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Abstract. Recurrent networks have been used as neural models of language 
processing, with mixed results. Here, we discuss the role of recurrent networks 
in a neural architecture of grounded cognition. In particular, we discuss how the 
control of binding in this architecture can be learned. We trained a simple 
recurrent network (SRN) and a feedforward network (FFN) for this task. The 
results show that information from the architecture is needed as input for these 
networks to learn control of binding. Thus, both control systems are recurrent. 
We found that the recurrent system consisting of the architecture and an SRN or 
an FFN as a ‘core’ can learn basic (but recursive) sentence structures. Problems 
with control of binding arise when the system with the SRN is tested on number 
of new sentence structures. In contrast, control of binding for these structures 
succeeds with the FFN. Yet, for some structures with (unlimited) embeddings, 
difficulties arise due to dynamical binding conflicts in the architecture itself. In 
closing, we discuss potential future developments of the architecture presented 
here.  

Keywords: grounded representations, binding control, combinatorial structures, 
neural architecture, recurrent network, learning  

1. Introduction 

An example of a recurrent network used as a neural model of language processing 
is presented in figure 1. It consists of a ‘Simple Recurrent Network’ (SRN), used by 
Elman (1991) in a word prediction task. An SRN is a three-layer network, in which 
the activation of the hidden layer is fed back to the input layer. Typically, the 
activation in the hidden layer produced by a given word in a sentence is then used as a 
(partial) input with the next word in the sentence. In the word prediction task, the 
SRN is trained on a set of sentences, to predict the next word that would appear given 
a sentence context. In this way, an SRN can learn to predict that in the context boys 
who dog sees a plural verb (e.g., chase) will follow.  
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However, despite this initial success, language processing with SRNs is faced with 
serious limitations. In particular, SRNs cannot handle the (combinatorial) productivity 
of natural language (e.g., van der Velde, van der Kleij van der Voort, & de Kamps, 
2004). Furthermore, a prediction of the next word type in a sentence is not really what 
language processing is about. Instead, the purpose of language is (at least) to provide 
‘who does what to whom’ information. For example, for the sentence boys who dog 
sees chase girl a question like “Who do the boys chase?” should be answered by a 
specific answer (girl), not by an indication of a word type (noun).  

Furthermore, a major aspect of language processing in the brain is the nature of 
(word) representation. We argue that representations of words/concepts in the brain 
are grounded in a network structure, related to aspects of word meaning derived from 
perception, action, emotion and semantic information. Because representations are 
grounded, they cannot be copied and pasted to form combinatorial structures like 
sentences (as in symbolic architectures). To ensure that representations remain 
grounded, they cannot be encoded (encrypted) either (as in the state space of an SRN, 
figure 1b), to form combinatorial structures. Recently, we presented a neural 
architecture that produces sentence structures based on grounded word representations 
(van der Velde & de Kamps, 2006). The architecture can handle the (combinatorial) 
productivity of language, and it answers ‘who does what to whom’ questions in a 
specific way. The architecture consists of neural ‘binding’ mechanisms that produce 
(novel) sentence structures on the fly. Here, we discuss the role of recurrent networks 
in this architecture. In particular, we discuss how the control of the binding process 
can be learned using recurrent network structures. First, however, we briefly discuss 
grounded representations and the architecture for sentence structure.  

Fig. 1. A simple Recurrent Network (SRN) predicts the next word type in a sentence like boys who
the dog sees chase the girl. (a) Structure of the SRN. (b) the state space of the connections in the 
network (between the hidden layer and the output layer) when the sentence is processed. 
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2. Grounded representations 

Figure 2a illustrates the grounded representation for the word cat. It consists of a 
network that interconnects all aspects related to the word (concept) cat. This includes 
all perceptual information related to cats, action processes related to cats (e.g., the 
experience of stroking a cat, or the ability to pronounce the word cat), all emotional 
content associated with cats, and all other information related to or associated with 
cats, such as the semantic information that a cat is a pet, or the (negative) association 
between cats and dogs.   

The grey oval in the center, labeled cat, plays an important role, because it 
interconnects the neural structures in the representation of cat, and because it can be 
connected to sentence structures, as in The cat is on the mat (thus, it can embed the 
word structure of cat in sentence structures). However, it would be wrong to see this 
oval itself as the neural representation of cat, because its representational value 
derives entirely from the network structure of which it is a part. Therefore, even if it 
were technically possible to make a copy of the oval (e.g., of its internal network 
structure or pattern of activation) and transport that to another location, it is useless to 
do so. When the internal network structure or pattern of activation of the oval is 
copied and transported, it is separated from the remaining network structure of the 
representation cat, and thus it loses its representational value. For example, if this 
copied and detached oval were connected to the structure of a sentence, it would not 
represent the word cat in that sentence (or any other word).  

The grounded nature of word representation in the brain has been investigated in a 
number of studies. For example, Vigliocco et al. (2006) found modality-specific brain 
activation during word comprehension, in which motor related words (nouns and 
verbs) activated motor related brain areas and sensory related words (nouns and 
verbs) activated sensory related areas. Tettamanti et al. (2005) observed an activation 
difference between action related words (verbs), in which parts of the premotor cortex 
that code for specific actions (related to mouth, hand or leg actions) were also 
activated by the words describing these actions (e.g., bite, grasp or kick). Because 
Tettamanti et al. presented the words in sentence contexts (e.g., I bite an apple, I 
grasp a knife or I kick the ball), the observed word activations strongly suggest that 
the representations of the words remain grounded when the words are part of 
sentences (word combinations).  

2.1. Conditional connections 

The labeled connections in figure 2 are of a special kind. In a connection between 
two neurons, activation flows from the pre-synaptic neuron to the post-synaptic 
neuron, when the pre-synaptic neuron is active. This kind of connection is associative, 
because activation flows without any form of control. In contrast, the labeled 
connections are conditional: activation flows only when the condition indicated by the 
label is met. For example, the activation of the label is, e.g., by the query “What is a 
cat?”, opens the connection between the network structures for cat and pet, so that pet 
can be given as an answer to this query (van der Velde & de Kamps, 2006). 
Conditional connections are needed to represent relations in network structures 
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(McClelland & Rogers, 2003; Feldman, 2006; O’Reilly, 2006; van der Velde & de 
Kamps, 2006). They can be implemented by specific neural circuits, e.g., such as 
circuits based on disinhibition (O’Reilly, 2006; van der Velde & de Kamps, 2006), or 
by conjunctive connections (McClelland & Rogers, 2003), or by specific activation 
rules (Feldman, 2006). Conditional forms of activation have been found in brain 
studies of rule behavior in monkeys (e.g., Miller, 1999).   

The other grey ovals in figure 2b, labeled is, on, and mat, belong to the grounded 
network structures for the words is, on, and mat, respectively.  

3. Architecture of grounded language structures 

To represent a sentence, the network structures for the words (or word structures, 
for short) are (temporarily) bound to neural syntax structures that represent elements 
of syntactic information. In figure 2b these are sentence (S1), noun phrase (N1 and 
N2), verb phrase (V1), and prepositional phrase (P1). The syntax structures are then 
bound to each other in agreement with the structure of the sentence (van der Velde & 
de Kamps, 2006). Binding is achieved by reverberating (delay) activity, which is 
neural activity that persists for a while, even when the stimulus that initiated the 
activity is gone. The delay activity creates a conditional connection, by which 
activation can flow between the bound structures. Because the delay activity decays 
after a while, the binding decays as well, although it can be transferred to long-term 
memory under certain conditions (van der Velde & de Kamps, 2006).  

Figure 2 illustrates the difference between grounded cognition and symbol 
manipulation. Here, no symbol tokens are copied, transported or retrieved, and pasted 
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Fig. 2. In (a), illustration of the grounded word structure of a word like cat. In (b), illustration of the 
grounded sentence structure of The cat is on the mat (ignoring the). 
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to create sentence structures. Instead, the neural architecture for grounded language 
processing consists of specific connection structures and selective processes of 
activation. The sentence structure in figure 2 interconnects the word structures for cat 
and mat in such a way that the query “Where is the cat?” produces the activation of 
mat, and the query “Who is on the mat?” produces the activation of cat. The 
architecture can also represent the sentence The cat is on the cat (or The mat is on the 
mat). In the sentence The cat is on the cat the word structure for cat is again not 
copied. Instead, the same grounded word structure would be used (the one in figure 
2a), connected (bound) to N1 and N2 in figure 2b.  

Figure 2 illustrates that grounded representations are always accessible or visible, 
even when they are a part of a representation of a combinatorial structure, such as a 
sentence. Because the representation of cat remains visible in the structure of a 
sentence like The cat is on the mat, the connection structure of cat can be activated 
when cat is part of a sentence. In this way, the word structure for cat can influence the 
binding process that produces the sentence structure, or the word cat can be produced, 
e.g., in pronouncing the sentence. Furthermore, new information given by the 
sentence, e.g., an association between a cat and a mat, can be integrated with the word 
structures for cat and mat. The visibility of grounded word representations in this 
architecture is in agreement with the observations of Tettamanti et al. (2005) 
discussed above. The visible nature of grounded representations entails that they are 
not encoded (encrypted) in combinatorial structures. Figure 2 illustrates that 
accessibility (visibility) is a necessary requirement for a representation to be 
grounded. But it is not sufficient. Symbol tokens in a symbol manipulation 
architecture are accessible (visible), but they are not grounded. A representation is 
grounded when it is accessible (visible) and remains “in situ”, that is, when its 
embedded information structure always remains intact.  

3.1. Binding in the architecture  

In the architecture discussed here (van der Velde & de Kamps, 2006), sentence 
structures are created in a neural blackboard. Figure 3 illustrates basic aspects of the 
neural blackboard architecture. Figure 3a shows a more elaborate representation of 
the structure cat sees dog. It shows that the words are connected by memory circuits 
to structure assemblies for noun phrase (N1 and N2) or verb phase (V1). Memory 
circuits are gating circuits based on disinhibition. A memory circuit is activated when 
the neural structures it connects (e.g., cat and N1) have been active simultaneously. 
When a memory circuit is active, it remains active for a while (due to reverberating 
activity in the circuit), and it forms a temporal link between the neural structures it 
connects.  

To form a sentence structure, structure assemblies are connected to each other. 
This makes the difference with a semantic network, in which semantic relations are 
formed between word representations directly. The intervening structure assemblies 
allow novel combinations between words (e.g., nouns and verbs) to be made, because 
the nouns are connected only to Nx assemblies (between 10 and 100) and verbs are 
connected only to a similar number of Vi assemblies, and the Nx and Vi assemblies are 
connected to each other.  
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A structure assembly consists of a main assembly (e.g., N1 or V1 in figure 3a) 
connected to a number of subassemblies. For example, V1 has (among others) 
subassemblies for agent (a) and theme (t). The connection between a main assembly 
and a subassembly consists of a gating circuit based on disinhibition. The gating 
circuit can be opened by a control signal. In this way, activation flow within a 
structure assembly is controlled. A main assembly can be active without any of its 
subassemblies. Main assemblies remain active for a while, unless they are inhibited. 
Due to competition, only one main assembly of the same kind is active at a given 
moment (the last one activated, see van der Velde & de Kamps, 2006). 

 The structure assemblies (e.g., Nx and Vi) are interconnected by means of 
subassemblies of the same kind. For example, all Nx and Vi assemblies are 
interconnected by agent subassemblies (and by theme subassemblies). Figure 3b 
illustrates that subassemblies of the same kind form a connection matrix, in which 
each element consists of a memory circuit. When the agent subassembly of Nx is 
activated, it activates its row in the connection matrix. The row remains active until a 
binding occurs. When the agent subassembly of Vi is activated, it also activates its 
row in the connection matrix, which remains active until a binding occurs. When the 
Nx row and the Vi row in the connection matrix are active simultaneously, they 
activate their corresponding memory circuit. This forms a (temporal) binding between 
their agent subassemblies (and terminates the activation in the corresponding rows in 
the connection matrix). In figure 3a, N1 and V1 are bound by their agent 
subassemblies, and V1 and N2 are bound by their theme subassemblies, which makes 
cat the agent of sees and dog its theme.  
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Fig. 3. (a) Basic sentence structure with explicit gating and memory circuits. (b) Connection matrix 
of memory circuits. (c) Multiple sentence structures (in ‘shorthand’ illustration). 
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Figure 3c shows that multiple sentences can be represented at the same time, with 
the same words in different roles. The sentence structures are presented in this figure 
in a ‘shorthand’ representation by omitting the gating and memory circuits. But these 
circuits, and their connection matrices, are always implied. Furthermore, the sentence 
structures also have sentence assemblies (S1 or S2), which provides the possibility of a 
more elaborate grammatical structure. Due to the structure assemblies, the same 
grounded word representation cat can be the subject of one sentence and the theme of 
another. The word cat is the subject of cat sees dog, because it is bound to N1, which 
is bound to S1 (by their noun subassemblies), and it is the theme of dog likes cat, 
because it is bound to N4, which is bound to V2 (by their theme subassemblies). With 
these sentences, it is possible to reliably answer queries like “Who sees the dog?” or 
“Who likes the cat?”. Thus, words can be bound to different sentences in different 
roles, and different sentences can be represented simultaneously, by using different 
structure assemblies (for the remainder of the paper, we ignore the use of different 
structure assemblies to represent different sentences).  

Figure 4 shows that the architecture can also represent more complex sentence 
structures, containing embedded sentences. We used the sentences illustrated in this 
figure to study how control of binding can be learned in our architecture.   
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4. Binding and control 

The binding process in the architecture proceeds in two stages. First, a word is 
bound to an (arbitrary) structure assembly of its kind when the word is heard or seen. 
A process of how this could occur is discussed in (van der Velde & de Kamps, 2006). 
Furthermore, we assume that an (arbitrary) sentence assembly is activated at the 
beginning of a sentence. In the second stage, the structure assemblies are bound by 
their common-type subassemblies. This is the most important stage, because it 
determines the grammatical structure of a sentence representation. In (van der Velde 
& de Kamps, 2006) we presented a neural control circuit, as an example of how this 
binding process could proceed. However, the circuit was entirely hand-made, and 
designed for one type of sentence only.  

In our present study, we trained a (three-layer) SRN and a three-layer feedforward 
network (FFN) to control the binding of a set of (training) sentences, and investigated 
how binding in the architecture would operate for another set of test sentences. The 
training sentences are presented in figure 4. The SRN and FFN used to control the 
binding process consisted of the 10 input nodes, 10 hidden nodes and 13 output 
nodes. They were trained using the backpropagation training procedure in (Plunkett & 
Elman, 1997).  

Figure 5 shows our attempts to learn control of binding in the architecture using an 
SRN. Initially, we trained an SRN on word information only (figure 5a). That is, for a 
sentence like cat sees dog, it received the word type information noun, verb and noun, 
and it was trained to produce the correct binding signals (see below). With this 
procedure, training succeeded for the sentence types 1-3 in figure 4. It also succeeded 
for sentences of type 4. But the distinction between sentence types 4 and 6 was 
difficult to learn. The difficulty remained when we made an explicit distinction in the 
input between nouns with a (potential) relative clause, like cat, and nouns with a 
(potential) complement clause, like fact.  

In the next step, we used feedback information from the blackboard (figure 5b). 
The verb sees, for example, could anticipate a theme (object) by activating its theme 
subassembly (and thus the corresponding row in the theme connection matrix). 
Feedback from this matrix could be used as additional input, to inform the SRN that 
the output should be a binding of a noun as theme. Training improved with this kind 
of feedback, but difficulties of binding remained.  

Figure 5c illustrates the information we finally used to train the SRN (and FFN) in 
our study. It consists of three kinds: word type information, direct feedback from the 
blackboard, and conditional feedback. In the case of conditional feedback, the 
feedback from the blackboard activates a ‘conditional node’ that, in conjunction with 
specific word type information, provides input to the SRN. So, the conditional node T 
(theme), activated by the theme connection matrix, operates in conjunction with a 
noun to activate an input node of the SRN. This provides direct information that the 
noun should be bound as a theme. We assume that these conjunctive effects between 
input and conditional nodes exists, but they could result from a basic form of 
association. We assume that the activation of conditional nodes end once the 
condition they reflect is fulfilled (e.g., by feedback from the activated input nodes). 



Recurrent networks in a neural architecture of grounded cognition: learning of control  

 

9

4.1. Training input-output relations  

We discuss the input-output relations that the SRN (and FFN) had to learn in a 
step-by-step manner, based on the sentence types illustrated in figure 4. First, the 
SRN learned the relation between an input node and an output node signalling the 
beginning of a sentence, and the relation between an input node and an output node 
signalling the end of a sentence.  

For sentence 1, the (trained) binding process proceeds as follows. The first word 
cat activates an input node (‘Nrc’) of the SRN representing that cat is a noun that can 
have a relative clause. For this input, the SRN must learn to activate a node 
representing that cat (N1) should bind to S1 as its subject. The connection matrix in 
figure 3b shows that this binding process consists of activating the noun 
subassemblies of N1 and S1, which activates their corresponding memory circuit. The 
SRN also learns to activate an output node that represents ‘relative clause’ (RC). In 
turn, this node activates a conditional node RC.  

The verb sees activates a ‘verb’ (V) node in the input layer of the SRN. The output 
consists of the activation of two nodes. The first one initiates the binding of V1 and S1 
by their verb subassemblies. This binding process proceeds in the same way as the 
binding of N1 and S1 discussed above. The second one (‘V-t’) activates the theme 
subassemblies of all V assemblies (by opening the gating circuit for these 
subassemblies). The effect is that the theme subassembly of V1 is activated, which in 

hidden

V N

cat sees dog

N1

n

S1

V1

t
N2

v

cat sees dog

Subject Main verb theme

hidden

V N

cat sees

Subject Main verb theme

N1

n

S1

V1

tv

cat sees

anticipates
theme(a) (b)

Fig. 5. Processing a sentence using an SRN for binding. (a) Without feedback. (b) With feedback. 
(c) With conditional feedback.  

hidden

V N

cat sees dog

N1

n

S1

V1

t
N2

v

cat sees dog

Subject Main verb theme

T
anticipates

theme

(c)



Frank van der Velde, Marc de Kamps 

 

10

turn activates the corresponding row in the connection matrix for theme 
subassemblies. This row remains active until a binding has occurred. The activation 
of a row in the connection matrix for theme subassemblies produces feedback by 
activating a conditional node T.  

Finally, the word dog activates its word type node Nrc, but in conjunction with the 
active conditional node T it also activates an input node T. The (trained) output is the 
activation of the RC node (because of Nrc) and the activation of a node N-t that 
initiates the activation of the theme subassemblies of all N assemblies. In this case, 
the theme subassembly of N2 is activated. In turn, it activates its row in the connection 
matrix for theme subassemblies. Because the row of V1 is still active, the effect is the 
binding of V1 and N2 by their theme subassemblies. Furthermore, the activation in the 
connection matrix (in the rows of V1 and N2) is terminated, so that the conditional 
node T no longer receives feedback. 

In sentences 2 and 3, the word fact activates an input node Ncc that represents that 
nouns like fact can have a (potential) complement clause. This creates a new output 
node CC and a new conditional node CC. They play the same role as the 
corresponding RC nodes in sentence 1.  

In sentence 4, cat is the subject of both the main sentence and the relative clause. 
The binding of cat proceeds as in sentence 1. The word that activates a new input 
node C (clause) of the SRN. Furthermore, the combination of that and the conditional 
node RC (activated by cat earlier) activates a new input node ‘RC’. The first (trained) 
output activation is that of an output node that controls the binding of N1 and C1 by 
their clause subassemblies. The second output node ‘C-v’ activates the verb 
subassembly of C1, and thus its row in the connection matrix for verb subassemblies. 
The feedback of this connection matrix activates a new conditional node ‘Cv’ (this 
process is similar to the one for T illustrated in figure 5c). The third activated output 
node is RC, which continues the activation of the conditional node RC (without this 
new feedback, the activation of the conditional node RC would terminate after the 
activation of the input node RC).  

The verb sees of sentence 4 activates the V input node, and, in conjunction with the 
conditional node Cv, activates a (new) input node ‘Cv’. Two output nodes are 
activated. The first one, ‘V-v’, activates the verb subassemblies of the V assemblies, 
thus the verb subassembly of V1 in this case. In turn, this produces the activation of 
the V1 row in the connection matrix for verb subassemblies. In combination with the 
active row produced by C1, this results in the binding of C1 and V1 by their verb 
subassemblies (and the termination of the feedback to the Cv condition node). The 
second output node, V-t, produces the effects discussed for sentence 1. The binding of 
mouse and sees dog also proceeds as discussed for sentence 1.  

In sentence 5a (cat that dog sees chases mouse), cat is the subject of the main 
sentence but the theme (object) of the relative clause. The binding of cat that proceeds 
as in sentence 4. The word dog activates the Nrc input node (as always), but in 
combination with the active condition node RC (activated by the binding of that) it 
also activates the RC input node. The (trained) activated output nodes consist of a 
node that produces the binding of N2 and C1 by their noun assemblies, and the node 
‘C-t’. This node produces the activation of the theme subassembly of C1, and thus of 
the corresponding row in the connection matrix of theme subassemblies (in this way, 
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cat can be bound as the theme of the clause verb when sees appears). The binding of 
sees and chases mouse proceeds as outlined above.  

The sentence cat that the fact worries chases the mouse (sentence 5b) has a 
structure comparable to sentence 5a, with fact in the role of dog. This creates the new 
input-output relation between the inputs Ncc and RC (activated by that) and the output 
node for binding N2 and C1 by their noun subassemblies and the output node C-t. The 
binding of worries and chases mouse proceeds as outlined above.  

Sentence 6 introduces the (final) two new input-output relations, needed to control 
the binding of the complement clause in fact that cat chases mouse worries dog. The 
binding of fact proceeds as discussed above. The word that activates the input node C. 
In combination with the conditional node CC (activated by fact earlier) the word that 
also activates a new input node ‘CC’. The first (trained) output activation is that of the 
node that controls the binding process of N1 and C1 by their clause subassemblies, as 
before. The second (trained) output node C-v activates the verb subassembly of C1, 
and thus its row in the connection matrix for verb subassemblies. The feedback of this 
connection matrix activates the conditional node Cv. The third (trained) output node 
is the node CC, which continuous the activation of the conditional node CC.  

The word cat in sentence 6 activates the Nrc input node. In combination with the 
active condition node CC (activated by that), it also activates the CC input node. The 
(trained) activated output nodes are the one that produces the binding of N2 and C1 by 
their noun assemblies, and the node RC. The binding of chases mouse and worries 
dog proceeds as outlined above.  

The SRN (and FFN) was trained to reproduce the input-output relations discussed 
above. First, the sentences 1-3 were trained (50.000 epochs), then all sentences (1-6) 
were trained (again 50.000 epochs). The activation of the output nodes ranged from 0 
to 1 (by definition). The results showed that the SRN and the FFN produced all 
correct output patterns with activations > 0.9, whereas the activation of all other nodes 
was < 0.1 (i.e., there were no ‘spurious’ activations of output nodes). So, both 
networks succeeded in reproducing the input-output relations that control the binding 
process of the sentence types 1-6.  

5. Performance on test sentences  

We tested the ability of the SRN (and FFN) to control the binding process in the 
architecture with the set of sentence types in which the structures occurring in the 
training sentences were extended and recombined. In all test sentences, the FFN 
produced the correct output with activation > 0.9 (without spurious activations). 
Therefore, we concentrate our analysis of the test sentences on the performance of the 
SRN.  

Figure 6a shows a test sentence with a multiple embedded relative clause of the 
kind in sentence 4 (a subject-relative clause). In this case, the theme of the first 
relative clause (cat that chases) is itself a relative clause, with mouse as its subject. 
Humans have no problem in processing sentences of this kind (Gibson, 1998). But the 
SRN faced a difficulty in binding the second relative clause. The signal to bind N2 
and C2 was barely above 0.5 (about half of the desired output). If we take an 
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activation of 0.5 as a threshold of a successful binding, the binding produced by the 
SRN was (marginally) successful. The sequence of two clauses did not occur in the 
training set. It did not trouble the FFN, but the SRN apparently learned to expect 
particular sentence sequence, which interfered with the new sentence structure  

In figure 6b the relative clause is moved from the subject position to the object 
(theme) position. This configuration did not occur in the training sentences. The SRN 
had a problem (activation < 0.5) with binding the relative clause to the theme noun. In 
the training sentences, it learned to produce the EoS (‘End-of-Sentence’) signal at this 
position. Most likely, this introduced a conflict when the clause appeared instead.   

Figure 7a shows a sentence with a multiple subject-relative clause at the theme 
(object) position. The SRN has problems in binding both relative clauses. Yet, it 
succeeds to bind the nouns and verbs within the relative clauses. This suggest that the 
SRN has a small ‘window of attention’ for a word sequence. It gets confused when it 
is confronted with a new sequence, like the introduction of a clause at the theme 
position. But within the clause it recovers, because its has learned that (sub)sequence 
in the training set. 

Figure 7b shows a sentence with an object-relative clause at the theme position. 
The first problem is again the introduction of a clause at the new theme position. The 
second problem consists of failing to recognize the EoS input (i.e., a failure to 
produce the EoS signal). The reason is most likely the fact that this sentence ends 
with a verb (sees), whereas none of the training sentences ended with a verb.  
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Figure 8a shows a sentence with a multiple object-relative clause. The SRN 
produced the correct binding output for this sentence, on the assumption that the 
blackboard produced the correct feedback. This feedback, however, is dependent on 
the binding process in the blackboard. In (van der Velde & de Kamps, 2006) we 
showed that ‘binding conflicts’ arise with sentences of this type. In particular, the 
verb and theme subassemblies of C1 have been activated when the second clause (dog 
that boy likes) appears. This second clause then activates the verb and theme 
subassemblies of C2. So, when the first verb likes appears it can bind to either C1 or 
C2 (and differently for verb or theme). The same problem arises for the other two 
verbs. Only when the subassemblies of C2 are (substantially) higher activated than 
those of C1 will likes bind to C2 and sees bind to C1. But fluctuations in the activation 
levels of the subassemblies involved can result in erroneous bindings (or no binding at 
all). Humans indeed have severe problems with sentences of this kind (Gibson, 1998).  

Nevertheless, the SRN (and the FFN) produced the correct binding signals when 
the binding feedback produced by the blackboard is correct, that is when the binding 
in the blackboard succeeds without conflict. The latter would occur in an idealized 
situation when the level of activation of the subassemblies involved is strictly 
dependent on the moment of activation (i.e., when a more recently activated 
subassembly has a higher state of activation than a previously activated subassembly). 
This perhaps suggests that the overall architecture (blackboard and SRN/FFN 
combined) possesses the ‘competence’ to handle (arbitrary) recursive structures of 
this kind. The performance difficulties then arise from the noisy non-idealized 
dynamics in the architecture. However, the competence of the system is not embodied 
in the SRN/FFN alone. Instead, the input-output relations learned by the SRN/FFN 
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suffice because a substantial part of sentence structure is embodied in the architecture 
itself. The feedback from the architecture is thus an integrated part of its competence, 
which indicates that competence and performance are integrated in this architecture.  

Figure 8b shows the multiple object-relative clause moved to the object (theme) 
position. The SRN failed to produce the correct binding signal for the binding of the 
relative clause to the object (as in previous examples), and it marginally produced the 
EoS signal. But it produced the correct binding signals within the clauses, which 
emphasizes the small ‘windows of attention’ analysis given above. Notice that a 
binding conflict would also arise between C1 and C2 with this sentence, although the 
fact that only two verbs are involved makes this binding conflict less severe than the 
one in figure 8a.  

Figure 9a presents a multiple embedded clause consisting of a complement clause 
(CC) followed by a relative clause (RC). The SRN produced the correct binding 
output, based on the correct feedback from the blackboard. However, the binding 
output for the verb in the CC clause was marginal. For this sentence, there is only one 
binding conflict (between the verb subassemblies of C1 and C2), instead of two, as in 
figure 8. This makes this sentence less complex than the one in figure 8a, in line with 
human performance (Gibson, 1998).  

Figure 9b shows the result for the transition of the CC-RC structure to the object 
position. This creates the usual difficulty of binding the first clause to the object 
(theme) noun. It also repeats the marginal binding of the verb in the CC. An 
additional problem arises for binding the noun in the CC. This problem also occurred 
when the CC was moved to the object position without the RC. We have not shown 
that simulation result here, because of its replication in figure 9b. It is not quite clear 
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why a transition of a CC to the object position is harder for the SRN than a transition 
of a RC to that position.  

Figure 10a presents a multiple embedded clause consisting of a relative clause 
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followed by a complement clause. These RC-CC sentences are very hard for humans 
to process (Gibson, 1998). Again, the SRN produced the correct output (binding 
signals) when feedback from the blackboard was correct. But there are two binding 
conflicts with this sentence, one consisting of the verb subassemblies of C1 and C2, 
and one consisting of the theme subassemblies of C1 and N4. These binding conflicts 
are of a similar kind compared to the sentence in figure 8a. The RC-CC sentence in 
figure 10 causes processing difficulties for humans that are similar to those of the 
sentence in figure 8a (Gibson, 1998). Finally, the transition of the RC-CC clause to 
the object position causes the usual problems of binding the clause to the object 
(theme) noun, and producing the EoS (end of sentence) signal after a verb.  

6. Conclusions and discussion 

We discussed a neural architecture that aims to integrate three important features of 
human cognition: productivity, dynamics and grounding. Productivity refers to the 
combinatorial nature of cognition, as found in language, reasoning and vision. 
Dynamics refers to the ability to interact with the environment in a dynamical way. 
Grounding refers to the nature of cognitive representations: representations for 
concepts are always grounded in perception, action, emotion, and associations, and 
embedded in semantic relations and other cognitive structures.  

Individually, each of these features is important for cognition. But, in particular, 
their combination is important. Productivity is found in computer systems, but there it 
is unlimited, and not dynamic and grounded. Dynamical systems are abound in 
nature, but most of them are not cognitive. Grounded representations form the 
backbone of associative processing in all neural systems, but associative processing is 
not productive. So, the combination of productivity and grounding, instantiated in a 
dynamical system, is rare. The human brain is perhaps the only known system of this 
kind. An architecture that integrates these features is therefore important for 
understanding the nature of the brain, and for understanding the nature of human-like 
cognition.  

The combination of productivity, dynamics and grounding is in particular 
importance because of the constraints they impose on each other. In turn, these 
constraints can reveal fundamental aspects of human cognition. For example, 
combinatorial structures can be created with grounded representations, but not all 
structures are equally feasible, as the examples illustrated in figures 8 and 10 show.  

In this paper, we discussed the issue of learning in particular. The examples given 
are basic, and the learning mechanism is not a learning mechanism of natural 
language by far. Yet, even the basic examples given demonstrate how the issue of 
language learning could be approached. We used an SRN and an FFN to learn input-
output relations to control the binding process in the architecture. The FFN produced 
all binding relations successfully, both for the training sentences and the test 
sentences.  

In contrast, binding with the SRN resulted in a number of problems and marginal 
binding signals. In particular, these problems arose when familiar structures like 
clauses occurred at novel positions, not seen in the training examples, or when a verb 
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occurred at the end of a sentence, which also not occurred in the training sentences. 
These problems again show that the ability of SRNs to store sequences of words 
interfere with the combinatorial productivity of language (van der Velde et al., 2004). 
Not all sequences of words that can appear in a sentence context can be learned in a 
lifetime. Therefore, an architecture for processing language should be flexible, and 
not be led astray by a novel sequence of words, not seen before.  

The FFN was able to handle the more complex and recombined sentence types. 
However, as we noted above, the input-output relations learned by the FFN suffice 
because a substantial part of sentence structure is embodied in the architecture itself. 
This shows that feedback from the architecture is an integrated part of the competence 
of this architecture. That is, control of binding in this architecture is based on a 
recurrent network, of which the trained FFN is just a part.  

The involvement of the entire architecture in control of binding raises the question 
of how the structure of the architecture itself emerges. We argue that this could be the 
result of a different kind of process that might be referred to as ‘development’ instead 
of just learning. The SRN and FFN we used show what could be the difference 
between learning and development. The SRN and FFN learn by an adaptation of their 
weights, but their structure does not change. Perhaps one could introduce a structure 
change by allowing new connections to be formed in the networks. But even then, the 
structure change is not on a par with that needed to develop the structure of the 
blackboard architecture (i.e., the different assemblies and subassemblies involved, and 
their corresponding connection matrices). The success of learning with the FFN 
perhaps suggest that language learning is the result of such a dual process: an 
adaptation of control, in combination with a structural development of a binding 
architecture for grounded representations.  

This distinction might motivate the search for two different kinds of mechanisms: 
one needed for the structural development of a language architecture; and one needed 
for control, based on feedback from this architecture. The first could be referred to as 
‘development’, because it is primarily related to structural changes that might occur 
only at an initial stage. The latter could be referred to as learning, based on 
continuously updated information. This dual strategy might be more successful than 
the search for a single learning mechanism that produces language learning from 
scratch. The elaboration of this strategy is one of the future developments of the 
architecture presented here.  
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