
Dynamic State-Space Partitioning in External-Memory Graph Search

Rong Zhou
Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, CA 94304

rzhou@parc.com

Eric A. Hansen
Dept. of Computer Science and Eng.

Mississippi State University
Mississippi State, MS 39762

hansen@cse.msstate.edu

Abstract

State-of-the-art external-memory graph search al-
gorithms rely on a hash function, or equivalently,
a state-space projection function, that partitions the
stored nodes of the state-space search graph into
groups of nodes that are stored as separate files on
disk. The scalability and efficiency of the search
depends on properties of the partition: whether the
number of unique nodes in a file always fits in
RAM, the number of files into which the nodes
of the state-space graph are partitioned, and how
well the partitioning of the state space captures lo-
cal structure in the graph. All previous work relies
on a static partitioning of the state space. In this pa-
per, we introduce a method for dynamic partition-
ing of the state-space search graph and show that it
leads to substantial improvement of search perfor-
mance.

1 Introduction

Recently-developed algorithms for external-memory
graph search – including hash-based delayed duplicate
detection [Korf and Schultze, 2005; Korf, 2008] and
structured duplicate detection[Zhou and Hansen, 2004;
2006b; 2007] – rely on a hash function, or equivalently, a
state-space projection function, that partitions the nodes of
the state-space search graph intobucketsof nodes that are
stored as separate files on disk. For both hash-based delayed
duplicate detection and structured duplicate detection, the
state-space projection function must satisfy the same criteria.
The set of unique nodes in each bucket must fit in RAM. For
best performance, there should not be many more buckets
than necessary, which means nodes should be relatively
evenly distributed among buckets and buckets should be
relatively full. Finally, search efficiency depends on how well
the state-space projection function captures local structure in
the graph, where locality takes this form; for any bucket of
nodes, their successor nodes are found in only a small num-
ber of other buckets. Hash-based delayed duplicate detection
leverages this form of local structure in order tointerleave
expansion and mergingof nodes and structured duplicate
detection uses it in its concept ofduplicate detection scope.

Finding a projection function that satisfies all of these crite-
ria presents a challenge. Korf relies on handcrafted projection
functions (which he calls hash functions) that are tailored to
specific search domains with well-understood structure. Zhou
and Hansen [2006b] describe how to automatically generate
an appropriate projection function by heuristic-guided greedy
search through the space of possibilities. All previous work
uses a static projection function that does not change during
the progress of the search, but this has drawbacks. Static par-
titioning can capture local graph structure. But for a static
partition that captures local structure, it is difficult to predict
in advance the number of nodes that will map to each bucket;
in practice, the distribution of nodes to buckets can be very
uneven. A randomized hash function creates a static parti-
tion that evenly distributes nodes among buckets. But it does
not capture any local structure, since it allows nodes in one
bucket to have successor nodes in any other random bucket.
In short, it is difficult to design a projection function that both
captures local structure and evenly distributes nodes among
buckets.

In this paper, we describe an approach to improving the
performance of structured duplicate detection – and, by im-
plication, also hash-based delayed duplicate detection – by
dynamically adjusting the projection function in the course
of the search. This allows the search algorithm to monitor
the distribution of nodes in buckets at runtime, and modify
the projection function to improve search performance. In
case the set of nodes in a bucket does not fit in RAM, for ex-
ample, the algorithm changes the partition so that the search
can continue. We show that the overhead for dynamically re-
partitioning the state space is modest, and, in practice, it is
more than compensated for by an improvement in the space
and time complexity of the search.

2 Background and motivation
We begin with a review and comparison of hash-based de-
layed duplicate detection and structured duplicate detection,
and focus on the role played by the state-space projection
function in each approach. A projection function is used
to partition the stored nodes of a state-space search graph
into buckets, where each bucket of nodes is stored in a sep-
arate file. A common way to specify a projection function
is by specifying a subset of state variables; states that have
the same values for this subset of variables map to the same

Dagstuhl Seminar Proceedings 09491
Graph Search Engineering
http://drops.dagstuhl.de/opus/volltexte/2010/2433

1

bucket. A projection function captures local structure in a
graph if for any bucket of nodes, successor nodes are found
in only a small number of other buckets, called itsneighbors.
In other words, it captures local structure when the largest
number of neighbors of any bucket is very small relative to
the total number of buckets.

2.1 Hash-based delayed duplicate detection
Korf introduced hash-based delayed duplicate detection
(DDD) to avoid the overhead of sorting-based DDD, which
relies on external sorting of files to detect and remove dupli-
cate nodes.

Hash-based DDD uses two hash functions, where the first
corresponds to what we call a state-space projection func-
tion. As new states are generated they are placed into sep-
arate files based on this first hash function. This guarantees
that all duplicate nodes end up in the same file. To remove
duplicates from a file, the file is read into a hash table that fits
in RAM and is associated with a second hash function. Du-
plicate nodes that map to the same slot of the hash table are
“merged.” Finally, the contents of this hash table are written
back to disk as a file of unique nodes.

Consider a breadth-first search algorithm that expands one
level of the search space at a time. The files at the current
level of the search space contain no duplicate nodes, and are
called expansion files. As the nodes in each of these files
are expanded, their successor nodes are written to files at the
next depth of the search space, with the value of the first hash
function determining which file they are written to. Since
these files contain duplicate nodes that will be removed in the
merge phrase of the algorithm, they are calledmerge files. Be-
cause expanding all files at the current level before merging
any files at the next level could require a large amount of ex-
tra disk space to store all of the duplicate nodes, Korf [2005]
proposes tointerleave expansion and merging. This is possi-
ble only if the projection function captures local structure in
the state-space search graph; that is, it depends on the nodes
in each expansion file having successor nodes in only a small
number of merge files. As soon as all the expansion files
that have successors in a particular merge file have been ex-
panded, duplicates can be removed from the merge file (by
copying the file into a hash table in RAM) even if all expan-
sion files in the current level of the search space have not yet
been expanded. To save disk space, merging duplicates in a
file is given priority over expanding another file.

2.2 Structured duplicate detection
The idea of leveraging local graph structure to interleave
the expansion and merging steps of hash-based DDD was
adapted from an approach to external-memory graph search
called structured duplicate detection (SDD)[Zhou and
Hansen, 2004]. Here we describe a form of SDD that uses a
technique callededge partitioning[Zhou and Hansen, 2007].
Comparing hash-based DDD to this form of SDD will help
to clarify how the two approaches are related. It will also
show why the state-space projection function used by both
approaches must satisfy the same criteria.

Like hash-based DDD, SDD uses two “hash functions.” It
partitions the nodes in each level of the search space into sep-

arate files based on the first hash function, that is, the projec-
tion function. For each file, it expands the nodes contained in
the file and writes the successor nodes to files in the next level
of the search space. The key difference between SDD and
hash-based DDD is that SDD does not delay duplicate detec-
tion; all duplicate nodes are detected and eliminated as soon
as they are generated, without writing any duplicate node to
disk. In its original form, SDD accomplishes this by copy-
ing theduplicate-detection scopeof the currently-expanding
file into a hash table in RAM associated with the second hash
function. The duplicate-detection scope consists of all nodes
in any of the neighbor files of the expanding file. Since this
requires the nodes in multiple files to fit in RAM at once, this
form of SDD has a larger internal-memory requirement than
hash-based DDD,if they both use the same projection func-
tion. (Recall that hash-based DDD never requires more than
one file of unique nodes to fit in RAM at once.)

Edge partitioningreduces the internal-memory require-
ment of SDD in the following way. If the duplicate-detection
scope of an expansion file does not fit in RAM, then one or
more of its neighbor files are not copied into RAM. Instead,
when expanding the nodes in the expansion file, the succes-
sor nodes that map to one of these neighbor files are simply
not generated. After every node in the expansion file is ex-
panded, the ignored neighbor file(s) are copied into RAM, re-
placing the neighbor files that were previously in RAM, and
the nodes in the same parent file are expanded again. This
time, the successor nodes that mapped to one of the neighbor
files that is no longer in RAM are not generated, and only the
successor nodes that map to the neighbor file(s) in RAM are
generated and saved, as long as they are not duplicates. Thus,
by incrementallyexpanding the nodes in a file, the internal-
memory requirements of SDD can be reduced to the point
where no more than one (neighbor) file needs to be stored in
RAM at once, the same as for hash-based DDD. The time and
space overhead of writing all duplicate nodes to disk and re-
moving them in a later merge step is avoided. But whenever
a duplicate-detection scope does not fit in RAM, SDD with
edge partitioning incurs the different time overhead of having
to read the same expansion file multiple times.

2.3 Comparison of approaches
Assuming that hash-based DDD and SDD with edge parti-
tioning use the same projection function, it is clear that they
have the same peak RAM requirement: it is the amount of
RAM required to store all the unique nodes in the largest file.

As for disk storage, hash-based DDD always needs at least
as much disk space as SDD, since both approaches store all
unique nodes. In addition, hash-based DDD needs disk space
to store duplicate nodes. How much additional disk storage
it needs depends on how well the projection function cap-
tures local structure in the state-space search graph. If local
structure is leveraged to allow interleaving of expansion and
merging, it may need very little additional disk space. In the
worst case, when merging of files must be postponed until all
files in the current layer are expanded, it could require much
more disk storage than SDD, by a factor equal to the ratio of
duplicate nodes to unique nodes. Note that if the projection
function does not capture any local structure, both the inter-

2

nal memory requirement and the disk storage requirement of
SDD with edge partitioning remain the same; only its time
complexity increases due to incremental node expansions and
multiple reads of the same expansion file.

Comparing the time complexity of hash-based DDD and
SDD is more challenging, but we can make some general
remarks about their relative advantages and disadvantages.
Both approaches perform extra work that is not performed
by the other approach, and that is what we compare. For
hash-based DDD, the extra work is writing all duplicate nodes
to disk and then eliminating them in a later merge step that
copies the nodes in each merge file back to RAM, eliminates
duplicates, and writes an expansion file of unique nodes. For
SDD with edge partitioning, the extra work consists of in-
cremental node expansions and reading the same file from
disk multiple times. The extra work performed by hash-based
DDD is proportional to the ratio of duplicate nodes to unique
nodes in the search space, which is problem-dependent. The
extra work performed by SDD depends on how much local
structure is captured by the projection function, since the
number of times a file may need to be read from disk is
bounded above by the number of its neighbor files.

Hash-based DDD may have an advantage in time complex-
ity when there are few duplicates relative to unique nodes
in the search space. (An example of such a problem would
be the Rubik’s Cube search problem used a test case by
Korf (2008).) SDD may have an advantage when the ratio of
duplicates to unique nodes is large, and the projection func-
tion captures local structure in the state-space search graph.
The best approach is likely to be problem-dependent. The
point of our comparison is to show that both approaches rely
on a state-space projection function that must satisfy the same
criteria. It follows that the method for dynamic state-space
partitioning introduced in this paper can be effective for both
approaches. Our experimental results will demonstrate the
effectiveness of dynamic partitioning for SDD.

2.4 Criteria of a good projection function
As we have seen, one criterion the projection function should
satisfy is that it should capture local structure in the state-
space search graph. For hash-based DDD, this allows inter-
leaving of expansion and merging. For SDD with edge parti-
tioning, it limits the time overhead of incremental expansions.

A more important criterion the projection function should
satisfy is that the set of unique nodes in each file must fit
in a hash table in RAM. One way to ensure this is to use a
high-resolution projection function that partitions the nodes
of the state-space search graph into so many files that each
is guaranteed to fit in RAM. But partitioning the state space
into too many files can degrade search performance. Besides
decreasing the average size of a file, the typically uneven dis-
tribution of nodes among files means that many files could be
empty or nearly empty, making access to disk less sequential.
In addition, the search algorithm needs to maintain a table
in RAM that keeps track of all files, whether they are open
or not, whether they have a write or read buffer, their status
as an expansion or merge file (in hash-based DDD), a list of
their neighbor files, etc., and the size of this table can grow
exponentially with the resolution of the projection function.

Refining the partition also tends to increase the number of
neighbors of a file. In hash-based DDD, this means that more
file buffers must be maintained to allow generated nodes to
be written to their corresponding file; since the operating sys-
tem limits the number of open files, this could be a problem.
For SDD, it could lead to more incremental expansions. In
general, increasing the resolution of the projection function
reduces the peak RAM consumption of the search algorithm
in exchange for an increase in its running time, for all of the
reasons we have mentioned. It is a classic space-time trade-
off.

Thus we have two competing criteria. The set of unique
nodes in each file must fit in RAM but this criterion should
be satisfied while also allowing as coarse a partition as pos-
sible, in order not to degrade search performance too much.
Given an uneven distribution of nodes among files, however, a
coarse partition increases the risk that the set of unique nodes
in a particular file may not fit in RAM. As we will see, dy-
namic state-space partitioning allows us to manage this trade-
off more effectively. It will let us find the coarsest partition
that still allows the largest file to fit in RAM.

Although this issue arises in general for hash-based DDD,
it does not arise for two test domains for which Korf reports
most of his experimental results: sliding-tile puzzles and the
four-peg Towers of Hanoi. For these domains, Korf uses
handcrafted hash functions that are perfect and invertible, al-
lowing the use of direct-address tables in memory that just
need to store a few bits of information for each entry, instead
of the entire state description. This allows him to partition the
nodes of the state-space search graph into sufficiently many
files that the maximum number of unique nodes in each file
is guaranteed to fit in the direct-address table in RAM.

But in general, perfectand invertible hash functions are
not possible; for example, they are not feasible for either
domain-independentplanning or model checking. (Edelkamp
and Sulewski [2008] make this point about model checking.
An application of hash-based DDD to model checking is de-
scribed by Evangelista [2008].) Instead, the hash table must
store the complete state description with each entry. Since it
is usually unrealistic for the projection function to partition
the nodes of the search graph into so many files that it is pos-
sible to guarantee that the set of all possible nodes that map to
a bucket can fit in RAM at once, an open-address hash table is
used that allows collisions. The hope is that the actual nodes
in a bucket at any point during the search will fit in RAM.
The fact that the number of nodes that will be generated and
stored in any file is not known until run time motivates a dy-
namic approach to state-space partitioning.

A final remark about Korf’s [2008] examples is relevant
to the question of the distribution of nodes among buckets.
Most of his examples involve exhaustive breadth-first search
of a graph. By contrast, the test examples reported in this pa-
per involve heuristic search for the shortest path from a start
state to a goal state, which means that most of the graph is not
explored. In our experience, the distribution of nodes among
buckets is more uneven for a heuristic search than an exhaus-
tive search due to the uneven effect of reachability on the con-
tents of the various buckets.

3

2.5 Pathological state-space projection functions
To highlight the influence of heuristic search on the distribu-
tion of nodes among buckets, we use the 15-Puzzle example
shown in Figure 1. Suppose the state-space projection func-
tion hashes a node to a bucket based on the position of tiles
3, 7, 11, 12, 13, 14, and15 (shown as gray tiles). Since there
are altogether16!/9! = 57, 657, 600 different combinations
for the positions of these 7 gray tiles, each bucket should
get a fraction of57, 657, 600−1 = 1.73 × 10−8 of the to-
tal number of nodes generated, if the distribution of nodes
are perfectly balanced among all buckets. However, for the
start state shown in Figure 1, all the gray tiles are already at
their goal positions. Thus an optimal solution does not need
to move these gray tiles far away from their current positions.
In fact, since the white tiles in Figure 1 form a solvable in-
stance of (a variant of) the 8-Puzzle, we know that there is
at least one optimal solution that does not require moving a
single gray tile.

Since all states that share the same positions of these gray
tiles are mapped to the same bucket, the bucket with all the
gray tiles located at their goal positions would get the major-
ity of nodes. This is because the heuristic biases the search
to move the white but not the gray tiles. Unfortunately,
this means that almost every node generated is mapped to
the same bucket. We refer to projection functions that cre-
ate highly imbalanced buckets aspathological state-space
projection functions. In this example, an external-memory
search algorithm that uses either hash-based delayed or struc-
tured duplicate detection would not save any RAM, and could
potentially usemoreRAM, because the abstract state-space
graph could have orders of magnitude more abstract nodes
than the number of search nodes expanded in solving the
problem. This example also shows that increasing the reso-
lution of the state-space projection function is not guaranteed
to work in heuristic search. If the projection function used
is pathological, then creating more buckets does not neces-
sarily reduce the size of the largest bucket, which determines
the peak RAM requirements in both delayed and structured
duplicate detection.

Note that the same state-space projection function would
have been perfectly fine if it were used inside a brute-force
breadth-first search algorithm, because, in the absence of any
search bias, the search is just as likely to move the gray tiles
as it is to move the white tiles, resulting in a more balanced
distribution of nodes among all the buckets.

3 Dynamic state-space partitioning
Zhou and Hansen [2006b] describe an automatic state-space
partitioning algorithm for a domain-independent STRIPS
planner that uses external-memory graph search with SDD.
The projection function that partitions the state space is de-
fined by selecting a subset of state variables. Beginning with
the null set of variables, the algorithm performs greedy search
in the space of projection functions by selecting at each step
a multi-valued variable (or a related group of Boolean vari-
ables) that maximizes the locality of the partition, where lo-
cality is defined as the largest number of neighbors of any
bucket divided by the total number of buckets. As they point

Figure 1: An example of a pathological state-space projec-
tion function for an instance of the 15-Puzzle. The gray tiles
are the tiles whose positions are considered in the state-space
projection function.

out, this measure of locality is a good objective function for
the greedy search under the assumption that the projection
function evenly partitions the stored nodes of the graph. But
as we have argued (and experimental results will show) this
assumption is an over-idealization; in practice, the distribu-
tion of nodes among buckets can be very uneven.

In this paper, we improve on this static approach by in-
troducing a dynamic partitioning algorithm that monitors the
distribution of nodes among buckets in the course of the
search and modifies the projection function to adapt to the
distribution. The dynamic partitioning algorithm searches for
a projection function that both captures local structureand
keeps the size of the largest bucket of nodes as small as possi-
ble – in particular, small enough to fit in RAM. The algorithm
we describe is simple and could be improved in obvious ways,
but it is sufficient to show the effectiveness of the approach.

Like the static partitioning algorithm, the dynamic parti-
tioning algorithm is greedy and adds a new state variable to
the projection function each iteration. In the initial iteration,
no state variables have been selected and the partition con-
sists of a single bucket for all nodes. For each bucket in the
partition, it keeps a vector of counters, one for each state vari-
able that has not yet been selected. It scans all nodes on disk
and computes values for the counters, as follows. As it reads
each node, it maps it to one of the buckets of the partition
created in the previous iteration. Then, for each state variable
that has not yet been selected and the corresponding bucket
in a refined partition, it determines whether the node maps
to this potential bucket. If so, it increments the correspond-
ing counter. At the end of the iteration, the algorithm selects
the state variable which results in the greatest reduction in
the size of the largest bucket (and also captures locality in
the state-space graph) and adds it to the projection function.
This refines the partition. Then the process repeats, with new
counters. The algorithm terminates when either the size of
the largest bucket is below some threshold or the maximum
number of buckets has been reached. It checks whether the
partition found by the dynamic algorithm is significantly bet-
ter than the partition used to organize the current set of files. If
so, it creates a new set of files based on the new partition and
copies the nodes on disk to the new files. To save disk space,
a file that corresponds to an old bucket is deleted immediately
after all of its nodes are moved to their new buckets. Thus,
dynamically changing the partition does not change the peak

4

Vars Values Nodes
{X} {X = 1} {a, b}

{X = 2} {c, d}
{X = 3} {e, f}

{Y } {Y = 4} {a, c, e}
{Y = 5} {b, d, f}

{Z} {Z = 6} {a, b, c, d}
{Z = 7} {e, f}

Table 1: First iteration of dynamic partitioning.

Vars Values Nodes
{X, Y } {X = 1, Y = 4} {a}

{X = 1, Y = 5} {b}
{X = 2, Y = 4} {c}
{X = 2, Y = 5} {d}
{X = 3, Y = 4} {e}
{X = 3, Y = 5} {f}

{X, Z} {X = 1, Z = 6} {a, b}
{X = 1, Z = 7} ∅
{X = 2, Z = 6} {c, d}
{X = 2, Z = 7} ∅
{X = 3, Z = 6} ∅
{X = 3, Z = 7} {e, f}

Table 2: Second iteration of dynamic partitioning.

disk space requirements of the search algorithm; its only ef-
fect is to reduce the peak RAM requirements.

Example An example illustrates how the greedy dynamic
partitioning algorithm works. Suppose a search problem
has three state variables:X ∈ {1, 2, 3}, Y ∈ {4, 5}, and
Z ∈ {6, 7}. The algorithm has generated and stored 6 states
(encoded in〈X, Y, Z〉 format): a = 〈1, 4, 6〉, b = 〈1, 5, 6〉,
c = 〈2, 4, 6〉, d = 〈2, 5, 6〉, e = 〈3, 4, 7〉, andf = 〈3, 5, 7〉.
Tables 1 and 2 show the first two iterations of the algo-
rithm. In both tables, the “Vars” column shows the set of
state variables being considered for the projection function,
the “Values” column shows the assignment of values to the
state variables, and the “Nodes” column shows the set of
stored nodes whose state encoding matches the correspond-
ing “Values” column. In the first iteration, only three single-
ton state-variable sets,{X}, {Y }, and{Z}, are considered.
The largest bucket size, as a result of using a single state vari-
able, is 2 forX , 3 for Y , and 4 forZ. Thus, at the end of the
first iteration, the state variableX is chosen for the projec-
tion function. Since there are only two variablesY andZ left,
the second iteration only has two candidates – the variable
sets{X, Y } and{X, Z} – for the refined projection function.
Clearly, the variable set{X, Y } should be chosen, because
it reduces the largest bucket size to one, achieving a perfect
balance across all buckets.

In our initial description of the algorithm, we assumed that
all nodes are stored on disk when the dynamic partitioning
algorithm is invoked. In fact, some could be stored only in
RAM and we need to handle the case where changing the
partition requires moving nodes from RAM to disk, or vice

versa. The following four cases need to be handled correctly:
(1) moving a RAM node to a RAM bucket, (2) moving a
disk node to a disk bucket, (3) moving a RAM node to a disk
bucket, and (4) moving a disk node to a RAM bucket. Fur-
thermore, one or more RAM buckets may need to be flushed
to disk, if internal memory is exhausted in the middle of mov-
ing nodes to their new buckets. Thus, in the fourth case above,
the algorithm needs to make sure there is space in RAM to
hold a node read from disk; if not, all the nodes in the new
bucket need to be written to disk. The procedure for handing
the second case is then invoked, because the new bucket is
no longer in RAM. To save RAM, once a bucket is flushed to
disk, it is never read back into RAM until the search resumes.

Excessive overhead for dynamic partitioning is avoided in
a couple of ways. First, since repartitioning the state space
involves the time-consuming process of moving nodes on
disk and creating new files, it is done only when the dy-
namic partitioning algorithm finds a significantly better par-
tition. (In our implementation, the reduction in the largest
bucket size must be greater than10%.) Second, dynamic par-
titioning is invoked only if there is a significant imbalance
in bucket sizesandthe largest bucket consumes a substantial
fraction of available RAM. (In our implementation, the ratio
of largest bucket size to average bucket size must be greater
than threeandthe largest bucket size must be greater than half
of available RAM; these choices could be tuned to improve
performance.) How often dynamic partitioning is invoked is
problem-dependent. If a good partition is found early in the
search, it may not need to be changed. This can be viewed as
choosing a partition based on a sampling of the search space.

4 Experimental results
We implemented our dynamic state-space partitioning al-
gorithm inside an external-memory domain-independent
STRIPS planner that uses as its underlying graph-search al-
gorithm breadth-first heuristic search[Zhou and Hansen,

Figure 2: Distribution of nodes among buckets using static
and dynamic partitioning for Korf’s 15-puzzle problem in-
stance#88. The x-axis is bucket size in number of nodes
and the y-axis is count of buckets that have a size that falls
in one of the following 7 ranges;[0, 10], (10, 102], (102, 103],
(103, 104], (104, 105], (105, 106], (106, 107].

5

Static partitioning Dynamic partitioning
Len RAM Disk Increm Exp Secs RAM Disk Increm Exp Secs

17 66 908,902 50,871,643 711,180,658 589 149,054 51,443,638 718,502,872 854
49 59 927,906 80,987,861 812,948,341 697 105,021 81,209,329 817,962,744 1,021
53 64 244,889 48,518,100 592,797,672 511 102,365 48,650,054 593,080,899 690
56 55 498,854 49,436,882 477,575,355 424 95,883 49,570,631 480,107,665 522
59 57 957,496 52,834,528 531,743,811 484 169,941 53,504,361 539,097,048 543
60 66 867,509 218,185,611 2,582,825,054 2,184 680,840 218,181,871 2,566,169,284 2,568
66 61 309,651 81,919,509 920,508,447 793 124,377 82,084,656 922,526,667 1,014
82 62 385,486 177,927,698 1,865,565,899 1,582 245,695 177,963,645 1,859,645,376 2,115
88 65 1,776,317 295,406,768 3,357,109,415 2,923 349,901 296,507,472 3,354,622,475 3,234
92 57 324,196 48,085,400 512,701,523 450 71,998 48,130,370 511,378,919 702

Table 3: Comparison of edge partitioning with and without dynamic state-space partitioning on the 10 hardest of Korf’s 100
15-Puzzle instances encoded as STRIPS planning problems. The number of buckets in the partition is the same for both static
and dynamic partitioning. Columns show solution length (Len), peak number of nodes stored in RAM (RAM), peak number of
nodes stored on disk (Disk), number of incremental node expansions (Exp), and running time in CPU seconds (Secs).

Static partitioning Dynamic partitioning
Problem Len Disk RAM Increm Exp Secs Buckets RAM Increm Exp Secs Buckets
blocks-14 38 381,319 37,129 10,763,944 21 2,660 8,637 13,738,732 40 2,644
gripper-7 47 2,792,790 13,000 177,532,311 506 3,726 14,999 169,318,244 298 2,568
freecell-3 18 4,279,315 151,546 107,699,115 284 1,764 35,247 101,070,199 327 1,764
depots-7 21 12,877,783 410,815 184,606,201 300 4,240 32,000 255,291,983 584 4,240
driverlog-11 19 15,780,803 89,999 233,976,409 305 3,848 75,000 299,947,271 414 2,752
gripper-8 53 14,099,800 59,999 894,274,064 1,427 4,212 50,000 857,433,260 1,210 3,210
depots-13 25 1,110,708 81,003 27,711,837 25 625 14,653 25,411,325 38 700
driverlog-14 28 26,356,967 911,288 664,087,448 775 784 472,011 544,381,999 810 616
logistics-10 42 81,728,366 8,505,120 1,434,271,308 3,267 2,744 448,343 1,961,380,522 3,959 2,940

Table 4: Comparison of edge partitioning with and without dynamic state-space partitioning on STRIPS planning domains.
Columns show solution length (Len), peak number of nodes stored on disk (Disk), peak number of nodes stored in RAM
(RAM), number of incremental node expansions (Exp), running time in CPU seconds (Secs), and the peak number of buckets.
For the first six problems, the planner used the max-pair heuristic; for the last three, it used a more accurate pattern database.

2006a]. Experiments were performed on a machine with In-
tel Xeon 3.0 GHz processors, 8 GB of RAM and 6 MB of L2
cache. No parallel processing was used in the experiments.

We first tested the performance of the external-memory
STRIPS planner on the 15-Puzzle with results shown in Ta-
ble 3. Although state-of-the-art domain-specific solvers can
find optimal solutions to randomly generated instances of the
24-Puzzle and some easy instances of the 35-Puzzle, the 15-
Puzzle remains a challenge for domain-independent planners.
Using an advanced disjoint pattern database heuristic, the
best domain-independent solver[Haslumet al., 2007] can
solve only 93 of Korf’s 100 15-Puzzle instances. Here we
show that with a very basic pattern database heuristic (equiv-
alent to the Manhattan-Distance heuristic for domain-specific
solvers), our external-memory STRIPS planner is able to
solve the entire set with ease. For example, the most diffi-
cult instance (#88) can be solved by our planner in less than
an hour, storing less than 350 thousand nodes in RAM and
less than 300 million nodes on disk. At the size of 36 bytes
per RAM node and 14 bytes per disk node, it turns out the
most difficult instances of the 15-Puzzle can be solved using
less than 20 megabytes of RAM. Without external-memory
search, it would take roughly 10.8 gigabytes of RAM just
to store the nodes, even though the underlying breadth-first
heuristic search algorithm only stores 30% of the nodes ex-

panded by A*[Zhou and Hansen, 2006a].

For all instances in Table 3 and for both static and dynamic
partitioning, the number of buckets in the partition is 3360.
Dynamic partitioning uses a slight amount of extra disk space
for moving nodes on disk when the partition is changed dy-
namically. Some of the extra time overhead for dynamic par-
titioning is due to the partitioning algorithm itself. Most is
due to extra file I/O as a result of using less RAM. Finally,
Figure 2 provides additional insight into why the approach
is effective. With dynamic partitioning, the distribution of
stored nodes among files is more concentrated around an av-
erage file size than with static partitioning, which has both
larger files and empty files.

We also tested the external-memory planner on domains
from the biennial planning competition. The results are
shown in Table 4. A couple interesting observations can be
made. First, peak RAM consumption for problems such as
depots-7 and logistics-10 is substantially reduced. Previ-
ously, the only way to reduce peak RAM consumption was
to use a more fine-grained projection function that creates
more buckets. But note that in some cases, the reductions
we achieved in peak RAM consumption is a result of using
a coarserpartition with fewer buckets. This shows that the
resolution of the projection function, while important, is not
the only factor that determines the amount of RAM saved in

6

external-memory search. Our results show that there can be
a large difference in peak RAM consumption among projec-
tion functions that have the same resolution. This illustrates
the benefit of dynamic partitioning based on monitoring the
actual distribution of nodes among buckets. The only prob-
lem instance for which dynamic partitioning uses more RAM
than static partitioning isgripper-7. In this case, we inten-
tionally forced the dynamic partitioning algorithm to use a
coarser projection function in order to see if it could still find
a good partition. Note that with fewer buckets forgripper-7,
the external-memory search algorithm runs 70% faster in re-
turn for a 15% increase in peak RAM consumption.

It is also worth noting that the columns labeled “RAM” in
Tables 3 and 4, which show the peak RAM nodes for struc-
tured duplicate detection, also show the peak RAM nodes for
hash-based delayed duplicate detection if it uses the same un-
derlying search algorithm (e.g., breadth-first heuristic search)
and the same static or dynamic partitioning method. Thus,
from the viewpoint of reducing the peak RAM requirements,
dynamic partitioning can improve SDD and DDDequally.

5 Conclusion
We have introduced an approach to dynamic state-space par-
titioning in external-memory graph search that substantially
reduces peak RAM consumption in exchange for a modest
increase in running time. It can also reduce running time
while leaving peak RAM consumption roughly the same. It
achieves improved performance and a more favorable time-
memory tradeoff than static partitioning because the partition
is adapted to the actual distribution of stored nodes. Although
the timing results of our experiments are for structured dupli-
cate detection only, the approach could be used to reduce the
peak RAM requirements of both SDD and hash-based DDD.

References
[Edelkamp and Sulewski, 2008] S. Edelkamp and

D. Sulewski. Model checking via delayed duplicate
detection on the GPU. Technical report, University of
Dortmund, 2008.

[Evangelista, 2008] S. Evangelista. Dynamic delayed dupli-
cate detection for external memory model checking. In
Proc. of the 15th Int. SPIN workshop, pages 77–94, 2008.

[Haslumet al., 2007] P. Haslum, M. Helmert, B. Bonet,
A. Botea, and S. Koenig. Domain-independent construc-
tion of pattern database heuristics for cost-optimal plan-
ning. InProceedings of the 22nd Conference on Artificial
Intelligence (AAAI-07), pages 1007–1012, 2007.

[Korf and Schultze, 2005] R. Korf and P. Schultze. Large-
scale parallel breadth-first search. InProc. of the 20th
National Conference on Artificial Intelligence (AAAI-05),
pages 1380–1385, 2005.

[Korf, 2008] R. Korf. Linear-time disk-based implicit graph
search.Journal of the ACM, 35(6), 2008.

[Zhou and Hansen, 2004] R. Zhou and Eric Hansen. Struc-
tured duplicate detection in external-memory graph
search. InProceedings of the 19th National Conference on
Artificial Intelligence (AAAI-04), pages 683–688, 2004.

[Zhou and Hansen, 2006a] R. Zhou and E. Hansen. Breadth-
first heuristic search.Artificial Intelligence, 170(4-5):385–
408, 2006.

[Zhou and Hansen, 2006b] R. Zhou and E. Hansen. Domain-
independent structured duplicate detection. InProc. of the
21st National Conference on Artificial Intelligence (AAAI-
06), pages 1082–1087, 2006.

[Zhou and Hansen, 2007] R. Zhou and Eric Hansen. Edge
partitioning in external-memory graph search. InProceed-
ings of the 20th International Joint Conference on Artifi-
cial Intelligence (IJCAI-07), pages 2410–2416, 2007.

7

