06301 Abstracts Collection
Duplication, Redundancy, and Similarity in
Software

— Dagstuhl Seminar —

Rainer Koschke!, Ettore Merlo? and Andrew Walenstein®

! Universitit Bremen, DE
koschke@informatik.uni-bremen.de
2 BEcole Polytechnique de Montréal, CA
ettore.merlo@polymtl.ca
3 Univ. of Louisiana - Lafayette, US
walenste@ieee.org

Abstract. From 23.07.06 to 26.07.06, the Dagstuhl Seminar 06301 “Du-
plication, Redundancy, and Similarity in Software” was held in the In-
ternational Conference and Research Center (IBFI), Schloss Dagstuhl.
During the seminar, several participants presented their current research,
and ongoing work and open problems were discussed. Abstracts of the
presentations given during the seminar as well as abstracts of seminar re-
sults and ideas are put together in this paper. The first section describes
the seminar topics and goals in general. Links to extended abstracts or
full papers are provided, if available.

Keywords. Software clones, code redundancy, clone detection, redun-
dancy removal, software refactoring, software

06301 Summary — Duplication, Redundancy, and
Similarity in Software

This paper summarizes the proceedings and outcomes of the Dagstuhl Seminar
06301. The purpose of the seminar was to bring together a broad selection of
experts on duplication, redundancy, and similarity in software in order to: syn-
thesize a comprehensive understanding of the topic area, appreciate the diversity
in the topic, and to critically evaluate current knowledge. The structure of the
seminar was specifically formulated to evoke such a synthesis and evaluation. We
report here the success of this seminar and summarize its results, much of which
is a record of working groups charged with discussing the topics of interest.

Keywords: Duplication, redundancy, similarity, code clone, clone detector,
refactor, code smells, software evolution, program development, visualization,
software visualization

Dagstuhl Seminar Proceedings 06301
Duplication, Redundancy, and Similarity in Software
http://drops.dagstuhl.de/opus/volltexte/2007/972

2 R. Koschke, E. Merlo and A. Walenstein

Joint work of: Walenstein, Andrew; Koschke, Rainer; Merlo, Ettore

Full Paper: http://drops.dagstuhl.de/opus/volltexte /2007 /971

06301 Working Session Summary: Presentation and
Visualization of Redundant Code

This report summarizes the proceedings of a workshop discussion session pre-
sentation and visualization of aspects relating to duplicated, copied, or cloned
code. The main outcomes of the working session were: (a) a realization that two
researchers had independently generated very similar methods for browsing and
visualization clone "clusters," and (b) a list of questions for visualization, par-
ticularly in relation to how the "proximity" of clones may relate to interest in
the clone.

Keywords: Code clone, clone visualization, presentation, software visualization

Joint work of: Walenstein, Andrew; Cordy, James R.; Evans, William S.;
Hassan, Ahmed; Kamiya, Toshihiro; Kapser, Cory; Merlo, Ettore

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007 /966

Similarity in Programs

An overview of the concept of program similarity is presented. It divides simi-
larity into two types - syntactic and semantic - and provides a review of eight
categories of methods that may be used to measure program similarity. A sum-
mary of some applications of these methods is included.

The paper is intended to be a starting point for a more comprehensive analy-
sis of the subject of similarity in programs, which is critical to understand if
progress is to be made in fields such as clone detection.

Keywords: Computer programs, similarity, code clone, software comparison,
program metrics, Levenshtein distance, parameterized difference, feature space,
shared information, plagiarism, compression

Joint work of: Walenstein, Andrew; El-Ramly, Mohammad; Cordy, James R.;
Evans, William S.; Mahdavi, Kiarash; Pizka, Markus; Ramalingam, Ganesan;
von Gudenberg, Jiirgen Wolff

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007 /968

http://drops.dagstuhl.de/opus/volltexte/2007/971
http://drops.dagstuhl.de/opus/volltexte/2007/966
http://drops.dagstuhl.de/opus/volltexte/2007/968

Duplication, Redundancy, and Similarity in Software 3

Subjectivity in Clone Judgment: Can We Ever Agree?

An objective definition of what a code clone is currently eludes the field.

A small study was performed at an international workshop to elicit judgments
and discussions from world experts regarding what characteristics define a code
clone. Less than half of the clone candidates judged had 80their criteria for
judgment rather than their interpretation of the clone candidates. In subsequent
open discussion the judges provided several reasons for their judgments. The
study casts additional doubt on the reliability of experimental results in the
field when the full criterion for clone judgment is not spelled out.

Keywords: Code clone, study, inter-rater agreement, ill-defined problem

Joint work of: Kapser, Cory; Anderson, Paul; Godfrey, Michael; Koschke,
Rainer; Rieger, Matthias; van Rysselberghe, Filip; Weiftgerber, Peter

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/970

Info

Magiel Bruntink (CWI - Amsterdam, NL)

Hi, 'm with the CWI in Amsterdam. My work in the area of clone detection
has focussed on the relation between clones and crosscutting concerns (CCCs)
from the AOP world. I think that CCCs are a common source for clones, but
it is not always clear what kind of clones you can really observe in the code.
My goal for the workshop would be to further look at this and discuss with the
people working in the clone detection field.

I’'ve written a paper on this topic, which was published in TSE and is down-
loadable here: http://www.computer.org/portal /cms_docs _transactions/
transactions/tse/featured article/e0804.pdf

Who the heck is Jim Cordy, and what does he want to
discuss?

James R. Cordy (Queens University - Kingston, CA)

Short Bio

Jim Cordy is Professor and Director of the School of Computing at Queen’s
University, Kingston, Canada. He is the lead author of the TXL source trans-
formation language and has worked for many years in the software analysis and
transformation research domain. From 1995-2000 he was chief scientific officer
at Legasys Corporation, a medium sized software company specializing in auto-
mated legacy software analysis and renovation. Through IBM Global Services,
Legasys was responsible for the Year 2000 analysis and reprogramming system

http://drops.dagstuhl.de/opus/volltexte/2007/970

4 R. Koschke, E. Merlo and A. Walenstein

used by the majority of the large Canadian banks. Based on this industrial ex-
perience, his keynote paper at IWPC 2003 emphasized a number of errors of
understanding in the academic research community, including the myth that
cloned code was accidental, harmful or undesirable in legacy software systems.
He is also the co-author of one of the most simple and elegant clone identification
techniques, which won the Best Paper award at CASCON 2004, and has worked
on the related problem of clone resolution in dynamic web pages.

Questions for the Seminar

I'm hoping that our discussions at the seminar can include three particular
topics:

(1) Structure sensitivity in approximate clone detection - are non-structural
methods useful at all? - and how can structural methods handle approximation?

(2) Parameterized clone resolution methods - how to extract and implement
variance in approximate clones?

(3) Analysis of abstraction vs. risk - when is the extra risk introduced by
clone resolution worth it, and when not?

References:

[1] J.R. Cordy, "The TXL Source Transformation Language", Science of Com-
puter Programming 61,3 (August 2006), pp. 190-210.

[2] J.R. Cordy, "Comprehending Reality: Practical Challenges to Software
Maintenance Automation", Proc. IWPC 2003, IEEE 11th International
Workshop on Program Comprehension, Portland, Oregon, May 2003, pp.
196-206 (Keynote paper).

[3] J.R. Cordy, T.R. Dean and N. Synytskyy, "Practical Language-Independent
Detection of Near-Miss Clones", Proc. CASCON’04, 14th IBM Centre for
Advanced Studies Conference, Toronto, October 2004, pp. 29-40 (Best paper
award).

N. Synytskyy, J.R. Cordy and T.R.Dean, "Resolution of Static Clones in

[4] Dynamic Web Pages", Proc. WSE 2003, IEEE 5th International Workshop
on Web Site Evolution, Amsterdam, September 2003, pp. 49-58.

[5] S. Grant and J.R. Cordy, "An Interactive Interface for Refactoring Using
Source Transformation", Proc. REFACE’03, 1st International Workshop on
Refactoring: Achievements, Challenges, Effects, Victoria, November 2003,
pp- 30-33.

[6] N. Synytskyy, J.R. Cordy and T.R.Dean, "Robust Multilingual Parsing Us-
ing Island Grammars", Proc. CASCON 2003, 13th IBM Centres for Ad-
vanced Studies Conference, Toronto, October 2003, pp. 149-161.

Keywords: Clone detection, clone resolution, myths and magic

Full Paper:
http://www.cs.queensu.ca/~cordy /papers.html

http://www.cs.queensu.ca/~cordy/papers.html

Duplication, Redundancy, and Similarity in Software 5

Clone Detector Use Questions: A List of Desirable
Empirical Studies

Thomas R. Dean (Queens University - Kingston, CA)

Code "clones" are similar segments of code that are frequently introduced by
"scavenging" existing code, that is, reusing code by copying it and adapting it
for a new use. In order to scavenge the code, the developer must be aware of it
already, or must find it. Little is known about how tools - particularly search
tools - impact the clone construction process, nor how developers use them for
this purpose. This paper lists five outstanding research questions in this area and
proposes sketches of designs for five empirical studies that might be conducted
to help shed light on those questions.

Keywords: Code clone, clone detector, code search, reuse, code scavenging,
empirical study

Joint work of: Dean, Thomas R.; Di Penta, Massamiliano; Kontogiannis,
Kostas; Walenstein, Andrew

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007 /969

Breakout Session: Similarity by Defintion

Mohammad El-Ramly (University of Leicester, GB)

This session aimed to answer two questions: What does it mean to say that
two pieces of code are similar? And how can this similarity be measured? In
summary, there are five types of code similarity: Representation similarity (tex-
tual, syntactic and structural), Semantic or Behavioural similarity, Execution
similarity, Metrics similarity and Feature-based similarity. Similarity measures
are straightforward for some types and not so easy to find for other types, e.g.,
semantic similarity. The application of clone detection determines the type(s) of
code similarity to use.

Keywords: Code similarity, clone detection, duplicate code

Joint work of: Cordy , James R.; El-Ramly , Mohammad; Evans, William;
Toshihiro, Kamiya; Komondoor , Raghavan; Mahdavi , Kiarash; Pizka , Markus;
Ramalingam , Ganesan; Walenstein , Andrew; von Gudenberg , Jiirgen Wolff

Program Compression

William S. Evans (University of British Columbia - Vancouver, CA)

The talk focused on a grammar-based technique for identifying redundancy in
program code and taking advantage of that redundancy to reduce the memory
required to store and execute the program.

http://drops.dagstuhl.de/opus/volltexte/2007/969

6 R. Koschke, E. Merlo and A. Walenstein

The idea is to start with a simple context-free grammar that represents all
valid basic blocks of any program. We represent a program by the parse trees
(i.e. derivations) of its basic blocks using the grammar. We then modify the
grammar, by considering sample programs, so that idioms of the language have
shorter derivations in the modified grammar. Since each derivation represents a
basic block, we can interpret the resulting set of derivations much as we would
interpret the original program.

We need only expand the grammar rules indicated by the derivation to pro-
duce a sequence of original program instructions to execute.

The result is a program representation that is approximately 40% of the
original program size and is interpretable by a very modest-sized interpreter.

Keywords: Program compression, clone detection, bytecode interpretation,
variable-to-fixed length codes, context-free grammars

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/963

Generic modelling of code clones

Simon Giesecke (Universitit Oldenburg, D)

Code clones, i.e. instances of duplicated code, can be found in many software
systems. They adversely affect the software systems’ quality, in particular their
maintainability and comprehensibility. Thus, this aspect is particularly impor-
tant to consider in software maintenance and reengineering. Many different al-
gorithms detecting code clones have been developed. For various reasons, it is
difficult to compare the results of different algorithms. Most notable among these
reasons is that there is no conceptual model allowing description of code clones
determined by different algorithms. Much more, each algorithm uses its specific
concept of code clones, which is rarely made explicit.

To overcome these problems, we have developed a generic model for de-
scribing clones. The model is generic in that it is independent of the program-
ming language examined and of the clone detection algorithm used. It is flexible
enough to facilitate various granularities of artifacts employed for selection and
comparison, including inexact clones. The model allows separation of concerns
between clone detection, description and management, which reduces the effort
for the implementation of tools supporting these activities. On the basis of the
model, we have implemented a prototype tool supporting these activities, tightly
integrated into the Eclipse environment.

Keywords: Code clones, clone detection, reference model

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007 /960

http://drops.dagstuhl.de/opus/volltexte/2007/963
http://drops.dagstuhl.de/opus/volltexte/2007/960

Duplication, Redundancy, and Similarity in Software 7

A brief bio of Mike Godfrey

Michael Godfrey (University of Waterloo, CA)

Mike Godfrey is an assistant professor at the University of Waterloo in Ontario,
Canada. His broad research goal is to understand what, exactly, software is, and
how it evolves over time (nice, narrow little topic, eh).

With respect to code duplication, he and his grad students (notably Cory
Kapser and Lijie Zou) have tried to focus on three fronts: case studies of cloning
within large open source systems over time (eg Linux, Apache, PostgreSQL),
origin analysis, and clone analysis.

When a software system evolves, often there are several program entities (eg
methods, functions, classes, files, etc) in the new version that were not present
in the previous one. Origin analysis (the term is ours) attempts to answer the
question: "Where did these apparently new entities *really* come from?" That
is, were they renamed, moved, clones, merged, split from entities in the previous
version, or are they actually new? A paper in the Feb 2005 issues of IEEE
Transaction in Sw Eng is the best summary of our work to date on this topic.

Clone analysis starts where clone detection ends. That is, there are many
techniques for performing clone detection, but until recently there has not been
much interest in analysing and processing the voluminous data that clone detec-
tion tools typically create. Our work to date has included a classification scheme
for clones based on their relative position within the system architecture, a sup-
porting tool to aid navigation and investigation of cloning activity, and a set of
case studies. The best summary of our work to date on the topic is a paper in the
March/April 2006 issue of the Journal of Software Maintenance and Evolution.

Keywords: Software cloning, clone analysis, origin analysis, case studies, Mike
Godfrey bio

Managing Known Clones: Issues and Open Questions

Kostas Kontogiannis (University of Waterloo, CA)

Many software systems contained cloned code, i.e., segments of code that are
highly similar to each other, typically because one has been copied from the
other, and then possibly modified. In some contexts, clones are of interest because
they are targets for refactoring. This paper summarizes the results of a working
session in which the problems of merely managing clones that are already known
to exist. Six key issues in the space are briefly reviewed, and open questions raised
in the working session are listed.

Keywords: Code clone, software evolution, change management, code visual-
ization, redundancy, metamodels, software management environments

Full Paper: http://drops.dagstuhl.de/opus/volltexte /2007 /967

http://drops.dagstuhl.de/opus/volltexte/2007/967

8 R. Koschke, E. Merlo and A. Walenstein

Duplication, Redundancy, and Similarity in Software

Kostas Kontogiannis (University of Waterloo, CA)

THEME AND RELEVANT ISSUES TO DISCUSS

The problem of code cloning detection and code cloning analysis are impor-
tant areas for researchers in the Software Engineering community to consider
and to investigate. These relate to program comprehension (identification of id-
ioms), system refactoring (clustering and amalgamation of clones to macros and
parameterized procedures), migration to new object oriented platforms (use of
clones to identify inheritance in the migrant object model), and quality assess-
ment, to name a few. Some issues and problems in the area of code cloning
and code duplication that warrant still the attention of researchers and can be
interesting topics for our Dagstuhl meeting include:

— Tools and techniques for incremental clone detection so that identification
complexity can be reduced. The incrementality may relate to the use of pro-
gressively more and more accurate methods in smaller and smaller sets of
candidates.

— The combination of different methods (static analysis, data flow analysis,
dynamic analysis, text based analysis) to improve the accuracy, recall, and
precision of the current state of the art methods.

— More systematic classification / categorization of clone types.

— Experimental studies and how to design such studies in order to validate
the relationship of code cloning with overall system quality and in particular
maintainability.

— Experimental studies to justify the use of cloning, and under which con-
ditions this will be acceptable or even desirable in large systems (e.g. to
increase performance).

— The role of code cloning to program understanding, componentization, and
design recovery, and in particular to the identification of programmatic id-
ioms and clichés.

SHORT BIO / RELATED EXPETIENCE

Kostas Kontogiannis is an Associate Professor at the Department of Elec-
trical & Computer Engineering at the University of Waterloo, Canada. Kostas
received a B.Sc. degree in Mathematics from the University of Patras, Greece,
a M.Sc. degree in Computer Science from Katholieke Universiteit Leuven, Bel-
gium, and a Ph.D. degree in Computer Science from McGill University, Canada.
Kostas is working in the areas of software reverse engineering, software reengi-
neering, and software systems integration. Some of his most cited work includes

Duplication, Redundancy, and Similarity in Software 9

the clone detection in large industrial systems using software metrics and ap-
proximate pattern matching techniques, and the use of code cloning to facilitate
the migration of procedural systems to object oriented platforms.

Kostas has been the recipient of three IBM University Partnership Awards
and a Canada Foundation for Innovation (CFI) Award. Kostas is a visiting sci-
entist at the IBM Center for Advanced Studies in IBM Toronto Laboratory, and
member of the IEEE Distinguished Visitors Program (2003-2006). Kostas can
be reached by e-mail at kostas@swen.uwaterloo.ca

References:

[1] "Incremental Transformation of Procedural Systems to Object Oriented
Platforms", Y. Zou, K. Kontogiannis. In proceedings of the IEEE Interna-
tional Computer Software and Applications Conference (COMPSACgO3),
November 2003, Dallas TX. pp.290-295.

[2] "Quality Driven Transformation Compositions for Object Oriented Migra-
tion", Y. Zou, K. Kontogiannis. In Proceedings of the IEEE Asia Pacific
Software Engineering Conference (APSECS02) December 2002, Brisbane,
Australia pp.346-355.

[3] "Pattern Matching Techniques for Clone Detection", K. Kontogiannis, R.
DeMori, E. Merlo, M. Galler, and M.Bernstein. In Journal of Automated
Software Engineering, Kluwer Academic Publishers, Vol. 3. pp.77-108, 1996.

[4] "Pattern Matching for Design Concept Localization", Kontogiannis, K.,
DeMori, R., Merlo, E., Bernstein, M., Galler, M. In Proceedings of the
IEEE Working Conference on Reverse Engineering (WCRE’95) July 1995,
Toronto, ON. pp. 96-103.

[5] "Towards an Integrated Toolset for Program Understanding", Mylopoulos,
J., Stanley, M., Wong, K., Bernstein M., DeMori, R., Ewart G., Konto-
giannis, K., Merlo, E., Muller, H., Tilley, S., Tomic, M. In Proceedings of
CASCON’94, November 1994, Toronto, ON. pp. 19-31.

[6] "Localization of Design Concepts in Legacy Systems", Kontogiannis, K.,
DeMori R., Bernstein, M. In Proceedings of the IEEE International Con-
ference on Software Maintenance (ICSMS94) September 1994 Victoria.BC,
pp. 414-423.

Survey of Research on Software Clones

Rainer Koschke (Universitat Bremen, D)

This report summarizes my overview talk on software clone detection research. It
first discusses the notion of software redundancy, cloning, duplication, and simi-
larity. Then, it describes various categorizations of clone types, empirical studies
on the root causes for cloning, current opinions and wisdom of consequences of
cloning, empirical studies on the evolution of clones, ways to remove, to avoid,
and to detect them, empirical evaluations of existing automatic clone detector
performance (such as recall, precision, time and space consumption) and their

10 R. Koschke, E. Merlo and A. Walenstein

fitness for a particular purpose, benchmarks for clone detector evaluations, pre-
sentation issues, and last but not least application of clone detection in other
related fields.

After each summary of a subarea, I am listing open research questions.

Keywords: Software redundancy, code clone, software evolution, clone detector,
empirical evaluation

Full Paper: http://drops.dagstuhl.de/opus/volltexte /2007 /962

Working Group Report "Empirical Studies in Duplication
Detection" 1

Rainer Koschke (Universitit Bremen, D)

We describe the outcome of the first Working Group "Empirical Studies in Du-
plication Detection" I

Keywords: Software redundancy, duplication, similarity, empirical studies

Allowing Overlapping Boundaries in Source Code using a
Search Based Approach to Concept Binding

Kiarash Mahdavi (King’s College - London, GB)

One approach to supporting program comprehension involves binding concepts
to source code. Previously proposed approaches to concept binding have enforced
nonoverlapping boundaries. However, real-world programs may contain overlap-
ping concepts. This paper presents techniques to allow boundary overlap in the
binding of concepts to source code. In order to allow boundaries to overlap, the
concept binding problem is reformulated as a search problem. It is shown that
the search space of overlapping concept bindings is exponentially large, indicat-
ing the suitability of sampling-based search algorithms. Hill climbing and genetic
algorithms are introduced for sampling the space. The paper reports on exper-
iments that apply these algorithms to 21 COBOL II programs taken from the
commercial financial services sector. The results show that the genetic algorithm
produces significantly better solutions than both the hill climber and random
search.

Joint work of: Mahdavi, Kiarash; Gold, Nicolas; Harman, Mark; Li, Zheng
Keywords: Concept Assignment, Slicing, Clustering, Heuristic Algorithms
Full Paper: http://drops.dagstuhl.de/opus/volltexte /2007 /961

http://drops.dagstuhl.de/opus/volltexte/2007/962
http://drops.dagstuhl.de/opus/volltexte/2007/961

Duplication, Redundancy, and Similarity in Software 11

Code Normal Forms

Markus Pizka (TU Minchen, D)

Because of their strong economic impact, complexity and maintainability are
among the most widely used terms in software engineering. But, they are also
among the most weakly understood! A multitude of software metrics attempts to
analyze complexity and a proliferation of different definitions of maintainability
can be found in text books and corporate quality guide lines. The trouble is
that none of these approaches provides a reliable basis for objectively assessing
the ability of a software system to absorb future changes. In contrast to this,
relational database theory has successfully solved very similar difficulties through
normal forms. This talk transfers the idea of normal forms to code. Semantic
dependencies form the basis for code normal form criteria which in turn allow
to elminiate redundancy and inconsistency systematically.

The Guy Behind the Name

Filip van Rysselberghe (University of Antwerp, B)

I'm a Phd student at Lab On Re-Engineering (LORE) under the supervision
of Prof. Serge Demeyer. For my PhD research, I study how successful software
systems evolved over time with the intention to deduce how systems can be
maintained/evolved best. To meet this goal, I study which change operations
(and sequences of them) are applied and how code problems evolve over time.
The answer to these questions is used to understand when and how a certain
maintenance task is performed (best). As data source, change data stored in
versioning systems is used.

Now how does code duplication fit into this story. Well, for my master’s thesis,
I compared clone detection by means of exact string matching with parameter-
ized matching using metric fingerprints. This bit of research fed my interest in
the problem of clones, their detection and their removal. Due to this interest I
for example decided to use clone detection techniques to detect move operations
in a systems versioning system. I also carried out a priliminary study to verify
how the clones in a system evolve in order to gather more information to decide
on a ranking for the removal of clones. This latter subject is the subject I'm most
interested in for te moment, deciding based on the past which clones have been
removed, why?, ... in order to better rank the detection results in the future.

I also wrote out a number of master thesis studies in this context. This year
a student is trying to apply Balazinska’s automatic classification on clones other
than function clones to verify whether the conclusions hold. Next year a student
will study the evolution of clones within a system, with an emphasis on the
relation between the presence of code smells and the presence of clones.

Looking at the list of participants I expect the seminar to result in a num-
ber of very concrete studies or experiments. Maybe, but that may already be

12 R. Koschke, E. Merlo and A. Walenstein

quite difficult given the short amount of time we have, some initial "laptop"
tests/experiments /implementations. Since my Phd topic is the study of histori-
cal information (i.e. changes) I would primarily contribute on how we could use
history to get more insight into the cloning and clone removal process. Hence
I’m primarily interested in the clone ranking subject.

I just want to mention one last thing. I always carry around an open-source,
Java implementation of a point-of-sale system (the kind of system used in shops
& restaurants to sell products & services) which is in need of re-engineering.
Might be a fun case (see what we can detect, which clones WE would remove,
reason for a clone, etc.)

The Software Similarity Problem in Malware Analysis

Andrew Walenstein (Univ. of Louisiana - Lafayette, USA)

In software engineering contexts software may be compared for similarity in
order to detect duplicate code that indicates poor design, and to reconstruct
evolution history. Malicious software, being nothing other than a particular type
of software, can also be compared for similarity in order to detect commonalities
and evolution history. This paper provides a brief introduction to the issue of
measuring similarity between malicious programs, and how evolution is known
to occur in the area. It then uses this review to try to draw lines that connect
research in software engineering (e.g., on "clone detection") to problems in anti-
malware research.

Keywords: Software, software evolution, commonality, program similarity, code
clones, code smells, malicious software, malware, worms, Trojans, viruses, spy-
ware, botnets, software visualization

Joint work of: Walenstein, Andrew; Lakhotia, Arun

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007 /964

Code Clones: Reconsidering Terminology

Andrew Walenstein (Univ. of Louisiana - Lafayette, USA)

This report discusses terminology choices and considerations relating to copied
or redundant code within software systems, i.e., relating to "code clones." Inad-
equacies of existing terminology are raised and alternative terms are discussed.

Keywords: Code clone, exact clone, near clone, clone types, accidental clone,
duplicate, copy, redundant

Full Paper: http://drops.dagstuhl.de/opus/volltexte /2007 /965

http://drops.dagstuhl.de/opus/volltexte/2007/964
http://drops.dagstuhl.de/opus/volltexte/2007/965

	06301 Abstracts Collection Duplication, Redundancy, and Similarity in Software --- Dagstuhl Seminar ---
	 Rainer Koschke, Ettore Merlo and Andrew Walenstein

