1

Recently-developed
graph search — including hash-based delayed duplica
detection [Korf and Schultze, 2005; Korf,

Dynamic State-Space Partitioning in External-Memory Graph Search

Rong Zhou
Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304
rzhou@parc.com

Abstract

State-of-the-art external-memory graph search al-
gorithms rely on a hash function, or equivalently,

a state-space projection function, that partitions the
stored nodes of the state-space search graph into
groups of nodes that are stored as separate files on
disk. The scalability and efficiency of the search
depends on properties of the partition: whether the
number of unique nodes in a file always fits in
RAM, the number of files into which the nodes
of the state-space graph are partitioned, and how
well the partitioning of the state space captures lo-
cal structure in the graph. All previous work relies
on a static partitioning of the state space. In this pa-
per, we introduce a method for dynamic partition-
ing of the state-space search graph and show that it
leads to substantial improvement of search perfor-
mance.

I ntroduction

algorithms for

2008and

structured duplicate detectiofzhou and Hansen, 2004;

2006b; 2007 — rely on a hash function, or equivalently, a

state-space projection function, that partitions the nodes
the state-space search graph ibtecketsof nodes that are

stored as separate files on disk. For both hash-based dela

external-memory

Yy

Eric A. Hansen
Dept. of Computer Science and Eng.
Mississippi State University
Mississippi State, MS 39762
hansen@cse.msstate.edu

Finding a projection function that satisfies all of these crite-
ria presents a challenge. Korf relies on handcrafted projection
functions (which he calls hash functions) that are tailored to
specific search domains with well-understood structure. Zhou
and Hansen [2006b] describe how to automatically generate
an appropriate projection function by heuristic-guided greedy
search through the space of possibilities. All previous work
uses a static projection function that does not change during
the progress of the search, but this has drawbacks. Static par-
titioning can capture local graph structure. But for a static
partition that captures local structure, it is difficult to predict
in advance the number of nodes that will map to each bucket;
in practice, the distribution of nodes to buckets can be very
uneven. A randomized hash function creates a static parti-
tion that evenly distributes nodes among buckets. But it does
not capture any local structure, since it allows nodes in one
bucket to have successor nodes in any other random bucket.
In short, it is difficult to design a projection function that both
captures local structure and evenly distributes nodes among
buckets.

In this paper, we describe an approach to improving the
performance of structured duplicate detection — and, by im-
plication, also hash-based delayed duplicate detection — by
t(gynamically adjusting the projection function in the course
of the search. This allows the search algorithm to monitor
the distribution of nodes in buckets at runtime, and modify
the projection function to improve search performance. In
gase the set of nodes in a bucket does not fit in RAM, for ex-

ample, the algorithm changes the partition so that the search
gan continue. We show that the overhead for dynamically re-
artitioning the state space is modest, and, in practice, it is

duplicate detection and structured duplicate detection, thB . X
state-space projection function must satisfy the same criteria. ore than compe_nsated for by an improvement in the space
The set of unique nodes in each bucket must fit in RAM. Fmand time complexity of the search.

best performance, there should not be many more bucke L

than necessary, which means nodes should be relativez Background and motivation

evenly distributed among buckets and buckets should b®/e begin with a review and comparison of hash-based de-
relatively full. Finally, search efficiency depends on how well layed duplicate detection and structured duplicate detection,
the state-space projection function captures local structure iand focus on the role played by the state-space projection
the graph, where locality takes this form; for any bucket offunction in each approach. A projection function is used
nodes, their successor nodes are found in only a small nunte partition the stored nodes of a state-space search graph
ber of other buckets. Hash-based delayed duplicate detectianto buckets where each bucket of nodes is stored in a sep-
leverages this form of local structure in orderitderleave arate file. A common way to specify a projection function
expansion and mergingf nodes and structured duplicate is by specifying a subset of state variables; states that have
detection uses it in its concept dfiplicate detection scope the same values for this subset of variables map to the same

Dagstuhl Seminar Proceedings 09491
Graph Search Engineering 1
http://drops.dagstuhl.de/opus/volltexte/2010/2433

bucket. A projection function captures local structure in aarate files based on the first hash function, that is, the projec-
graph if for any bucket of nodes, successor nodes are fountion function. For each file, it expands the nodes contained in
in only a small number of other buckets, calledritighbors. the file and writes the successor nodes to files in the next level
In other words, it captures local structure when the largestf the search space. The key difference between SDD and
number of neighbors of any bucket is very small relative tohash-based DDD is that SDD does not delay duplicate detec-

the total number of buckets. tion; all duplicate nodes are detected and eliminated as soon
]] as they are generated, without writing any duplicate node to
2.1 Hash-based delayed duplicate detection disk. In its original form, SDD accomplishes this by copy-

Korf introduced hash-based delayed duplicate detectioing theduplicate-detection scops the currently-expanding
(DDD) to avoid the overhead of sorting-based DDD, whichfile into a hash table in RAM associated with the second hash
relies on external sorting of files to detect and remove duplifunction. The duplicate-detection scope consists of all nodes
cate nodes. in any of the neighbor files of the expanding file. Since this
Hash-based DDD uses two hash functions, where the firdequires the nodes in multiple files to fit in RAM at once, this
corresponds to what we call a state-space projection fundorm of SDD has a larger internal-memory requirement than
tion. As new states are generated they are placed into sepash-based DDDf they both use the same projection func-
arate files based on this first hash function. This guarantedion. (Recall that hash-based DDD never requires more than
that all duplicate nodes end up in the same file. To removene file of unique nodes to fitin RAM at once.)
duplicates from a file, the file is read into a hash table that fits Edge partitioningreduces the internal-memory require-
in RAM and is associated with a second hash function. Dument of SDD in the following way. If the duplicate-detection
plicate nodes that map to the same slot of the hash table asgope of an expansion file does not fit in RAM, then one or
“merged.” Finally, the contents of this hash table are writtenmore of its neighbor files are not copied into RAM. Instead,
back to disk as a file of unique nodes. when expanding the nodes in the expansion file, the succes-
Consider a breadth-first search algorithm that expands orgor nodes that map to one of these neighbor files are simply
level of the search space at a time. The files at the currentot generated. After every node in the expansion file is ex-
level of the search space contain no duplicate nodes, and apanded, the ignored neighbor file(s) are copied into RAM, re-
called expansion files As the nodes in each of these files placing the neighbor files that were previously in RAM, and
are expanded, their successor nodes are written to files at tilee nodes in the same parent file are expanded again. This
next depth of the search space, with the value of the first hadime, the successor nodes that mapped to one of the neighbor
function determining which file they are written to. Since files that is no longer in RAM are not generated, and only the
these files contain duplicate nodes that will be removed in théuccessor nodes that map to the neighbor file(s) in RAM are
merge phrase of the algorithm, they are calfestge filesBe- generated and saved, as long as they are not duplicates. Thus,
cause expanding all files at the current level before mergin§y incrementallyexpanding the nodes in a file, the internal-
any files at the next level could require a large amount of eximemory requirements of SDD can be reduced to the point
tra disk space to store all of the duplicate nodes, Korf [2005Where no more than one (neighbor) file needs to be stored in
proposes tdnterleave expansion and merginghis is possi- RAM at once, the same as for hash-based DDD. The time and
ble only if the projection function captures local structure inspace overhead of writing all duplicate nodes to disk and re-
the state-space search graph; that is, it depends on the nodsving them in a later merge step is avoided. But whenever
in each expansion file having successor nodes in only a small duplicate-detection scope does not fit in RAM, SDD with
number of merge files. As soon as all the expansion fileedge partitioning incurs the different time overhead of having
that have successors in a particular merge file have been ei¢ read the same expansion file multiple times.
panded, duplicates can be removed from the merge file (b& .
copying the file into a hash table in RAM) even if all expan- 2.3 Comparison of approaches
sion files in the current level of the search space have not yg&ssuming that hash-based DDD and SDD with edge parti-
been expanded. To save disk space, merging duplicates int@ning use the same projection function, it is clear that they

file is given priority over expanding another file. have the same peak RAM requirement: it is the amount of
i i RAM required to store all the unique nodes in the largest file.
2.2 Structured duplicate detection As for disk storage, hash-based DDD always needs at least

The idea of leveraging local graph structure to interleaveas much disk space as SDD, since both approaches store all
the expansion and merging steps of hash-based DDD wasique nodes. In addition, hash-based DDD needs disk space
adapted from an approach to external-memory graph sear¢h store duplicate nodes. How much additional disk storage
called structured duplicate detection (SDIDZhou and it needs depends on how well the projection function cap-
Hansen, 2004 Here we describe a form of SDD that uses atures local structure in the state-space search graph. If local
technique calle@dge partitionindZhou and Hansen, 2007 structure is leveraged to allow interleaving of expansion and
Comparing hash-based DDD to this form of SDD will help merging, it may need very little additional disk space. In the
to clarify how the two approaches are related. It will alsoworst case, when merging of files must be postponed until all
show why the state-space projection function used by botffiles in the current layer are expanded, it could require much
approaches must satisfy the same criteria. more disk storage than SDD, by a factor equal to the ratio of
Like hash-based DDD, SDD uses two “hash functions.” Itduplicate nodes to unique nodes. Note that if the projection
partitions the nodes in each level of the search space into sefunction does not capture any local structure, both the inter-

nal memory requirement and the disk storage requirement dRefining the partition also tends to increase the number of
SDD with edge partitioning remain the same; only its time neighbors of a file. In hash-based DDD, this means that more
complexity increases due to incremental node expansions ariie buffers must be maintained to allow generated nodes to
multiple reads of the same expansion file. be written to their corresponding file; since the operating sys-
Comparing the time complexity of hash-based DDD andtem limits the number of open files, this could be a problem.
SDD is more challenging, but we can make some generdtor SDD, it could lead to more incremental expansions. In
remarks about their relative advantages and disadvantagegeneral, increasing the resolution of the projection function
Both approaches perform extra work that is not performededuces the peak RAM consumption of the search algorithm
by the other approach, and that is what we compare. Fdn exchange for an increase in its running time, for all of the
hash-based DDD, the extra work is writing all duplicate nodeseasons we have mentioned. It is a classic space-time trade-
to disk and then eliminating them in a later merge step thaoff.
copies the nodes in each merge file back to RAM, eliminates Thys we have two competing criteria. The set of unique
duplicates, and writes an expansion file of unique nodes. FQfodes in each file must fit in RAM but this criterion should
SDD with edge partitioning, the extra work consists of in- he satisfied while also allowing as coarse a partition as pos-
cremental node expansions and reading the same file frogjpje, in order not to degrade search performance too much.
disk multiple times. The extra work performed by hash-baseyen an uneven distribution of nodes among files, however, a
DDD is proportional to the ratio of duplicate nodes to uniquecgarse partition increases the risk that the set of unique nodes
nodes in the search space, which is problem-dependent. The 5 particular file may not fit in RAM. As we will see, dy-
extra work performed by SDD depends on how much locahgmic state-space partitioning allows us to manage this trade-

structure is captured by the projection function, since thef more effectively. It will let us find the coarsest partition
number of times a file may need to be read from disk ishat still allows the largest file to fit in RAM.

bounded above by the number of its neighbor files.

Hash-based DDD may have an advantage in time complex- Although this issue arises in general for hash-based DDD,
ity when there are few duplicates relative to unique nodedt does not arise for two test domains for which Korf reports

in the search space. (An example of such a problem woul ost of his experimental results: sliding-tile puzzles and the

be the Rubik's Cube search problem used a test case ur-peg Towers of Hanoi. For these domains, Korf uses

Korf (2008).) SDD may have an advantage when the ratio o andcrafted hash functions that are perfect and invertible, al-
duplicates to unique nodes is large, and the projection funcOWing the use of direct-address tables in memory that just

tion captures local structure in the state-space search grapght€d t0 store a few bits of information for each entry, instead
The best approach is likely to be problem-dependent. Thgfthe entire state description. This allow_s him to partition the
point of our comparison is to show that both approaches rel{}0des of the state-space search graph into sufficiently many
on a state-space projection function that must satisfy the sanjicS that the maximum number of unique nodes in each file
criteria. It follows that the method for dynamic state-space's 9uaranteedto fitin the direct-address table in RAM.
partitioning introduced in this paper can be effective for both But in general, perfecand invertible hash functions are
approaches. Our experimental results will demonstrate theot possible; for example, they are not feasible for either

effectiveness of dynamic partitioning for SDD. domain-independentplanning or model checking. (Edelkamp
and Sulewski [2008] make this point about model checking.
24 Criteria of agood projection function An application of hash-based DDD to model checking is de-

As we have seen, one criterion the projection function shoul@cribed by Evangelista [2008].) Instead, the hash table must
satisfy is that it should capture local structure in the state-Store the complete state description with each entry. Since it
space search graph. For hash-based DDD, this allows intel® usually unrealistic for the projection functl_on to partition
leaving of expansion and merging. For SDD with edge partifhe nodes of the search graph into so many files that it is pos-
tioning, it limits the time overhead of incremental expansions SiPle to guarantee that the set of all possible nodes that map to
A more important criterion the projection function should & Pucket can fitin RAM at once, an open-address hash table is
satisfy is that the set of unique nodes in each file must fit!Sed that allows collisions. The hope is that the actual nodes
in a hash table in RAM. One way to ensure this is to use dn @ bucket at any point during the search will fit in RAM.
high-resolution projection function that partitions the nodes! he fact that the number of nodes that will be generated and
of the state-space search graph into so many files that eadtPred in any file is not known until run time motivates a dy-
is guaranteed to fit in RAM. But partitioning the state spacd@Mic approach to state-space partitioning.
into too many files can degrade search performance. BesidesA final remark about Korf's [2008] examples is relevant
decreasing the average size of a file, the typically uneven dige the question of the distribution of nodes among buckets.
tribution of nodes among files means that many files could b#lost of his examples involve exhaustive breadth-first search
empty or nearly empty, making access to disk less sequentiadf a graph. By contrast, the test examples reported in this pa-
In addition, the search algorithm needs to maintain a tabl@er involve heuristic search for the shortest path from a start
in RAM that keeps track of all files, whether they are openstate to a goal state, which means that most of the graph is not
or not, whether they have a write or read buffer, their statugxplored. In our experience, the distribution of nodes among
as an expansion or merge file (in hash-based DDD), a list dfuckets is more uneven for a heuristic search than an exhaus-
their neighbor files, etc., and the size of this table can grovtive search due to the uneven effect of reachability on the con-
exponentially with the resolution of the projection function. tents of the various buckets.

2.5 Pathological state-space projection functions 415|613 ol1l213

To highlight the influence of heuristic search on the distribu- 11ols 5167
tion of nodes among buckets, we use the 15-Puzzle example E>

shown in Figure 1. Suppose the state-space projection func- 92110111 8l9l10l11
tion hashes a node to a bucket based on the position of tiles

3,7,11,12,13, 14, and15 (shown as gray tiles). Since there 1213|1415 1211314 |15
are altogethet6!/9! = 57,657,600 different combinations
for the positions of these 7 gray tiles, each bucket should Start Goal

get a fraction of57,657,600~! = 1.73 x 10~8 of the to-
tal number of nodes generated, if the distribution of nodesrigure 1: An example of a pathological state-space projec-
are perfectly balanced among all buckets. However, for théion function for an instance of the 15-Puzzle. The gray tiles
start state shown in Figure 1, all the gray tiles are already adre the tiles whose positions are considered in the state-space
their goal positions. Thus an optimal solution does not neegrojection function.
to move these gray tiles far away from their current positions.
In fact, since the white tiles in Figure 1 form a solvable in-] o o]
stance of (a variant of) the 8-Puzzle, we know that there i®Ut, this measure of locality is a good objective function for
at least one optimal solution that does not require moving 4h€ greedy search under the assumption that the projection
single gray tile. function evenly partitions the stored nodes of the graph. But
Since all states that share the same positions of these gr&p We have argued (and experimental results will show) this
tiles are mapped to the same bucket, the bucket with all th@ssumption is an over-idealization; in practice, the distribu-
gray tiles located at their goal positions would get the major{ion of nodes among buckets can be very uneven. _
ity of nodes. This is because the heuristic biases the searchIn this paper, we improve on this static approach by in-
to move the white but not the gray tiles. Unfortunately, froducing a dynamic partitioning algorithm that monitors the
this means that almost every node generated is mapped €bstribution of nodes among buckets in the course of the
the same bucket. We refer to projection functions that crese€arch and modifies the projection function to adapt to the
ate highly imbalanced buckets asthological state-space distribution. The dynamic partitioning algorithm searches for
projection functions In this example, an external-memory @ projection function that both captures local structanel
search algorithm that uses either hash-based delayed or stru¢eeps the size of the largest bucket of nodes as small as possi-
tured duplicate detection would not save any RAM, and could€ — in particular, small enough to fitin RAM. The algorithm
potentially usemore RAM, because the abstract state-space/Ve describe is simple and could be improved in obvious ways,
graph could have orders of magnitude more abstract nodd¥t it is sufficient to show the effectiveness of the approach.
than the number of search nodes expanded in solving the Like the static partitioning algorithm, the dynamic parti-
problem. This example also shows that increasing the resdioning algorithm is greedy and adds a new state variable to
lution of the state-space projection function is not guaranteethe projection function each iteration. In the initial iteration,
to work in heuristic search. If the projection function usedno state variables have been selected and the partition con-
is pathological, then creating more buckets does not nece§ists of a single bucket for all nodes. For each bucket in the
sarily reduce the size of the largest bucket, which determine@artition, it keeps a vector of counters, one for each state vari-
the peak RAM requirements in both delayed and structure@ble that has not yet been selected. It scans all nodes on disk
duplicate detection. and computes values_ for the counters, as follows. As it rg_ads
Note that the same state-space projection function woul@ach node, it maps it to one of the buckets of the partition
have been perfectly fine if it were used inside a brute-forcéreated in the previous iteration. Then, for each state variable
breadth-first search algorithm, because, in the absence of affjat has not yet been selected and the corresponding bucket
search bias, the search is just as likely to move the gray tile @ refined partition, it determines whether the node maps

as it is to move the white tiles, resulting in a more balancedo this potential bucket. If so, it increments the correspond-
distribution of nodes among all the buckets. ing counter. At the end of the iteration, the algorithm selects

the state variable which results in the greatest reduction in
. T the size of the largest bucket (and also captures locality in
3 Dynamic state-space partitioning the state-space graph) and adds it to the projection function.
Zhou and Hansen [2006b] describe an automatic state-spadis refines the partition. Then the process repeats, with new
partitioning algorithm for a domain-independent STRIPScounters. The algorithm terminates when either the size of
planner that uses external-memory graph search with SDOhe largest bucket is below some threshold or the maximum
The projection function that partitions the state space is deaumber of buckets has been reached. It checks whether the
fined by selecting a subset of state variables. Beginning witlpartition found by the dynamic algorithm is significantly bet-
the null set of variables, the algorithm performs greedy searcter than the partition used to organize the current set of files. If
in the space of projection functions by selecting at each stepo, it creates a new set of files based on the new partition and
a multi-valued variable (or a related group of Boolean vari-copies the nodes on disk to the new files. To save disk space,
ables) that maximizes the locality of the partition, where lo-a file that corresponds to an old bucket is deleted immediately
cality is defined as the largest number of neighbors of anwfter all of its nodes are moved to their new buckets. Thus,
bucket divided by the total number of buckets. As they pointdynamically changing the partition does not change the peak

Table 1: First iteration of dynamic partitioning.

Table 2: Second iteration of dynamic partitioning.

disk space requirements of the search algorithm; its only ef

fect is to reduce the peak RAM requirements.

Vars Values| Nodes versa. The following four cases need to be handled correctly:
X} | {X=1} {a,b} (1) moving a RAM node to a RAM bucket, (2) moving a
{X =2} {e,d} disk node to a disk bucket, (3) moving a RAM node to a disk
{(X=3}| {elf} bucket, and (4) moving a disk node to a RAM bucket. Fur-
{Y} [{Y =4} | {a,ce} thermore, one or more RAM buckets may need to be flushed
{Y =5} | {bd, [} to disk, if internal memory is exhausted in the middle of mov-
{Z} | {Z=6} | {a,b,¢,d} ing nodes to their new buckets. Thus, in the fourth case above,
{Z="1} {e, f} the algorithm needs to make sure there is space in RAM to

hold a node read from disk; if not, all the nodes in the new
bucket need to be written to disk. The procedure for handing
the second case is then invoked, because the new bucket is

Vars Values | Nodes no longer in RAM. To save RAM, once a bucket is flushed to

X, Y} [{X=1Y=4}| {a} disk, it is never read back into RAM until the search resumes.
{X=1,Y =5} {b} Excessive overhead for dynamic partitioning is avoided in
{X=2Y =4} {c} a couple of ways. First, since repartitioning the state space
{X=2Y =5} | {d} involves the time-consuming process of moving nodes on
{X =3,Y =4} {e} disk and creating new files, it is done only when the dy-
{X=3,Y=5}| {f} namic partitioning algorithm finds a significantly better par-

{X, 2} | {X=1,Z=6} | {a,b} tition. (In our implementation, the reduction in the largest
{X=1,2Z2=17}) bucket size must be greater theiV%.) Second, dynamic par-
{X=2,Z=6}| {c,d} titioning is invoked only if there is a significant imbalance
{X=2,Z2="7} 0 in bucket sizesindthe largest bucket consumes a substantial
{X=3,Z=6}) fraction of available RAM. (In our implementation, the ratio
{X=3,Z=17}| {e, f} of largest bucket size to average bucket size must be greater

than threandthe largest bucket size must be greater than half
of available RAM; these choices could be tuned to improve
performance.) How often dynamic partitioning is invoked is
problem-dependent. If a good partition is found early in the
search, it may not need to be changed. This can be viewed as
choosing a partition based on a sampling of the search space.

Example An example illustrates how the greedy dynamicy Experimental results
partitioning algorithm works.

has three state variablesX € {1,2,3}, Y € {4,5}, and

Suppose a search problem

We implemented our dynamic state-space partitioning al-

Z € {6,7}. The algorithm has generated and stored 6 statedorithm inside an external-memory domain-independent

(encoded i X,Y, Z) format): a = (1,4,6), b = (1,5,6),
c=(2,4,6),d = (2,5,6), e = (3,4,7), and f = (3,5,7).

STRIPS planner that uses as its underlying graph-search al-
gorithm breadth-first heuristic searcizhou and Hansen,

Tables 1 and 2 show the first two iterations of the algo-
rithm. In both tables, the “Vars” column shows the set of
state variables being considered for the projection function,
the “Values” column shows the assignment of values to the
state variables, and the “Nodes” column shows the set of a0
stored nodes whose state encoding matches the correspond- wssepenions
ing “Values” column. In the first iteration, only three single- 1520 e
ton state-variable setd, X'}, {Y'}, and{Z}, are considered.
The largest bucket size, as a result of using a single state vari-
able, is 2 forX, 3 forY, and 4 forZ. Thus, at the end of the
first iteration, the state variablé& is chosen for the projec-

798
7
563
tion function. Since there are only two variablésand 7 left, = =
3 . I 229
0 10? 10° 10t

2500 2420

O Dynamic partitioning

1000

the second iteration only has two candidates — the variable
sets{ X, Y} and{ X, Z} —for the refined projection function. 0
Clearly, the variable sef X, Y} should be chosen, because

it reduces the largest bucket size to one, achieving a perfect
balance across all buckets. Figure 2: Distribution of nodes among buckets using static

In our initial description of the algorithm, we assumed thatand dynamic partitioning for Korf's 15-puzzle problem in-
all nodes are stored on disk when the dynamic partitioningtance#88. The x-axis is bucket size in number of nodes
algorithm is invoked. In fact, some could be stored only inand the y-axis is count of buckets that have a size that falls
RAM and we need to handle the case where changing th& one of the following 7 ranged). 10], (10, 107], (10%,10%],
partition requires moving nodes from RAM to disk, or vice (10°,10%], (10%,10°], (10°,10°], (10°,107].

Static partitioning Dynamic partitioning
|| Len RAM Disk Increm Exp| Secs RAM Disk Increm Exp| Secs
17 66 908,902 50,871,643| 711,180,658 589 || 149,054 51,443,638 718,502,872 854
49 59 927,906| 80,987,861| 812,948,341 697 || 105,021| 81,209,329| 817,962,744| 1,021
53 64 244,889| 48,518,100\ 592,797,672| 511 || 102,365| 48,650,054 593,080,899 690
56 55 498,854 | 49,436,882| 477,575,355| 424 | 95,883| 49,570,631| 480,107,665 522
59 57 957,496 | 52,834,528| 531,743,811| 484 || 169,941| 53,504,361 539,097,048/ 543
60 66 867,509 | 218,185,611| 2,582,825,054(2,184 || 680,840| 218,181,871 2,566,169,284| 2,568
66 61 309,651| 81,919,509| 920,508,447| 793 || 124,377| 82,084,656 922,526,667 1,014
82 62 385,486 | 177,927,698| 1,865,565,899(1,582 || 245,695| 177,963,645| 1,859,645,376| 2,115
88 65 || 1,776,317| 295,406,768| 3,357,109,415 2,923 || 349,901 | 296,507,472 3,354,622,475 3,234
92 57 324,196| 48,085,400 512,701,523| 450 | 71,998| 48,130,370/ 511,378,919| 702

Table 3: Comparison of edge partitioning with and without dynamic state-space partitioning on the 10 hardest of Korf’'s 100
15-Puzzle instances encoded as STRIPS planning problems. The number of buckets in the partition is the same for both static
and dynamic partitioning. Columns show solution length (Len), peak number of nodes stored in RAM (RAM), peak number of
nodes stored on disk (Disk), number of incremental node expansions (Exp), and running time in CPU seconds (Secs).

Static partitioning Dynamic partitioning
Problem Len Disk RAM Increm Exp| Secs| Buckets RAM Increm Exp| Secs| Buckets
blocks-14 38 381,319 37,129 10,763,944 21 2,660 8,637 13,738,732 40 2,644
gripper-7 47 2,792,790 13,000| 177,532,311| 506 3,726 || 14,999 | 169,318,244 298 2,568
freecell-3 18 4,279,315| 151,546| 107,699,115 284 1,764 | 35,247| 101,070,199, 327 1,764
depots-7 21 || 12,877,783| 410,815| 184,606,201| 300 4,240 || 32,000| 255,291,983| 584 4,240
driverlog-11| 19 || 15,780,803 89,999 | 233,976,409| 305 3,848 | 75,000 | 299,947,271 414 2,752
gripper-8 53 || 14,099,800 59,999 | 894,274,064| 1,427 4,212 || 50,000| 857,433,260| 1,210 3,210
depots-13 25 1,110,708 81,003 27,711,837 25 625 14,653 25,411,325 38 700
driverlog-14 || 28 || 26,356,967| 911,288| 664,087,448 775 784 || 472,011| 544,381,999| 810 616
logistics-10 42 || 81,728,366| 8,505,120| 1,434,271,308| 3,267 2,744 || 448,343 | 1,961,380,522| 3,959 2,940

Table 4: Comparison of edge partitioning with and without dynamic state-space partitioning on STRIPS planning domains.
Columns show solution length (Len), peak humber of nodes stored on disk (Disk), peak humber of nodes stored in RAM
(RAM), number of incremental node expansions (Exp), running time in CPU seconds (Secs), and the peak number of buckets.
For the first six problems, the planner used the max-pair heuristic; for the last three, it used a more accurate pattern database.

2006d. Experiments were performed on a machine with In-panded by A{Zhou and Hansen, 200ba
tel Xeon 3.0 GHz processors, 8 GB of RAM and 6 MB of L2

; ; - For all instances in Table 3 and for both static and dynamic
cache. No parallel processing was used in the experiments.

partitioning, the number of buckets in the partition is 3360.
We first tested the performance of the external-memonpPYnamic partitioning uses a slight amount of extra disk space
STRIPS planner on the 15-Puzzle with results shown in Talof moving nodes on disk when the partition is changed dy-
ble 3. Although state-of-the-art domain-specific solvers carffamically. Some of the exira time overhead for dynamic par-
find optimal solutions to randomly generated instances of thdtioning is due to the partitioning algorithm itself. Most is
24-Puzzle and some easy instances of the 35-Puzzle, the 18U€ t0 extra file 1/O as a result of using less RAM. Finally,

Puzzle remains a challenge for domain-independent planner§/9Ure 2 provides additional insight into why the approach

Using an advanced disjoint pattern database heuristic, tHe €ffective. With dynamic partitioning, the distribution of
best domain-independent solviédaslumet al, 2007 can stored nodes among files is more concentrated around an av-

solve only 93 of Korf's 100 15-Puzzle instances. Here we®ag€ file size than with static partitioning, which has both

show that with a very basic pattern database heuristic (equiva"9er files and empty files.

alent to the Manhattan-Distance heuristic for domain-specific We also tested the external-memory planner on domains
solvers), our external-memory STRIPS planner is able tdrom the biennial planning competition. The results are
solve the entire set with ease. For example, the most diffishown in Table 4. A couple interesting observations can be
cult instance (#88) can be solved by our planner in less thamade. First, peak RAM consumption for problems such as
an hour, storing less than 350 thousand nodes in RAM andepots-7 andlogistics-10 is substantially reduced. Previ-
less than 300 million nodes on disk. At the size of 36 bytesously, the only way to reduce peak RAM consumption was
per RAM node and 14 bytes per disk node, it turns out the¢o use a more fine-grained projection function that creates
most difficult instances of the 15-Puzzle can be solved usingnore buckets. But note that in some cases, the reductions
less than 20 megabytes of RAM. Without external-memorywe achieved in peak RAM consumption is a result of using
search, it would take roughly 10.8 gigabytes of RAM justa coarserpartition with fewer buckets. This shows that the
to store the nodes, even though the underlying breadth-firsesolution of the projection function, while important, is not
heuristic search algorithm only stores 30% of the nodes exthe only factor that determines the amount of RAM saved in

external-memory search. Our results show that there can dZhou and Hansen, 200b#&. Zhou and E. Hansen. Breadth-
alarge difference in peak RAM consumption among projec- first heuristic searchArtificial Intelligence, 170(4-5):385—
tion functions that have the same resolution. This illustrates 408, 2006.

the be”‘?ﬁt .Of d_ynamic partitioning based on monitoring the[Zhou and Hansen, 200BHR. Zhou and E. Hansen. Domain-
actual distribution of nodes among buckets. The only prob- independent structured duplicate detectiorPiac. of the

lem instance for which dynamic partitioning uses more RAM 51 5t \ational Conference on Artificial Intelligence (AAAI-
than static partitioning igjripper-7. In this case, we inten- 06) pages 1082—1087. 2006.

tionally forced the dynamic partitioning algorithm to use a ,
coarser projection function in order to see if it could still find [Zhou and Hansen, 200R. Zhou and Eric Hansen. Edge

a good partition. Note that with fewer buckets fpipper-7, partitioning in external-m.emoryg_raph searchPm)ceed-_ .
the external-memory search algorithm runs 70% faster in re- ings of the 20th International Joint Conference on Artifi-

It is also worth noting that the columns labeled “RAM” in
Tables 3 and 4, which show the peak RAM nodes for struc-
tured duplicate detection, also show the peak RAM nodes for
hash-based delayed duplicate detection if it uses the same un-
derlying search algorithm (e.g., breadth-first heuristic search)
and the same static or dynamic partitioning method. Thus,
from the viewpoint of reducing the peak RAM requirements,
dynamic partitioning can improve SDD and DCdgually.

5 Conclusion

We have introduced an approach to dynamic state-space par-
titioning in external-memory graph search that substantially
reduces peak RAM consumption in exchange for a modest
increase in running time. It can also reduce running time
while leaving peak RAM consumption roughly the same. It
achieves improved performance and a more favorable time-
memory tradeoff than static partitioning because the partition
is adapted to the actual distribution of stored nodes. Although
the timing results of our experiments are for structured dupli-
cate detection only, the approach could be used to reduce the
peak RAM requirements of both SDD and hash-based DDD.

References

[Edelkamp and Sulewski, 20DS5. Edelkamp and
D. Sulewski. Model checking via delayed duplicate
detection on the GPU. Technical report, University of
Dortmund, 2008.

[Evangelista, 2008 S. Evangelista. Dynamic delayed dupli-
cate detection for external memory model checking. In
Proc. of the 15th Int. SPIN workshppages 77-94, 2008.

[Haslumet al, 2007 P. Haslum, M. Helmert, B. Bonet,
A. Botea, and S. Koenig. Domain-independent construc-
tion of pattern database heuristics for cost-optimal plan-
ning. InProceedings of the 22nd Conference on Atrtificial
Intelligence (AAAI-07)pages 1007-1012, 2007.

[Korf and Schultze, 2045R. Korf and P. Schultze. Large-
scale parallel breadth-first search. Pmoc. of the 20th
National Conference on Artificial Intelligence (AAAI-05)
pages 1380-1385, 2005.

[Korf, 2008 R. Korf. Linear-time disk-based implicit graph
search.Journal of the ACM35(6), 2008.

[Zhou and Hansen, 20D4R. Zhou and Eric Hansen. Struc-
tured duplicate detection in external-memory graph
search. IrProceedings of the 19th National Conference on
Artificial Intelligence (AAAI-04)pages 683-688, 2004.

