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Abstract. We extract a quantitative variant of uniqueness from
the usual hypotheses of the implicit functions theorem. This leads
not only to an a priori proof of continuity, but also to an alternative,
fully constructive existence proof.

1 Introduction

To show the differentiability of an implicit function one often relies on its continu-
ity. The latter is mostly seen as a by-product of the not uncommon construction
of the implicit function as the limit of a uniformly convergent sequence of con-
tinuous functions. We now show that the continuity of the implicit function is
prior to its existence, and thus independent of any particular construction. More
specifically, we deduce the continuity from a quantitative strengthening of the
uniqueness, which in turn follows from the hypotheses one needs to impose on
the equation the implicit function is expected to satisfy. The same quantitative
strengthening of uniqueness enables us to ultimately give an alternative existence
proof for implicit functions that is fully constructive in Bishop’s sense.

We use ideas from [6], which loc.cit. have only been spelled out in the case
of implicit functions with values in R. The existence proof given in [6] therefore
can rely on reasoning by monotonicity, whereas in the general case—treated
in this paper—of implicit functions with values in Rm we need to employ an
extreme value argument. Similar considerations in related contexts can be found
in Sections 3.3 and 3.4 of [10] during the course of the proof of the theorem
on implicit functions via the inverse mapping theorem and Banach’s fixed point
theorem, respectively. We refer to [11, 20] for the implicit function theorem and
the open mapping theorem in computable analysis à la Weihrauch [19].

The predecessor [18] of the present paper essentially contains the same ma-
terial as far as uniqueness and continuity of the implicit function are concerned.
When it comes to proving existence, however, it follows the intrinsically classical
argument that a continuous function on a compact set attains its minimum. This
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argument fails being practicable constructively, unless one adds the hypothesis
that there quantitatively is at most one point at which the minimum can be
attained. In fact, there is a heuristic principle valid [17] even in Bishop–style
constructive mathematics without countable choice: if a continuous function on
a complete metric space has approximate roots and in a quantitative manner at
most one root, then it actually has a root. We may refer to [17] for more on this,
including the principle’s history with references.

As a matter of fact, however, in the case of implicit functions the required ad-
ditional hypothesis is contained in the quantitative variant of uniqueness which
we find at our disposal anyway. Therefore, we only need to prove that for ev-
ery parameter the given equation admits approximate solutions. Altogether we
achieve the existence of an exact solution at every parameter and then, by the
principle of unique choice, the existence of an implicit function: as the one and
only function which assigns to every parameter the solution uniquely determined
by this parameter.

The present paper as a whole is conceived in the realm of Bishop’s construc-
tive mathematics [4, 5, 7, 8]. Compared with the—so-called classical—customary
way of doing mathematics, the principal characteristic of the framework created
by Bishop is the exclusive use of intuitionistic logic, which allows one to view
Bishop’s setting as a generalisation of classical mathematics [13]. Moreover, we
follow [14] in doing constructive mathematics à la Bishop without countable
choice, also inasmuch as we understand real numbers as located Dedekind cuts.
In particular, the so-called cotransitivity property “if x < y, then x < z or
z < y” amounts to say that the Dedekind cut z is located whenever x, y are
rational numbers, and follows by approximation in the general case.

Avoiding countable choice is further indispensable, because we want our work
to be expressible in constructive Zermelo–Fraenkel set theory (CZF) as begun
in [1]: countable choice does not belong to CZF. Details on this and on CZF
in general can be found in [2, 12]. We will, however, use the principle of unique
choice, sometimes called the principle of non–choice. By the functions–as–graphs
paradigm common to set theory, unique choice is trivially in CZF.

2 Preliminaries

We first recall that in Bishop’s setting every differentiable function comes with a
continuous derivative [5, Chapter 2, Section 5]. In other words, for Bishop every
differentiable function is by definition continuously differentiable. We nonethe-
less keep speaking of continously differentiable functions, also to facilitate any
reading by a classically trained person. Note in this context that in Bishop’s
framework continuity means uniform continuity on every compact (that is, to-
tally bounded and complete) subset of the domain; see [15] for a discussion of
this.

Secondly, although in the work of Bishop and of his followers there barely is
any talk of (partial or total) differentiability for functions of several real vari-
ables, we do not develop this concept in the present paper either. According to
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our opinion it is in order to take this for granted: the task of checking the classical
route as far as necessary can indeed be performed in a relatively straightforward
way, and is sometimes simplified by Bishop’s assumption of the automatic con-
tinuity of the derivative.

For the lack of appropriate references in the constructive literature we next
transfer two facts from real analysis. With Theorem 5.4 and Theorem 6.8 of [5,
Chapter 2] at hand the standard proofs indeed go through constructively. (For
instance, the proofs of Satz 5 and of its Corollar given in [9, I, §6] require only
one addendum to the proof of the Hilfssatz: for all K,L ∈ R with L > 0 the
implication “if K2 6 KL, then K 6 L” is also constructively valid. To verify
this, assume that K2 6 KL; it suffices to prove that K < L+ ε for every ε > 0.
For each ε > 0 either 0 < K or K < ε. In the former case, multiplying K2 6 KL
by 1/K > 0 yields K 6 L; in the latter case we have K < L+ ε because L > 0.)

Lemma 1. Let g : W → Rn be a continuously differentiable mapping on an open
set W ⊆ Rm, and c, d ∈ W . If the line segment between c and d lies entirely in
W , then

g(d)− g(c) =

(∫ 1

0

Dg(c+ t(d− c))dt
)
· (d− c) .

Corollary 2. Under the hypotheses of Lemma 1 we have

‖g(d)− g(c)‖ 6 sup
t∈[0,1]

‖Dg(c+ t(d− c))dt‖ · ‖d− c‖ .

While Lemma 5.5 of [5, Chapter 2] is an approximative alternative of Rolle’s
theorem, our next lemma is a strong variant of the contrapositive.

Lemma 3. Let h : [c, d] → R be continuously differentiable, and assume that
there is r > 0 such that h′(x) > r for all x ∈ [c, d]. Furthermore assume that
c < d. Then h(c) < h(d).

Proof. Assume that h(d)− h(c) < r(d−c)
4 . By the mean value theorem [5, Theo-

rem 5.6] there exists ξ ∈ [c, d] such that

|h′(ξ)(d− c)− (h(d)− h(c))| < r(d− c)
2

.

Then

h′(ξ)(d− c)− (h(d)− h(c)) > r(d− c)− (h(d)− h(c))

> r(d− c)− r(d− c)
4

>
r(d− c)

2
.

Hence we get a contradiction, and thus h(d)− h(c) > 0. ut
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The last lemma in this section is an approximative substitute for the classical
result that if a differentiable function attains its minimum at a point in the
interior of a compact set, then the gradient of that function vanishes at this
point.

Lemma 4. Let W ⊆ Rn be an open neighbourhood of [0, 1]n and h : W → R a
continuously differentiable function. If there is a point ξ ∈ [0, 1]n and s > 0 such
that

h(x) > h(ξ) + s (1)

for all x ∈ ∂[0, 1]n, then for every ε > 0 there exists y ∈ [0, 1]n such that
‖∇h(y)‖ < ε.

Proof. For convenience we will use the supremum norm on Rn throughout this
proof. Choose N ∈ N such that for x, y ∈ [0, 1]n, if ‖y − x‖ < 2−N then both

‖∇h(x)−∇h(y)‖ < ε

4
(2)

and

|h(x)− h(y)| < s

2
. (3)

Let

G =

{(
i1
2N

, . . . ,
in
2N

)
: (i1, . . . , in) ∈ Nn

}
∩ [0, 1]n.

For any x ∈ G and i 6 n, let x±i denote the point x±2−Nei—i.e. the neighbouring
point of x in G in the positive/negative direction of the ith coordinate. For any
x ∈ G and i 6 n fix λ+x,i ∈ {−1, 0, 1} and λ−x,i ∈ {−1, 0, 1}, such that

λ+x,i = 0⇒
∣∣∣∣ ∂h∂xi (x+ 2−(N+1)ei)

∣∣∣∣ < 3ε

4
,

λ+x,i = −1⇒ ∂h

∂xi
(x+ 2−(N+1)ei) < −

ε

2
,

λ+x,i = 1⇒ ∂h

∂xi
(x+ 2−(N+1)ei) >

ε

2
,

λ−x,i = 0⇒
∣∣∣∣ ∂h∂xi (x− 2−(N+1)ei)

∣∣∣∣ < 3ε

4
,

λ−x,i = −1⇒ ∂h

∂xi
(x− 2−(N+1)ei) >

ε

2
,

λ−x,i = 1⇒ ∂h

∂xi
(x− 2−(N+1)ei) < −

ε

2
.

Notice that if λ+x,i = −1 then for all y ∈ [x, x+i ]

∂h

∂xi
(y) < −ε

4
,
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and therefore, by Lemma 3,
h(x) > h(x+i ). (4)

Similarly, when λ−x,i = −1, we obtain

∂h

∂xi
(y) >

ε

4

for all y ∈ [x−i , x], and then
h(x) > h(x−i ). (5)

Furthermore notice that, by continuity and (2),

if λ+x,i ∈ {0, 1} and λ−x,i ∈ {0, 1}, then

∣∣∣∣ ∂h∂xi (x)

∣∣∣∣ < ε. (6)

Next, because of (3), we can find x0 ∈ G such that |h(x0) − h(ξ)| < s. If there
exists i such that λ+x0,i

= −1 (or λ−x0,i
= −1), set x1 = (x0)+i (or x1 = (x0)−i ), for

which h(x0) > h(x1). Continuing this construction we will, because of (4), never
visit the same point twice and never reach a point in ∂[0, 1]n ∩ G. Therefore,
we eventually reach a point xm ∈ (0, 1)n ∩ G for which both λ+xm,i 6= −1 and

λ−xm,i 6= −1 for all 1 6 i 6 n. By (6) this implies that ‖∇h(xm)‖ < ε. ut

3 Uniqueness and Continuity

Situation. Let U ⊆ Rn and V ⊆ Rm be open neighbourhoods of a ∈ Rn and
b ∈ Rm, respectively, with m,n > 1. We denote the coordinates on Rn and Rm
by x = (x1, . . . , xn) and y = (y1, . . . , ym), respectively, and endow Rn×Rm with
the norm ‖(x, y)‖ = ‖x‖+‖y‖. The Jacobian of a partially differentiable function
F : U × V → Rm at (x, y) ∈ U × V is written as

DF (x, y) =

(
∂F

∂x
(x, y) ,

∂F

∂y
(x, y)

)
,

∂F

∂x
(x, y) ∈ Rm×n ,

∂F

∂y
(x, y) ∈ Rm×m .

Finally, let F : U × V → Rm be a continuously differentiable function such that
∂F
∂y (a, b) is invertible; in particular ν > 0 where

ν =

∥∥∥∥∂F∂y (a, b)
−1
∥∥∥∥ .

Lemma 5. For every λ ∈ ]1,+∞[ there are compact neighbourhoods Uλ ⊆ U
and Vλ ⊆ V of a and b, respectively, such that for all x ∈ Uλ und y, y′ ∈ Vλ:

‖y − y′‖ 6 λ · ν · ‖F (x, y)− F (x, y′)‖ . (7)

Proof. By replacing F with ∂F
∂y (a, b)

−1 · F , we may assume that ∂F
∂y (a, b) is the

unit matrix and therefore ν = 1. Now consider

G : U × V → Rm , (x, y) 7→ y − F (x, y) .
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Since G is continuously differentiable with ∂G
∂y (a, b) = 0, there are compact

neighbourhoods Uλ ⊆ U and Vλ ⊆ V of a and b, respectively, such that Vλ is
convex and ∥∥∥∥∂G∂y (x, y)

∥∥∥∥ 6 1− 1/λ (8)

for all (x, y) ∈ Uλ × Vλ. Then, for all x ∈ Uλ and y, y′ ∈ Vλ, we have

‖y − y′‖ 6 ‖(y −G (x, y))− (y′ −G (x, y′))‖+ ‖G (x, y)−G (x, y′)‖
6 ‖F (x, y)− F (x, y′)‖+ (1− 1/λ) · ‖y − y′‖

by (8) and Corollary 2; whence (7) holds with ν = 1. ut

Throughout the following λ ∈ ]1,+∞[ is arbitrary and Uλ, Vλ are as in Lemma
5.

Equation (7) implies, for fixed x ∈ Uλ, that y ∈ Vλ and y′ ∈ Vλ lie close
together, whenever F is small at (x, y) and (x, y′). Therefore (7) can be seen as
a quantitative way to express that any y with F (x, y) = 0 is uniquely determined
by x.

This can be made more precise. We say that a function H : S → R on a
metric space S with H > 0 has uniformly at most one root [16] if

∀δ > 0 ∃ε > 0 ∀y, y′ ∈ S (d (y, y′) > δ ⇒ H (y) > ε ∨H (y′) > ε) .

If H has uniformly at most one root, then H has at most one root [3]: i.e.,

∀y, y′ ∈ S (y 6= y′ ⇒ H (y) > 0 ∨H (y′) > 0) .

If H has at most one root, then its root—if it exists at all—is uniquely deter-
mined:

∀y, y′ ∈ S (H (y) = 0 ∧H (y′) = 0 ⇒ y = y′) .

Corollary 6. For each x ∈ Uλ the function

H : Vλ → R, y 7→ ‖F (x, y)‖

has uniformly at most one root; in particular, for all y, y′ ∈ Vλ,

F (x, y) = 0 ∧ F (x, y′) = 0 ⇒ y = y′ .

Theorem 7. Every function f : Uλ → Vλ with F (x, f (x)) = 0 for all x ∈ Uλ
is continuous.

Proof. Consider ε > 0 arbitrary. Since F is uniformly continuous on the compact
set Uλ × Vλ, there exists δ > 0 such that

‖F (x, y)− F (x′, y′)‖ 6 (λ · ν)
−1 · ε .

whenever (x, y), (x′, y′) ∈ Uλ × Vλ are such that ‖x− x′‖ + ‖y − y′‖ < δ. In
particular,

‖F (x, f(x′))‖ 6 (λ · ν)
−1 · ε
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for all x, x′ ∈ Uλ with ‖x− x′‖ < δ (recall that F (x′, f(x′)) = 0). Using this and
(7) we get

‖f(x)− f(x′)‖ 6 λ · ν · ‖F (x, f(x))− F (x, f(x′))‖
= λ · ν · ‖F (x, f(x′))‖
6 ε

for all x, x′ ∈ Uλ with ‖x− x′‖ < δ. Hence f is uniformly continuous. ut

This proof’s heuristic can be explained as follows. If x and x′ are close, then
F (x, f(x′)) is close to F (x′, f(x′)) = 0, and therefore close to F (x, f(x)) = 0;
Equation (7) now implies that f(x) and f(x′) are close.

Following the standard argument, one can now easily show that every f as
in Theorem 7 is differentiable in the interior of U0

λ with uniformly continuous
derivative

Df (x) = − ∂F

∂y
(x, f (x))

−1 · ∂F
∂x

(x, f (x)) .

Note that the quantitative version (7) of uniqueness was sufficient to prove con-
tinuity, which therefore only depends on differentiability inasmuch as this is
needed to prove (7).

4 Existence

Last, we present an alternative approach to the existence of the implicit function,
which is—just as the proof of continuity—based on the quantitative version (7)
of uniqueness, but again requires involving the partial derivative of the given
equation. An additional ingredient is the following result, for whose validity in
Bishop-style constructive mathematics without choice we refer to [17, Theorem
5]:

Theorem 8. Let S be a complete metric space and H : S → R uniformly con-
tinuous. If inf H = 0 and H has uniformly at most one root, then there is yH ∈ S
with H (yH) = 0.

Note that inf H = 0 means that H > 0 and that H has approximate roots.

From now on we also assume that F (a, b) = 0. (An assumption that has not
been used so far.)

Theorem 9. There are compact neighbourhoods U0
λ ⊆ Uλ and V 0

λ ⊆ Vλ of a and
b, respectively, such that there is a function f : U0

λ → V 0
λ with F (x, f (x)) = 0

for all x ∈ U0
λ.

As a by-product of Corollary 6, there is exactly one f , which by Theorem 7 is
continuous.
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Proof. Using Corollary 6 and the principle of unique choice, we only need to find
compact neighbourhoods U0

λ and V 0
λ of a and b, respectively, with U0

λ × V 0
λ ⊆

Uλ × Vλ, such that for every x ∈ U0
λ there exists y ∈ V 0

λ with F (x, y) = 0. We
may also assume that (a, b) = (0, 0). Setting (x, y′) = (0, 0) in (7), we get

‖y‖ 6 λ · ν · ‖F (0, y)‖ (9)

for all y ∈ Uλ, since F (0, 0) = 0. We can now find r, s > 0, such that

U0
λ = [−r,+r]n , V 0

λ = [−s,+s]m

completely lie in Uλ and Vλ respectively. By choosing r, s small enough, we may
assume that ∥∥∥∥∂F∂y (x, y)

−1
∥∥∥∥ 6 ν + 1 (10)

for all (x, y) ∈ U0
λ × V 0

λ . Since F is uniformly continuous on the compact set
U0
λ × V 0

λ , by making r sufficiently small, we may further assume that

λ · ν · ‖F (x, y)− F (x′, y)‖ 6 s/3

for all (x, y) , (x′, y) ∈ U0
λ × V 0

λ . If we now substitute x′ = 0, we get

λ · ν · ‖F (x, y)− F (0, y)‖ 6 s/3 (11)

for all (x, y) ∈ U0
λ × V 0

λ ; if we also substitute y = 0, we get

λ · ν · ‖F (x, 0)‖ 6 s/3 (12)

for all x ∈ U0
λ . (If we were only interested in getting (12), it would suffice to

point out that F ( , 0) is continuous at 0 and that F (0, 0) = 0.) Equations (9)
and (11) imply that

2s/3 6 λ · ν · ‖F (x, y)‖ (13)

for all x ∈ U0
λ and y ∈ ∂V 0

λ , i.e. ‖y‖ = s. Now consider x ∈ U0
λ arbitrary, but

fixed. The function
h : V → R , y 7→ ‖F (x, y)‖2

is differentiable with continuous derivative

∇h (y) = 2 · F (x, y) · ∂F
∂y

(x, y) . (14)

By (12) and (13) we have

λ2 · ν2 · h (0) + s2/3 6 λ2 · ν2 · h (y)

for all y ∈ ∂V 0
λ ; whence by virtue of Lemma 4

inf
y∈V 0

λ

‖∇h (y)‖ = 0 .

In view of (10) and (14) this implies

inf
y∈V 0

λ

‖F (x, y)‖ = 0 .

By Corollary 6 and Theorem 8, we achieve y ∈ V 0
λ with F (x, y) = 0. ut
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