbol ≤, and Σ1 be a set of op-
eration symbols. The extension T0 ⊆ T0 ∪ {GBoundf | f ∈ Σ1} is local, where
(GBoundf) specifies piecewise boundedness of f :

(GBoundf)
k∧

i=1

∀x(φi(x) → ti(x) ≤ f(x) ≤ t′i(x))

where ti, t
′
i are Σ0-terms and φi are Π0-clauses such that if i 6= j then φi ∧ φj is

unsatisfiable w.r.t. T0.

Let T0 be a Σ0-theory of bounded ∨-semilattice-ordered (possibly many-sorted)
structures, and let f be a new function symbol. Then the extension T0 ⊆ T0 ∪
Monσ

f ∪ Boundt
f is finitely local, where (Boundt

f) is the boundedness condition:

(Boundt
f) ∀x1, . . . , xn(f(x1, . . . , xn) ≤ t(x1, . . . , xn)),

where t(x1, . . . , xn) is a term in the base signature Π0 with the same monotonic-
ity as f , i.e. satisfying

∀x(
n∧

i=1

xi ≤
σi yi → t(x1, . . . , xn) ≤ t(y1, . . . , yn)).

Pointer data structures à la McPeak and Necula. In [7], McPeak and
Necula investigate reasoning in pointer data structures. The language used has
two sorts (a pointer sort p and a scalar sort s). Sets Σp and Σs of pointer resp.
scalar fields are given. They can be modeled by functions of sort p → p and
p → s, respectively. A constant null of sort p exists. The only predicate of sort p
is equality between pointers; predicates of scalar sort can have any arity. In this
language one can define pointer (dis)equalities and arbitrary scalar constraints.
The local axioms considered in [7] are of the form

∀p E ∨ C (1)

where E contains disjunctions of pointer equalities and C contains scalar con-
straints (sets of both positive and negative literals). It is assumed that for all
terms f1(f2(. . . fn(p))) occurring in the body of an axiom, the axiom also con-
tains the disjunction p = null∨ fn(p) = null∨ · · · ∨ f2(. . . fn(p)) = null. This has
the rôle of excluding null pointer errors.

Theorem 6 ([8]) The two-sorted extension T0 ∪ K of a Π0-theory T0 (sort s),
with signature Π = (S,Σ,Pred) – where S={p, s}, Σ=Σp∪Σs∪Σ0 – axiomatized
by a set K of axioms ∀p(E ∨ C) of type (1) is a stably local extension of T0.

The theory of arrays à la Bradley, Manna and Sipma. In [6] a decid-
able fragment of the theory of arrays that allows some quantification is stud-
ied, namely the array property fragment. The principal characteristics of this

8 V. Sofronie-Stokkermans, C. Ihlemann, S. Jacobs

fragment are the following: The index theory Ti is Presburger arithmetic. The
element theory (in the case of many-dimensional arrays: the element theories)
are parametric. The theory TA of arrays is the extension of the combination T0

of the index and element theories with functions read,write and axioms:

read(write(a, i, e), i) = e j 6= i→ read(write(a, i, e), j) = read(a, j).

For simplicity, the considerations below are for arrays of dimension 1, the general
case is similar. The array property fragment is defined as follows:

An index guard is a positive Boolean combination of atoms of the form t ≤ u or
t = u where t and u are either a variable of index sort or a ground term (of index
sort) constructed from (Skolem) constants and integer numbers using addition
and multiplication with integers. A formula of the form (∀i)(ϕI (i) → ϕV (i)) is an
array property if ϕI is an index guard and if any universally quantified variable of
index sort i only occurs in a direct array read read(a, x) in ϕV . Array reads may
not be nested. The array property fragment consists of all existentially-closed
Boolean combinations of array property formulae and quantifier-free formulae.

The decision procedure proposed in [6] decides satisfiability of formulae in nega-
tion normal form in the array property fragment in the following steps.

1. Replace all existentially quantified array variables with Skolem constants;
replace read(a, i) with a(i); eliminate all terms of the form write(a, i, e)
by replacing them with fresh array names b, and replacing any formula
φ(write(a, i, e)) with φ(b) ∧ (b(i)=e) ∧ ∀j(j≤i−1 ∨ i+1≤j→b(j)=a(j)).1

2. Existentially quantified index variables are replaced with Skolem constants.
3. Universal quantification over index variables is replaced by conjunction of

suitably chosen instances of the variables.

For determining the set of ground instances to be used in Step 5, the authors
prove that certain partial “minimal” models can be completed to total ones.

Theorem 7 (cf. also [6]) Let I be the set of index terms defined in [6]. Let
K be the clause part and G the ground part (after the transformation steps (1)–
(3)). Let Ψ(K, G) = {f(i1, . . . , in) | f array name , i1, . . . , in ∈ I}. Every partial
model of T0 ∪ K[Ψ(K, G)] ∪ G in which all terms in Ψ(K, G) are defined can be
transformed into a (total) model of T0 ∪ K ∪G. This criterion entails ELocΨ .

4 A general framework for obtaining locality results

In Section 3 we identified a large number of theory extensions which can be
proved to be local. Most of the updates in states of reactive and hybrid systems
can be described by boundedness or definedness axioms guarded by formulae
which describe a partition of the state space, and therefore can be expressed
with axioms which define local theory extensions. In general however, programs
handle complex data structures; in addition to reasoning about updates it is

1 By the definition of array property formulae, if a term write(a, i, e) occurs in the
array property fragment then i is an existentially quantified index variable.

Local theory extensions in verification 9

usually necessary to also reason about various data types such as lists, arrays,
records, etc. Theorem 5 allows us to identify the cases and the types of locality
which are preserved when combining theories. The results in Sect. 2.2 and 3
provide a general framework for obtaining locality results.

4.1 Verification Problems

The problems we consider are related to the verification of parametric systems
(parametric either w.r.t. the number of subsystems involved, or w.r.t. some data
used to describe the states and their updates).

Models: Transition constraint systems. We model systems using transition
constraint systems T = (V,Σ, Init,Update) which specify:

– the variables (V) and function symbols (Σ) whose values change in time,
– properties of initial states (formula Init), and
– a transition relation Update which specifies the relationship between the old

values of variables x and function symbols f before the transition and the
new values (x′, f ′) after the transition. The transition relation is expressed
by a formula containing variables in V ∪V ′ and function symbols in Σ ∪Σ ′,
where V ′ is a copy of V and Σ′ is a copy of Σ (denoting the variables resp.
functions after the transition).

Such descriptions can be obtained from specifications (in [11] we used CSP-OZ-
DC specifications – referring to processes, data and time). With every specifi-
cation, a “background theory” TS is associated, which describes the data types
occurring in the specification and their properties (TS usually is a combination of
arithmetic and function symbols subject to axioms). The verification problems
we consider are invariant checking and bounded model checking.

Invariant checking. We can check whether a formula Ψ is an inductive in-
variant of a transition constraint system T=(V,Σ, Init,Update) in two steps: (1)
prove that TS , Init |= Ψ ; (2) prove that TS , Ψ,Update |= Ψ ′, where Ψ ′ results from
Ψ by replacing each x ∈ V by x′ and each f in Σ by f ′. Failure to prove (2)
means that Ψ is not an invariant, or Ψ is not inductive w.r.t. T .2

Bounded model checking. We check whether, for a fixed k, unsafe states are
reachable by runs of length at most k. Formally, we check whether:

TS ∧ Init0 ∧

j∧

i=1

Updatei ∧ ¬Ψj |=⊥ for all 0 ≤ j ≤ k,

where Updatei is obtained from Update by replacing all variables x ∈ V by xi

and any f ∈ Σ by fi, and all x′ ∈ V ′, f ′ ∈ Σ′ by xi+1, fi+1; Init0 is Init with x0

replacing x ∈ V and f0 replacing f ∈ Σ; Ψi is obtained from Ψ similarly.

We can use deductive techniques to check whether safety (expressed by a suit-
able clause) is an invariant, or holds for paths of bounded length, for given

2 Proving that Ψ is an invariant of the system in general requires to find a stronger
formula Γ (i.e., TS |= Γ → Ψ) and prove that Γ is an inductive invariant.

10 V. Sofronie-Stokkermans, C. Ihlemann, S. Jacobs

instances of the parameters, or under given constraints on parameters. We aim
at identifying situations in which decision procedures exist. We will show that
this is often the case, by investigating locality phenomena in verification. As a
by-product, this will allow us to consider problems more general than usual tasks
in verification, namely to derive constraints between parameters which guaran-
tee safety. These constraints can be used to solve optimization problems (maxi-
mize/minimize some of the parameters) such that safety is guaranteed. 3

4.2 A general framework for locality results

In invariant checking and bounded model checking, the paths to be verified can
be used to identify the chains of extensions to be considered in the deduction
process. These extensions are often (combinations) of various extensions with
guarded boundedness conditions. Thus results in Sect. 3 and on preservation of
locality under combinations of extensions of a base theory with disjoint exten-
sion functions (Sect. 2.2) allow us to extend the classes of theories occurring in
verification for which instantiation-based complete decision procedures exist.

Extending the fragment of Necula and McPeak. The remarks above can
be used for pointer structures which change during the execution of a program.

Theorem 8 Assume that the update axioms Update(Σ,Σ ′) describe how the
values of the Σ-functions change, depending on a set {φi | i ∈ I} of mutually
exclusive conditions, expressed as formulae over the base signature and the Σ-
functions (axioms of type (2) below represent precise ways of defining the updated
functions, whereas axioms of type (3) represent boundedness properties on the
updated scalar fields, assuming the scalar domains are partially ordered):

∀x(φi(x) → f ′
i(x) = si) i ∈ {1, . . . ,m}, where φi ∧ φj |=T0

⊥ if i 6= j (2)

∀x(φi(x) → ti ≤ f ′
i(x) ≤ si) i ∈ {1, . . . ,m}, where φi ∧ φj |=T0

⊥ if i 6= j (3)

where si, ti are terms over the signature Σ. They define a local theory extension.

Deciding whether the formula φ holds for new data structure can now be consid-
ered a satisfiability problem over the extended theory. If φ is universally quan-
tified, the problem can be efficiently decided using the method in [7].

Extending the array property fragment. There are several ways of extend-
ing the array property fragment:

Theorem 9 (1) Extensions with new arrays satisfying guarded boundedness ax-
ioms, or defined using guarded definitions as in Sect. 3 are local. 4

3 All the examples in this paper will address invariant checking only. Bounded model
checking problems can be handled similarly.

4 An example are definitions of new arrays by writing x at a (constant) index c,
axiomatized by {∀i(i = c → a′(i) = a(i)), ∀i(i 6= c → a′(i) = x)}.

Local theory extensions in verification 11

(2) Extensions with new arrays satisfying injectivity or (strict) monotonicity
(and possibly boundedness axioms), under the assumptions about the element
theory specified in the corresponding paragraphs of Sect. 3 are local.

(3) Any combination of extensions as those mentioned in (1), (2) (with disjoint
sets of newly introduced array constants) leads to a proper extension of the
fragment in [6] satisfying condition ELoc.

5 Examples of application domains

We illustrate the ideas above on several types of examples in verification. In
Section 5.1 we describe an application of hierarchical reasoning to the verification
of the safety of a train control system (cf. also [12]). In Section 5.2 we illustrate
the applicability of our methods to the verification of algorithms for updating
pointer structures. In Section 5.3 an application to the verification of a scheduling
protocol is presented. (Note that the verification tasks in the examples mentioned
above are outside the scope of known methods such as [7] and [6].)

5.1 A RBC Case Study

The case study we discuss here is taken from the specification of the European
Train Control System (ETCS) standard [13] and presented in detail in [12]. We
consider a radio block center (RBC), which communicates with all trains on a
given track segment. Trains may enter and leave the area, given that a certain
maximum number of trains on the track is not exceeded. Every train reports
its position to the RBC in given time intervals and the RBC communicates to
every train how far it can safely move, based on the position of the preceding
train. It is then the responsibility of the trains to adjust their speed between
given minimum and maximum speeds.

For a first try at verifying properties of this system, we have considerably sim-
plified it: we abstract from the communication issues in that we always evaluate
the system after a certain time ∆t, and at these evaluation points the positions
of all trains are known. Depending on these positions, the possible speed of every
train until the next evaluation is decided: if the distance to the preceding train
is less than a certain limit lalarm, the train may only move with minimum speed
min (otherwise with any speed between min and the maximum speed max).

We present two formal system models. In the first one we have a fixed number
of trains; in the second we allow for entering and leaving trains.

Model 1: Fixed Number of Trains. In this simpler model, any state of the
system is characterized by the real-valued constants ∆t > 0 (the time between
evaluations of the system), min and max (the minimum and maximum speed of
trains), lalarm (the distance between trains which is deemed secure), the integer
constant n (the number of trains) and the function pos (mapping integers be-
tween 0 and n− 1 to real values representing the position of the corresponding
train).

12 V. Sofronie-Stokkermans, C. Ihlemann, S. Jacobs

We use an additional function pos′ to model the evolution of the system: pos′(i)
denotes the position of i at the next evaluation point (after ∆t time units). The
way positions change (i.e. the relationship between pos and pos′) is defined by
the following set Kf = {F1,F2,F3,F4} of axioms5:

(F1) ∀i (i = 0 → pos(i) + ∆t∗min ≤R pos′(i) ≤R pos(i) + ∆t∗max)
(F2) ∀i (0 < i < n ∧ pos(i− 1) >R 0 ∧ pos(p(i)) − pos(i) ≥R lalarm

→ pos(i) + ∆t ∗ min ≤R pos′(i) ≤R pos(i) + ∆t∗max)
(F3) ∀i (0 < i < n ∧ pos(i− 1) >R 0 ∧ pos(p(i)) − pos(i) <R lalarm

→ pos′(i) = pos(i) + ∆t∗min)
(F4) ∀i (0 < i < n ∧ pos(i− 1) ≤R 0 → pos′(i) = pos(i))

Note that the train with number 0 is the train with the greatest position, i.e. we
count trains from highest to lowest position.

Axiom F1 states that the first train may always move at any speed between
min and max. F2 states that the other trains can do so if their predecessor has
already started and the distance to it is larger than lalarm. If the predecessor of
a train has started, but is less than lalarm away, then the train may only move
at speed min (axiom F3). F4 requires that a train may not move at all if its
predecessor has not started.

Model 2: Incoming and leaving trains. If we allow incoming and leaving
trains, we additionally need a measure for the number of trains on the track.
This is given by additional constants first and last, which at any time give the
number of the first and last train on the track (again, the first train is supposed
to be the train with the highest position). Furthermore, the maximum number
of trains that is allowed to be on the track simultaneously is given by a constant
maxTrains. These three values replace the number of trains n in the simpler
model, the rest of it remains the same except that the function pos is now
defined for values between first and last, where before it was defined between 0
and n − 1. The behavior of this extended system is described by the following
set Kv consisting of axioms (V1) − (V9):

(V1) ∀i (i = first → pos(i) + ∆t ∗ min ≤R pos′(i) ≤R pos(i) + ∆t ∗ max)
(V2) ∀i (first < i ≤ last ∧ pos(i− 1) >R 0 ∧ pos(i− 1) − pos(i) ≥R lalarm

→ pos(i) + ∆t ∗ min ≤R pos′(i) ≤R pos(i) + ∆t ∗ max)
(V3) ∀i (first < i ≤ last ∧ pos(i− 1) >R 0 ∧ pos(i− 1) − pos(i) <R lalarm

→ pos′(i) = pos(i) + ∆t ∗ min)
(V4) ∀i (first < i ≤ last ∧ pos(i− 1) ≤R 0 → pos′(i) = pos(i))
(V5) last − first + 1 < maxTrains → last′ = last ∨ last′ = last + 1
(V6) last − first + 1 = maxTrains → last′ = last
(V7) last − first + 1 > 0 → first′ = first ∨ first′ = first + 1

5 Inequality over integers is displayed without subscript, inequality over reals is marked
with an R

Local theory extensions in verification 13

(V8) last − first + 1 = 0 → first′ = first

(V9) last′ = last + 1 → pos′(last′) <R pos′(last)

where primed symbols denote the state of the system at the next evaluation.

Here, axioms V1−V4 are similar to F1−F4, except that the fixed bounds are
replaced by the constants first and last. V5 states that if the number of trains is
less than maxTrains, then a new train may enter or not. V6 says that no train
may enter if maxTrains is already reached. V7 and V8 are similar conditions
for leaving trains. Finally, V9 states that if a train enters, its position must be
behind the train that was last before.

The safety condition which is important for this type of systems is collision
freeness. In [12] we use a very simplified model of the system of trains, where
collision freeness is modeled by a ’strict monotonicity’ property for the function
pos which stores the positions of the trains. We now consider a more realistic ax-
iomatization – assuming the maximum length of the trains is known – expressed
by the following axiom:

SdMon(pos) ∀ i, j, k (0≤j<i<n ∧ i−j=k → pos(j)−pos(i) ≥R k∗LengthTrain),

where LengthTrain is the standard (resp. maximal) length of a train.

As base theory we consider the combination T0 of the theory of integers and
reals with a multiplication operation ∗ of arity i × num → num (multiplication
of k with the constant LengthTrain in the formula above)6. Let T1 be the theory
obtained by extending T0 with a function pos satisfying the axiom above. By the
results presented in Sect. 3 on locality of extensions with functions satisfying
strict monotonicity and related properties, the extension T0 ⊆ T1 is local.

We now extend the resulting theory T1 in two different ways, with the axiom sets
for one of the two system models, respectively. Both extensions are extensions
with guarded boundedness axioms. By the remarks in Sect. 3 both T1 ⊆ T1 ∪Kf

and T1 ⊆ T1 ∪ Kv are local extensions. The method for hierarchical reasoning
described above allows us to reduce the problem of checking whether system
properties such as collision freeness are inductive invariants to deciding satisfia-
bility of corresponding constraints in T0. As a side effect, after the reduction of
the problem to a satisfiability problem in the base theory, one can automatically
determine constraints on the parameters (e.g. ∆t,min,max, ...) which guarantee
that the property is an inductive invariant, and are sufficient for this. (This can
be achieved for instance using quantifier elimination.) These constraints can be
used, for instance, for optimization problems (e.g. maximize speed and ∆t while
guaranteeing safety).

6 In the light of locality properties of such extensions (cf. Sect. 3), k will always
be instantiated by values in a finite set of concrete integers, all within a given,
concrete range; thus the introduction of this many-sorted multiplication does not
affect decidability.

14 V. Sofronie-Stokkermans, C. Ihlemann, S. Jacobs

Illustration: We indicate how to apply hierarchical reasoning on the case study
given in Section 5.1, Model 17. We follow the steps given in Section 2.1 and show
how the sets of formulas are obtained that can finally be handed to a prover of
the base theory.

To check whether T1 ∪ Kf |= ColFree(pos′), where

ColFree(pos′) ∀i (0 ≤ i < n − 1 → pos′(i) − pos′(i+ 1) >R LengthTrain),

we check whether T1 ∪ Kf ∪ G |= ⊥, where G = {0 ≤ k < n − 1, k′ =
k + 1, pos′(k) − pos′(k′) ≤R LengthTrain} is the (skolemized) negation of
ColFree(pos′), flattened by introducing a new constant k′.

Reduction from T1 ∪ Kf to T1. This problem is reduced to a satisfiability
problem over T1 as follows:

Step 1: Use locality. We construct the set Kf [G]: There are no ground subterms
with pos′ at the root in Kf , and only two ground terms with pos′ in G, pos′(k)
and pos′(k′). This means that Kf [G] consists of two instances of Kf : one with i
instantiated to k, the other instantiated to k′. E.g., the two instances of F2 are:

(F2[G]) (0 < k < n ∧ pos(k − 1) >R 0 ∧ pos(k − 1) − pos(k) ≥R lalarm
→ pos(k) + ∆t ∗ min ≤R pos′(k) ≤R pos(k) + ∆t∗max)

(0 < k′ < n ∧ pos(k′ − 1) >R 0 ∧ pos(k′ − 1) − pos(k′) ≥R lalarm
→ pos(k′) + ∆t ∗ min ≤R pos′(k′) ≤R pos(k′) + ∆t∗max)

The construction of (F1[G]), (F3[G]) and (F4[G]) is similar. In addition, we specify
the known relationships between the constants of the system:
(Dom) ∆t > 0 ∧ 0 ≤ min ∧ min ≤ max

Step 2: Flattening and purification. Kf [G] ∧ G is already flat w.r.t. pos′. We
replace all ground terms with pos′ at the root with new constants: we re-
place pos′(k) by c1 and pos′(k′) by c2. We obtain a set of definitions Def =
{pos′(k) = c1, pos′(k′) = c2} and a set (Dom)∪G0 ∪Kf0

of clauses which do not
contain occurrences of pos′, consisting of (Dom) together with:

(G0) 0 ≤ k < n − 1 ∧ k′ = k + 1 ∧ c1 − c2 ≤R LengthTrain
(F20) (0 < k < n ∧ pos(k − 1) >R 0 ∧ pos(k − 1) − pos(k) ≥R lalarm

→ pos(k) + ∆t ∗ min ≤R c1 ≤R pos(k) + ∆t∗max)

(0 < k′ < n ∧ pos(k′ − 1) >R 0 ∧ pos(k′ − 1) − pos(k′) ≥R lalarm
→ pos(k′) + ∆t ∗ min ≤R c2 ≤R pos(k′) + ∆t∗max)

The construction can be continued similarly for F1, F3 and F4.

Step 3: Reduction to satisfiability in T1. We add the functionality clause N0 =
{k = k′ → c1 = c2} and obtain a satisfiability problem in T1: Kf0

∧G0 ∧N0.

7 We illustrate our approach for the simplest model. For a variable number of trains
the approach is the same.

Local theory extensions in verification 15

The reduction is schematically represented in the following diagram:

Def Dom ∪ G0 ∪ Kf 0 ∪N0

pos′(k) = c1 (Dom) ∪ (G0) ∪ (F10) ∪ (F20) ∪ (F30) ∪ (F40)
pos′(k′) = c2 N0 : k = k′ → c1 = c2

Reduction from T1 to T0. To decide satisfiability of T1∧Kf0
∧G0∧N0, we have

to perform another transformation w.r.t. the extension T0 ⊆ T1. The resulting
set of ground clauses can directly be handed to a decision procedure for the
combination of the theory of indices and that of reals. We flatten and purify
the set Kf0

∧G0 ∧N0 of ground clauses w.r.t. pos by introducing new constants
denoting k − 1 and k′ − 1, together with their definitions k′′ = k − 1, k′′′ =
k′ − 1; as well as constants d1 for pos(k), d2 for pos(k′), d3 for pos(k′′) and
d4 for pos(k′′′) together with their definitions. Taking into account only the
corresponding instances of the collision freeness axiom for pos we obtain a set of
clauses consisting of (Dom) together with:

(G′
0) k′′ = k − 1 ∧ k′′′ = k′ − 1

(G0) 0 ≤ k < n− 1 ∧ k′ = k + 1 ∧ c1 − c2 ≤R LengthTrain

(GF10) k = 0 → d1 +∆t∗min ≤R c1 ≤R d1 +∆t∗max
k′ = 0 → d2 +∆t∗min ≤R c2 ≤R d2 +∆t∗max

(GF20) 0<k<n ∧ d3>R0 ∧ d3−d1 ≥R lalarm → d1+∆t∗min ≤R c1 ≤R d1+∆t∗max
0<k′<n ∧ d4>R0 ∧ d4−d2 ≥R lalarm → d2+∆t∗min ≤R c2 ≤R d2+∆t∗max

(GF30) 0<k<n ∧ d3>R0 ∧ d3−d1 <R lalarm → c1 = d1+∆t∗min
0<k′<n ∧ d4>R0 ∧ d4−d2 <R lalarm → c2 = d2+∆t∗min

(GF40) (0<k<n ∧ d3 ≤R 0 → c1=d1) ∧ (0<k′<n ∧ d4 ≤R 0 → c2=d2)

SdMon(pos)[G′] 0 ≤ k < k′ < n → d1 − d2 >R (k′ − k) ∗ LengthTrain
0 ≤ k′ < k < n → d2 − d1 >R (k − k′) ∗ LengthTrain

0 ≤ k < k′′ < n → d1 − d3 >R (k′′ − k) ∗ LengthTrain
0 ≤ k′′< k < n → d3 − d1 >R (k − k′′) ∗ LengthTrain

0 ≤ k < k′′′ < n → d1 − d4 >R (k′′′ − k) ∗ LengthTrain
0 ≤ k′′′< k < n → d4 − d1 >R (k − k′′′) ∗ LengthTrain

0 ≤ k′ < k′′ < n → d2 − d3 >R (k′′ − k′) ∗ LengthTrain
0 ≤ k′′< k′ < n → d3 − d2 >R (k′ − k′′) ∗ LengthTrain

0 ≤ k′ < k′′′ < n → d2 − d4 >R (k′′′ − k′) ∗ LengthTrain
0 ≤ k′′′< k′ < n → d4 − d2 >R (k′ − k′′′) ∗ LengthTrain

0 ≤ k′′< k′′′ < n → d3 − d4 >R (k′′′ − k′′) ∗ LengthTrain
0 ≤ k′′′< k′′ < n → d4 − d3 >R (k′′ − k′′′) ∗ LengthTrain

N0(pos′) k = k′ → c1 = c2
N0(pos) k = k′ → d1 = d2 ∧ k = k′′ → d1 = d3 ∧ k′ = k′′′ → d2 = d4

k = k′′′ → d1 = d4 ∧ k′ = k′′ → d2 = d3 ∧ k′′ = k′′′ → d3 = d4

16 V. Sofronie-Stokkermans, C. Ihlemann, S. Jacobs

In fact, the constraints on indices can help to further simplify the instances of
monotonicity of Mon(pos)[G′]∧N0(pos)∧N0(pos′): k′ > k, k′′ < k, k′′ < k′, k′′′ <

k′, k′′′ = k. The set of clauses equivalent to SdMon(pos)[G′]∧N0(pos)∧N0(pos′)
is given below. (Here we do these simplifications by hand; this can be done as well
by a pre-simplification program which detects obviously true relationships be-
tween the premises of these rules.) After making these simplifications we obtain
the following set of (many-sorted) constraints:

CDefinitions CIndices (sort i) CReals CMixed

pos′(k) = c1 k′ = k + 1 d1 − d2 >R LengthTrain 0 ≤ k′′ → d3 − d2 >R 2 ∗ LengthTrain

pos(k′) = d2 k′′ = k − 1 d3 − d4 >R LengthTrain 0 ≤ k′′ → d3 − d1 >R LengthTrain

pos′(k′) = c2 k′′′ = k′ − 1 d3 − d2 >R LengthTrain (GF10)
pos(k′′) = d3 d4 − d2 >R LengthTrain (GF20)
pos(k) = d1 0 ≤ k < n − 1 d1 = d4 ∧ c1 − c2 ≤R (GF30)
pos(k′′′) = d4 0 ≤ k′ < n − 1 (Dom) (GF40)

For checking the satisfiability of CIndices ∧ CReals ∧ CMixed we can use a prover
for the two-sorted combination of the theory of integers and the theory of reals,
possibly combined with a DPLL methodology for dealing with full clauses. An
alternative method is discussed in [12].

5.2 Verification of a program changing pointer structures

Consider the following algorithm for inserting an element c with priority field x

into a doubly-linked list sorted according to the priority fields.

c.priority = x, c.next = null

for all p 6= c do

if p.priority ≤ x then if p.prev = null then c.next′ = p, endif; p.next′ = p.next

p.priority > x then case p.next = null then p.next′ := c, c.next′ = null

p.next 6= null and p.next > x then p.next′ = p.next

p.next 6= null and p.next ≤ x then p.next′ = c,
c.next′ = p.next

The update rules Update(next, next′) can be read from the program above:

∀p(p6=null ∧ p6=c ∧ priority(p)≤x ∧ (prev(p) = null) → next′(c)=p ∧ next′(p)=next(p))
∀p(p6=null ∧ p6=c ∧ priority(p)≤x ∧ (prev(p) 6= null) → next′(p)=next(p))
∀p(p6=null ∧ p6=c ∧ priority(p)>x ∧ next(p)=null → next′(p)=c ∧ next′(c)=null)
∀p(p6=null∧p6=c∧priority(p)>x∧next(p)6=null∧priority(next(p))>x → next′(p)=next(p))

∀p(p6=null∧p6=c∧priority(p)>x∧next(p)6=null∧priority(next(p))≤x → next′(p)=c∧next′(c)=next(p))

We prove that if the list is sorted, it remains so after insertion, i.e. the formula:

∀p(p 6= null∧next(p) 6= null → priority(p) ≥ priority(next(p)))∧Update(next, next′)
∧(d 6= null ∧ next′(d) 6= null ∧ ¬priority(d) ≥ priority(next′(d)))

is unsatisfiable in the extension T1 = T0 ∪Update(next, next′) of the theory T0 of
doubly linked lists with a monotone priority field. The update rules are guarded

Local theory extensions in verification 17

boundedness axioms, so the extension T0 ⊆ T1 is local. Hence, the satisfiability
task above w.r.t. T1 can be reduced to a satisfiability task w.r.t. T0 as follows:

Def Update
0
∧ G0 ∧ N0

next′(d)=d1 d6=null ∧ d6=c ∧ priority(d)≤x ∧ prev(d)=null → c1=d

d6=null ∧ d6=c ∧ priority(d)≤x ∧ prev(d)=null → d1=next(d)
next′(c)=c1 d6=null ∧ d6=c ∧ priority(d)≤x ∧ prev(d)6=null → d1=next(d)

d6=null ∧ d6=c ∧ priority(d)>x ∧ next(d)=null → d1=c ∧ c1=null

d6=null ∧ d6=c ∧ priority(d)>x ∧ next(d)6=null ∧ priority(next(d))<x → d1=next(d)
d6=null ∧ d6=c ∧ priority(d)>x ∧ next(d)6=null ∧ priority(next(d))≤x → d1=c

d6=null ∧ d6=c ∧ priority(d)>x ∧ next(d)6=null ∧ priority(next(d))≤x → c1=next(d)
(d 6= null ∧ next′(d) 6= null ∧ ¬priority(d) ≥ priority(next′(d)))

d=c → d1=c1

The stable locality of T0 can be used to check the satisfiability of G′ = Update0∧
G0 ∧N0 w.r.t. T0; for this the instantiation method in [7] can be used.

5.3 Verification of a program handling arrays

Consider a parametric number m of processes. The priorities associated with the
processes (non-negative real numbers) are stored in an array p. The states of the
process – enabled (1) or disabled (0) – are stored in an array a. At each step
only the process with maximal priority is enabled, its priority is set to x and
the priorities of the waiting processes are increased by y. This can be expressed
with the following set of axioms which we denote by Update(p, p′, a, a′)

∀i(1 ≤ i ≤ m ∧ (∀j(1 ≤ j ≤ m ∧ j 6=i → p(i)>p(j))) → a′(i) = 1)
∀i(1 ≤ i ≤ m ∧ (∀j(1 ≤ j ≤ m ∧ j 6=i → p(i)>p(j))) → p′(i)=x)
∀i(1 ≤ i ≤ m ∧ ¬(∀j(1 ≤ j ≤ m ∧ j 6=i → p(i)>p(j))) → a′(i)=0)
∀i(1 ≤ i ≤ m ∧ ¬(∀j(1 ≤ j ≤ m ∧ j 6=i → p(i)>p(j))) → p′(i)=p(i)+y)

where x and y are considered to be parameters. We may be interested in check-
ing whether the priority list remains injective after the update provided it was
injective at the beginning, i.e. check the satisfiability of the following formula:

∀i, j(1 ≤ i ≤ m ∧ 1 ≤ j ≤ m ∧ i 6= j → p(i) 6= p(j)) ∧ Update(p, p′, a, a′)∧
(1 ≤ c ≤ m ∧ 1 ≤ d ≤ m ∧ c 6= d ∧ p′(c) = p′(d)) |=⊥.

There are several proof tasks related to the proof of the property above:

– check satisfiability of the formula above for given, fixed values of x and y
– check satisfiability of the formula above assuming that x and y satisfy certain

constraints, or
– determine constraints on x and y which guarantee unsatisfiability of the for-

mula (i.e. guarantee that the priority list remains injective after the update).

The problem can be formalized as follows. Let T0 be a combination of the theory
Z of integers (for indices), R of real numbers (priorities), and (the theory of)
{0, 1} (enabled/disabled). We consider:

18 V. Sofronie-Stokkermans, C. Ihlemann, S. Jacobs

(i) The extension T1 of T0 with the functions a : Z → {0, 1} (a free function)
and p : Z → R (which satisfies the injectivity axiom Inj(p));

(ii) The extension T2 of T1 with the functions a′ : Z → {0, 1}, p′ : Z → R

satisfying the update axioms Update(p, p′a, a′).

The second extension, T1 ⊆ T2, is an extension with guarded boundedness ax-
ioms, thus by the results in Sect. 3 it is local. Using locality we obtain the
following reduction of the task of proving T2 ∧G |=⊥ to a satisfiability problem
w.r.t. T1. We take into account only the instances of Update(p, p′, a, a′) which
contain ground terms occurring in G. This means that the axioms containing
a′ do not need to be considered. After purification and skolemization of the
existentially quantified variables we obtain:

Def Update
0
∧ G0 ∧ N0

p′(c) = c1 1 ≤ c ≤ m ∧ (1 ≤ kc ≤ m ∧ kc 6=c → p(c)>p(kc)) → c1=x)
p′(d) = d1 1 ≤ d ≤ m ∧ (1 ≤ kd ≤ m ∧ kd 6=d → p(d)>p(kd)) → d1=x)

∀j(1 ≤ j ≤ m ∧ j 6=c → p(c)>p(j)) ∨ (1 ≤ c ≤ m → c1=p(c)+y)
∀j(1 ≤ j ≤ m ∧ j 6=d → p(d)>p(j)) ∨ (1 ≤ d ≤ m → d1=p(d)+y)
1 ≤ c ≤ m ∧ 1 ≤ d ≤ m ∧ c 6= d ∧ c1 = d1

c = d → c1 = d1

We reduced the problem to checking satisfiability w.r.t. T1 of the formula G1 =
Update0 ∧ G0 ∧ N0, which contains universal quantifiers. Let G1 = Gg ∧ G∀,
where Gg is the ground part of G and G∀ the part of G containing universally
quantified variables. We need to check whether T0 ∧ Inj∧G∀ ∧Gg |=⊥ . The idea
is now to note that extensions of injectivity axioms and boundedness are local,
and thus T0 ⊆ T0 ∧ Inj ∧G∀. This makes the following reduction possible:

Def1 Inj
0
∧ G∀0 ∧ Gg ∧ N ′

0

p(c) = c2 (1 ≤ j ≤ m ∧ j 6=c → c2>p(j)) ∨ (1 ≤ c ≤ m → c1=c2+y)
p(d) = d2 (1 ≤ j ≤ m ∧ j 6=d → d2>p(j)) ∨ (1 ≤ d ≤ m → d1=d2+y)
p(kc) = c3 1 ≤ i 6= j ≤ m → p(i) 6= p(j)
p(kd) = d3 where i, j are instantiated with c, d, kc, kd and definitions are applied

1 ≤ c ≤ m ∧ (1 ≤ kc ≤ m ∧ kc 6=c → c2>c3) → c1=x

1 ≤ d ≤ m ∧ (1 ≤ kd ≤ m ∧ kd 6=d → d2>d3) → d1=x

1 ≤ c ≤ m ∧ 1 ≤ d ≤ m ∧ c 6= d ∧ c1 = d1

c = d → c1 = d1

c = d → c2 = d2, c = kc → c2 = c3, c = kd → c2 = d3,

d = kc → d2 = c3, d = kd → d2 = d3, kc = kd → c3 = d3

We can use a prover for a combination of integers and reals to determine whether
this formula is satisfiable or symbolic computation packages performing quanti-
fier elimination over the combined theory to derive constraints between x and y
which guarantee injectivity after update.

Local theory extensions in verification 19

6 Implementation and experiments

We have implemented the approach for hierarchical reasoning. Our tool (LoRe)
allows us to reduce satisfiability problems in an extended theory to a base theory
for which we can then use existing solvers. It takes as input the axioms of the the-
ory extension, the ground goal and the list of extension function symbols. Chains
of extensions are handled by having a list of axiom sets, and correspondingly a
list of lists of extension function symbols. We follow the steps in Sect. 2.1:

– The input is analyzed for ground terms with extension functions at the root.
– After instantiating the axioms w.r.t. these terms, the extension symbols are

hierarchically removed.
– The resulting formula is either given to a prover for a base theory, or taken

as goal for another reduction (if we have a chain of extensions).

The program has two modes of execution. The first mode automatically produces
inputs for a class of theorem provers for the base theory. Currently, we can
produce base theory output for Yices, Mathsat and Redlog, but other solvers
can be integrated easily. In the second mode, the interaction with the theorem
prover for the base theory is integrated in the prover itself (the choice of the
prover is settled by command line switch).

We run tests on various examples, including different versions of the train con-
troller example [12,11] (cf. Sect. 5.1), an array version of the insertion algorithm,
and reasoning in theories of arrays and lists.

In Fig. 1 we list running times for 8 different versions of the train example,
each of the following four versions in a satisfiable and an unsatisfiable variant:

– simple (fixed number of trains, no length measure),
– length (fixed number of trains with length),
– variable (variable number of trains, no length measure),
– full (variable number of trains with length).

We set the timeout to 300 seconds. In Fig. 1, not supported means that we
would have to hand a non-linear arithmetic problem to Yices. We can instead
use Redlog. We have successfully used it for these problems.

While Yices can be used successfully also directly for unsatisfiable formulae, this
does not hold if we change the input problem to a formula which is satisfiable
w.r.t. the extended theory. In this case, Yices returns “unknown” after a 300
second timeout. After the reduction with our tool, Yices (applied to the problem
for the base theory) returns “satisfiable” in a fraction of a second, and even
supplies a model for this problem that can be lifted to a model in the extended
theory for the initial set of clauses8. Even more information can be obtained
using the quantifier elimination facilities offered e.g. by Redlog for determining
constraints between the parameters of the problems which guarantee safety.

In Fig. 2 we list running times for two examples involving reasoning about arrays:
an array insertion algorithm and an example considered in [6].

8 The lifting is straightforward, given the output of our tool, but is not automated at
the moment.

20 V. Sofronie-Stokkermans, C. Ihlemann, S. Jacobs

|K1| |K1[G]| |K2| |K2[G]| Runtimes (sec)
LoRe LoRe+Yices Yices

simple SAT 5 20 4 8 0.028 0.049 timeout
simple UNSAT 6 21 4 8 0.027 0.047 0.032
length SAT 6 21 4 8 0.031 0.052∗ not supported
length UNSAT 7 22 4 8 0.031 0.053∗ not supported
variable SAT 8 71 9 21 0.128 0.183 timeout
variable UNSAT 9 72 9 21 0.135 0.181 0.052
full SAT 9 72 9 21 0.156 not supported not supported
full UNSAT 10 73 9 21 0.167 not supported not supported

The times for benchmark 3 and 4 are marked with ‘*’ in order to point out that the
replacement of the differences (u − v) ∗ LengthTrain, where u, v ∈ {k, k′, k′′, k′′′} has
been done manually. This was necessary because the input for Yices cannot contain
non-linear arithmetical expressions. We used the following abbreviations:

– |Ki|: the number of clauses which define extension i in the chain of local extensions.
– |Ki[G]|: the number of instances which we generate.
– LoRe time: the time needed by LoRe for the hierarchical reduction.
– LoRe+Yices time: the total time for reduction and use of Yices for SAT checking.
– Yices time: the time needed by Yices for solving the original problem.

Fig. 1. Tests with the RBC case study (various versions)

|K| |G| | K[G] Runtimes (sec)
(Mode 2; line switch -Yices)

array-insert 9 4 64 0.080

array-example [6] 10 11 640 0.400

We used the following abbreviations:
– |K|: the number of clauses which define the extension.
– |G|: the size of the set of ground clauses to be proved/disproved.
– |K[G]|: the number of instances which we generate.
– Runtimes: times in mode 2, using a direct call of Yices.

Fig. 2. Reasoning about arrays

Local theory extensions in verification 21

We are working towards extending the tool support to stable locality, and for
extensions with clauses containing proper first-order formulae.

7 Conclusions

We presented a general framework (based on locality) for identifying complex
theories important in verification for which efficient (hierarchical and modular)
reasoning methods exist. We showed that many theories of data structures stud-
ied in the verification literature are local extensions of a base theory. The general
framework we use allows us to identify situations in which some of the syntac-
tical restrictions imposed in previous papers can be relaxed. The list of theories
we considered is not exhaustive (we do not mention, for instance, the theory of
arrays with dimension studied in [14] which also fits within our framework).

The next step would be to integrate these methods into verification tools
based on abstraction/refinement. Our work on hierarchical interpolation in lo-
cal extensions [15] can be extended to many of the theories of data structures
described in this paper. This is the topic of a separate paper.

Acknowledgements. This work was partly supported by the German Research
Council (DFG) as part of the Transregional Collaborative Research Center “Au-
tomatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS).
See www.avacs.org for more information.

References

1. Givan, R., McAllester, D.: New results on local inference relations. In: Principles of
Knowledge Representation and Reasoning: Proceedings of the Third International
Conference (KR’92), Morgan Kaufmann Press (1992) 403–412

2. McAllester, D.: Automatic recognition of tractability in inference relations. Journal
of the Association for Computing Machinery 40 (1993) 284–303

3. Ganzinger, H.: Relating semantic and proof-theoretic concepts for polynomial time
decidability of uniform word problems. In: Proc. 16th IEEE Symposium on Logic
in Computer Science (LICS’01), IEEE Computer Society Press (2001) 81–92

4. Ganzinger, H., Sofronie-Stokkermans, V., Waldmann, U.: Modular proof systems
for partial functions with Evans equality. Information and Computation 204 (2006)
1453–1492

5. Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In:
20th Int. Conf. on Automated Deduction (CADE-20), LNAI 3632, Springer (2005)
219–234

6. Bradley, A., Manna, Z., Sipma, H.: What’s decidable about arrays? In: Verifica-
tion, Model-Checking, and Abstract-Interpretation, 7th Int. Conf. (VMCAI 2006).
LNCS 3855, Springer (2006) 427–442

7. McPeak, S., Necula, G.: Data structure specifications via local equality axioms.
In: Computer Aided Verification, 17th International Conference, CAV 2005. LNCS
3576 (2005) 476–490

8. Sofronie-Stokkermans, V.: Hierarchical and modular reasoning in complex theories:
The case of local theory extensions. In: Proc. 6th Int. Symp. Frontiers of Combining
Systems (FroCos 2007) (Invited paper), LNCS 4720, Springer (2007) 47–71

22 V. Sofronie-Stokkermans, C. Ihlemann, S. Jacobs

9. Sofronie-Stokkermans, V., Ihlemann, C.: Automated reasoning in some local ex-
tensions of ordered structures. In: Proc. of ISMVL-2007, IEEE Computer Society
(2007) http://dx.doi.org/10.1109/ISMVL.2007.10.

10. Sofronie-Stokkermans, V., Ihlemann, C.: Automated reasoning in some local exten-
sions of ordered structures. Journal of Multiple-Valued Logic and Soft Computing
13 (2007) 397–414

11. Faber, J., Jacobs, S., Sofronie-Stokkermans, V.: Verifying CSP-OZ-DC specifi-
cations with complex data types and timing parameters. In: Integrated Formal
Methods (IFM 2007), LNCS 4591, Springer (2007) 233–252

12. Jacobs, S., Sofronie-Stokkermans, V.: Applications of hierarchical reasoning in the
verification of complex systems. Electronic Notes in Theoretical Computer Science
174 (2007) 39–54

13. Faber, J.: Verifying real-time aspects of the European Train Control System. In:
Proceedings of the 17th Nordic Workshop on Programming Theory, University of
Copenhagen, Denmark (2005) 67–70

14. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Deciding extensions of the theory
of arrays by integrating decision procedures and instantiation strategies. In: Proc.
of the 10th European Conference on Logics in Artificial Intelligence (Jelia’06),
LNCS 4160, Springer (2006) 177–189

15. Sofronie-Stokkermans, V.: Interpolation in local theory extensions. In: Automated
Reasoning: 3rd International Joint Conference, IJCAR’2006. LNCS 4130, Springer
(2006) 235–250

	Local theory extensions, hierarchical reasoning and applications to verification -- Preliminary Report --
	Viorica Sofronie-Stokkermans, Carsten Ihlemann, Swen Jacobs

