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Abstract. This paper describes our new satisfyability (SAT) modulo
theory (SMT) solver STABLE for the quantifier-free logic over fixed-
sized bit vectors. Our main application domain is formal verification
of system-on-chip (SoC) modules designed for complex computational
tasks, for example, in signal processing applications. Ensuring proper
functional behavior for such modules, including arithmetic correctness
of the data paths, is considered a very difficult problem.
We show how methods from computer algebra can be integrated into
an SMT solver such that instances can be handled where the arithmetic
problem parts are specified mixing various levels of abstraction from the
plain gate level for small highly optimized components up to the pure
word level used in high-level specifications. If the arithmetic problem
parts include multiplications such mixed problem descriptions quickly
drive current SMT solvers towards their capacity limits.
High performance data paths are often designed at a level of abstraction
that we call the arithmetic bit level (ABL). We show how ABL infor-
mation, if available in an SMT instance, can be used to transform the
decision problem into an equivalent set of variety subset problems. These
problems can be solved efficiently with techniques from computer algebra
based on Gröbner basis theory over finite rings Z/ 〈2n〉. Sometimes, in-
stances contain problem parts at a level below the ABL using gate-level
operations. These problem parts, e.g., originate from custom-designed
arithmetic components that are highly optimized using the gate-level
constructs of a hardware description language (HDL). For such cases we
integrate a local ABL extraction technique based on local Reed-Muller
forms.
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1 Introduction

Modern design flows for Systems-on-Chip (SoCs) pursue a correctness-by-integration
strategy when verifying the functionality of the overall system. This requires high
quality designs for the individual modules that are supposed to be integrated
into the SoC. Traditional simulation-based verification techniques are reaching
their capacity limits rapidly. This motivates the application of highly automated
property checking techniques. A promising approach is called Interval Property
Checking (IPC) [1,2]. It is mostly based on satisfiability solving (SAT) and SAT
modulo theory solving (SMT).

IPC has been used in industry for many years to ensure correctness of the
individual SoC modules. This does not only lead to high quality IP (intellectual
property) modules but also reduces the costs for system integration and chip-
level simulation. Given IP modules of provably high quality, chip-level simulation
may concentrate on true system-level aspects and is relieved from hunting bugs
in local modules. IPC has the capacity to handle almost all types of modules
that can be found in today’s SoCs. Nonetheless, a few pathological cases remain
that sometimes limit its application in industrial practice. In particular, data
paths are often a challenge. This is true, especially, if not only the correctness of
the control flow but also correctness of the computed data needs to be proved.

For complex arithmetic data paths simulation is therefore still prevailing in
industrial verification environments. This is due to the inability of standard prov-
ing procedures based on satisfiability solving (SAT), SAT modulo theory solving
(SMT), or binary decision diagrams (BDDs) to handle arithmetic functions. In
particular, multiplication — as it is part of nearly all data paths for signal pro-
cessing applications — has remained a severe problem for standard tools. This
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deficiency has stimulated a lot of research on specialized proof methods focussing
on arithmetic. In the following section, we sketch some of this research.

1.1 Related Work

Sometimes the validity of a property can be proven without considering the
exact functionality of the data path. In such cases abstraction and refinement
techniques have shown superior to pure Boolean SAT techniques. A survey on
these techniques can be found in [3]. However, there are other cases where the
properties depend on the exact functionality of the data path. In such situations,
it is quite unlikely that a suitable abstraction can be found.

Another interesting direction of research investigates SAT-modulo-theory
(SMT) solvers. These solvers combine a SAT solver with specialized solvers for
certain well-selected theories. An example the latter is the theory of equality
with uninterpreted functions used in UCLID [4]. The use of this logic is ben-
eficial in cases where the arithmetic functionality is described in the design at
the same level of abstraction as in the specification. More specifically, the logic
of uninterpreted functions can reduce the complexity of a proof problem if the
respective function symbols used in the specification and implementation can be
mapped to each other without a semantic analysis. For high performance data
paths, however, the level of abstraction used in register tranfer level (RTL) de-
scriptions is often below the word level being used in properties. Therefore, the
mapping is likely to fail.

The quantifier-free logic over fixed-sized bit vectors (QF-BV) is a logic that
facilitates interpretation of bit vector functions with respect to their semantics.
We consider this logic to be the natural choice to express the proof obligations
that are generated by an interval property checker. SAT problems for QF-BV
formulas can, in principle, be solved using solvers such as Yices [5], MathSAT [6],
Z3 [7], Boolector [8] or Spear [9]. If the decision problem originates from RTL
property checking we observed, however, that these solvers often show the same
performance bottlenecks as when plain SAT is applied to a bit-blasted version
of the problem. The reason for this behavior is again that large portions of the
arithmetic circuitry are specified at the bit level in order to conduct manual
optimizations and in order to customize the exact structure of this circuitry. In
these bit level parts the solvers cannot exploit word level information and, thus,
loose their advantages over SAT.

For equivalence checking of arithmetic RTL circuits, especially multipliers, a
technique based on rewriting was proposed in [10]. A database of rewrite rules
is provided to support a large number of widely used multiplier implementation
schemes. However, for non-standard implementations the approach requires up-
dating the database manually and is thus not fully automatic. Fully automatic
techniques for equivalence checking and debugging of arithmetic data paths are
provided in [11,12]. These techniques extract arithmetic bit level information
from low level gate net lists. They consider the datapath to be clearly separated
from control logic which in high performance RTL designs is often not the case.
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This renders integration of the techniques into a general purpose SMT solver
with a property checking application scenario exceedingly difficult.

Recently, techniques from symbolic computer algebra have entered the veri-
fication arena. In [13] a procedure is presented that determines whether a mul-
tivariate polynomial with fixed word length operands is vanishing. This makes
it possible to compare polynomial representations for bit vector functions. The
approach is extended towards multiple word length operands in [14,15]. Both
approaches, however, require a clean word-level representation of the data paths.
This limits their applicability in RTL property checking as has been discussed
above.

In principle, it is possible to transform a circuit related SMT problem into
an algebraic problem over Z/2. Efficient computer algebra systems for this spe-
cial case are available [16,17]. In [16,17] polynomials are represented by zero
suppressed binary decision diagrams (ZDDs). As a result during the algebraic
computation functional decision diagrams (FDDs) of the original circuitry are
generated. FDDs, however, are known to grow exponentially for multipliers and
are therefore unsuitable for the problems considered in this paper.

At the bit level arithmetic circuitry is typically specified using arithmetic
entities such as half adders and full adders. If such entities can be identified
within the design we call the resulting netlist an arithmetic bit level (ABL) de-
scription. An approach for verification of such bit level implementations using
Gröbner basis theory over fields is reported in [18]. This approach requires poly-
nomial specifications for every building block in the hierarchy of the arithmetic
circuit design. After proving that a block, e. g., a carry-save adder, fulfills its
local specification the polynomial representation is used to verify the block in
the next level of the hierarchy. However, since the correctness proof includes a
range check the intermediate results at the block boundary are required to have
sufficient bit width to represent every possible result. For designs implementing
integer arithmetic with fixed bit width this is often not available.

A heuristic approach to exploit arithmetic bit level (ABL) information in
RTL designs has been reported in [19]. By local equivalence transformation of
the arithmetic bit level description a reduced normal form is computed that is
sufficient to prove the arithmetic problem parts of a property checking instance
and relieves the SAT/SMT solver from reasoning in structurally different im-
plementations for the same arithmetic function. This method is subsumed by
the more general algebraic approach presented here which also provides a well-
understood mathematical basis for ABL-based verification techniques.

1.2 Contribution

In this paper we present our new SMT solver STABLE for the quantifier-free
logic over bit vectors. This solver integrates two recently developed techniques
for solving hard arithmetic problems. These techniques allow for application of
the Gröbner basis theory over finite rings.

At first, we convert the arithmetic problem parts of the decision problem into
equivalent variety subset problems and show how these problems can be solved
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efficiently using Gröbner basis theory over finite rings Z/ 〈2n〉. In order to solve
decision problems at the arithmetic bit level we combine the technique of [19]
with further computer algebra algorithms for the ring Z/ 〈2n〉. In particular, we
exploit the fact that the ABL decision problems of [19] can be transformed into
a set of variety subset problems. Under certain monomial orderings the set G of
polynomials generated from the ABL components forms a Gröbner basis of the
ideal I = 〈G〉 generated by these polynomials. This allows to efficiently solve the
variety subset problem and decide problems at the arithmetic bit level.

The second technique integrated into STABLE is an ABL extraction tech-
nique for cases where some arithmetic parts of the problem are formulated below
the ABL. In instances derived from property checking this, e.g., may originate
from highly optimized custom-designed components that are instantiated within
the datapath of the design and that are specified below the ABL using gate-level
operations of the HDL.

The remainder of the paper is organized as follows: Section 2 shows how arith-
metic sub-problems of an SMT instance can efficiently be solved using computer
algebra techniques. In this section we assume the arithmetic problem parts to
be specified at the arithmetic bit level or word level. For cases where problem
parts are specified below the ABL we include an extraction technique based on
local Reed-Muller forms presented in Section 3. Section 4 illustrates our strategy
for integrating the proposed techniques into an SMT solver for the quantifier-
free logic over fixed-sized bit vectors (QF-BV). The paper presents experimental
results in Section 5 and concludes with Section 6.

2 Using computer algebra for arithmetic SMT problems

This section recalls the mathematical models required to solve arithmetic prob-
lem parts of an SMT decision problem for the quantifier-free logic over bit-vectors
with algebraic techniques as introduced in [20].

2.1 Mathematical background

We first study how to model ABL components by polynomials over a unique
coefficient ring. Due to the finite bit width used in QF-BV instances the ring
Z/ 〈2n〉 turns out to be the natural choice. However, the mapping of a deci-
sion problem for QF-BV to an algebraic problem in terms of polynomials from
Z/ 〈2n〉 [X] with variables X = (x1, . . . , xk) over such a ring is not trivial and
will be detailed in the sequel. The key observation is that we can construct a set
G of such polynomials modeling the arithmetic problem parts of the instance.
The resulting polynomial set G is a Gröbner basis of the generated ideal I = 〈G〉.
This makes the proposed approach computationally feasible.
See e.g. [21] for a summary on Gröbner basis theory, and [22] for the specifics
over coefficient rings. All Gröbner bases arising from our practical approach will
in fact be strong Gröbner bases in the sense of the definition given in [22], thus
in the remainder of this paper we shall use the terms Gröbner basis and strong
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Gröbner basis interchangeably. Moreover, the following notion of reduction has
been adapted and simplified to the setting of strong Gröbner bases.

We require a global monomial ordering <, i. e., a well ordering on the set
of monomials such that multiplication with a monomial respects the ordering.
Here, a monomial is a power product of variables and a term is the product of
a monomial with a coefficient, i. e., an element of the ring Z/ 〈2n〉. Any poly-
nomial f 6= 0 can be written as a finite sum of terms, f = c1m1 + · · · + crmr

with coefficients ci 6= 0 and monomials mi such that m1 > m2 > · · · > mr.
The largest monomial m1 plays a special role: we call LM (f) := m1 the leading
monomial. Likewise, LC (f) := c1 is called leading coefficient and LT (f) := c1m1

refers to the so called leading term of f .

Let G ⊂ Z/ 〈2n〉 [X] be a finite set of polynomials and f ∈ Z/ 〈2n〉 [X].
If LT (f) = c1m1 is divisible by the leading term of an element h ∈ G we say
that f is reducible to f ′ := f − (LT (f) /LT (h)) · h and write f →

h
f ′. The

transitive closure of the relation →
h

is denoted by
∗→
G

. If f
∗→
G

g and if g is

not reducible by any h of G we call g a normal form of f with respect to G.
Algorithm 1 computes such a normal form which is even reduced, cf. [21].

Require: f a polynomial, G a finite set of polynomials,
> a monomial ordering

Ensure: A normal form of f
while f 6= 0 and ∅ 6= G′ = {g ∈ G : LT (g) | LT (f)}
do

Select g ∈ G′ with LT (f) = m · LT (g)
f := f −m · gi

end while
compute f ′, the normal form of f − LT (f) w.r.t. G
return LT (f) + f ′

Algorithm 1: Reduced normal form algorithm

The notion of a normal form is, however, only useful if G is a Gröbner basis.
In order to define a Gröbner basis we need the ideal I = 〈H〉 := {

∑
h∈H fhh|fh ∈

Z/ 〈2n〉 [X]} generated by an arbitrary finite set H of polynomials. Note that for
the sets of solutions V (I) := {p ∈ (Z/ 〈2n〉)k|f(p) = 0 for all f ∈ I} and V (H)
we have V (I) = V (H) for any set of generators H. A set of generators G is

called a Gröbner basis (of I) if and only if f
∗→
G

0 for all f ∈ I. Theory provides

that I = 〈G〉 for any Gröbner basis G, and that the reduced normal form of any
element f ∈ Z/ 〈2n〉 [X] w.r.t. G is essentially unique and equal to 0 if and only
if f ∈ 〈G〉 = I.
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With this basic knowledge of Gröbner basis theory we continue with convert-
ing arithmetic decision problems into equivalent variety subset problems.

2.2 Algebraic modeling of arithmetic decision problems

Without loss of generality, we assume that the SMT decision problem is repre-
sented as an acyclic netlist of bit vector functions. The arithmetic components
of this netlist can be converted into a set of equations Gj , j = 1, . . . ,m which
are of the form

Gj :

nj−1∑
i=0

2ir
(j)
i = fj

(
a
(j)
1 , a

(j)
2 , . . . , a(j)mj

)
mod 2nj . (1)

In these equations the fj ∈ Z[X] are polynomials over Z and depend on a finite

set of variables X. For the variables r
(j)
i , a

(l)
k ∈ X used in this equation we

assume r
(j)
i 6= a

(l)
k for 1 ≤ l ≤ j and all i, k. The variables correspond to the

inputs and outputs of the bit vector function and we call the a
(j)
i inputs and r

(j)
i

outputs of Gj accordingly.
We give a few examples demonstrating that the equations Gj can be easily

generated from the netlist representing the decision problem. Furthermore, the

condition r
(j)
i 6= a

(l)
k is fulfilled as the netlist is acyclic by definition.

Example 1 The partial products of a standard a× b-bit multiplier (not Booth-
encoded) can be modeled by the polynomial equations

Gi,k : pi,k = aibk mod 2, (k = 0, . . . , a− 1, i = 0, . . . , b− 1).

Example 2 A full adder with inputs a0, a1, a2 and outputs s and c for sum and
carry is modeled by the equation

GFA : 2c + s = a0 + a1 + a2 mod 4.

Example 3 An unsigned k-bit adder with inputs a = (ai|0 ≤ i < k) and b =
(bi|0 ≤ i < k) and result r = (ri|0 ≤ i < k) is modeled by

Gadder :

k−1∑
i=0

2iri =

k−1∑
i=0

2i(ai + bi) mod 2k.

Using the values 1, 2 and k for the modulo nj , these examples also demon-
strate that the equations Gj are sufficient to model both word and bit level
arithmetic components of a mixed ABL/word-level decision problem within the
same formalism. It allows for utilization of word-level information where avail-
able, and at the same time can handle bit level arithmetic information.

To complete the modeling of the arithmetic parts of the decision problem we
need to consider the proof goals. For every proof goal we obtain an additional
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polynomial g depending on a subset {c1, . . . , ct} ⊂ X of the variables used in
the above equations. We need to check whether

g(c1, . . . , ct) = 0 mod 2n

holds for all common solutions of the set of equations {Gj}. Note that the value n
used in the above equation depends on the bit width of the comparison constraint
in the underlying problem instance.

We illustrate the model generation for the proof goal by means of an example.

Example 4 A n-bit equality comparison of operands a and b is modeled by the
polynomial

g =

n−1∑
i=0

2i(ai − bi)

In the remainder of this section we will show how to convert the set of equa-
tions {Gj} and the proof goal g into a variety subset problem that is equivalent
to our ABL decision problem.

The set of all solutions to {Gj} is denoted as V ({Gj}). Analogously, let V (g)
be the set of all roots of g. Usually the equations Gj and the polynomial g
are given mod 2k for different k. We apply a number of transformations to
create an equivalent variety subset problem V ({hi}) ⊂ V (g) where hi and g are
polynomials over a single ring Z/2N with appropriate N . This is necessary in
order to apply the methods of computer algebra. The problem can then be
solved by constructing a Gröbner basis and using normal form computations
with respect to this basis.

Instead of directly converting the equations Gj into a set of polynomials
over a single ring we generate some additional equations. These equations are
redundant in the sense that they can be derived from the original equations Gj .
However, they will play an important role for the efficiency of the solution tech-
niques described in Section 2.3. More precisely, these equations ensure that the
polynomial system generated from them is a Gröbner basis of the corresponding
ideal. This will be discussed later. For every Gj we generate nj equations

G
(t)
j :

t−1∑
i=0

2ir
(j)
i = f

(t)
j

(
a
(j)
1 , a

(j)
2 , . . . , a(j)mj

)
mod 2t

with t = 1, . . . , nj and with f
(t)
j = fj mod 2t being the minimal polynomial [23]

representing the same polynomial function (Z/2t)
mj → Z/2t as fj . Obviously,

every solution of the Gj is also a solution of the system {G(t)
j | t = 1, . . . , nj}

and vice versa.
Let S be the set of variables (signals) occurring in g saturated with respect

to the property that if r
(j)
t−1 ∈ S then all variables of G

(t)
j are also in S. For the

next steps, only the equations G
(t)
j with r

(j)
t−1 ∈ S are relevant. The solution set

for the variables in S does not change when omitting the other equations. Note
that this corresponds to a cone-of-influence reduction on the netlist of a circuit.
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Example 5 Suppose the n-bit final adder of a multiply/accumulate unit is reused
for computing an m-bit addition (m < n). In a property checking instance for
this addition only the lower m bits of the adder influence on the arithmetic result.
By the above construction we only instantiate the equations

G
(t)
adder :

t−1∑
i=0

2iri =

t−1∑
i=0

2i(ai + bi) mod 2t

for t < m.

So far the equations G
(t)
j use the operation mod 2t for different t. In other

words, we work in different rings Z/2t and no ring is contained in any other (we
have only surjections of rings Z � Z/2t

′
� Z/2t if t′ ≥ t).

In order to apply Gröbner basis techniques to our problem we need to gen-
erate a set of polynomials over a single ring. As a first step we determine a
sufficient size N ∈ N of the ring. In our current implementation, we start with

N := n + max{nj | j = 1, . . . ,m}

with nk, n,m as above.
However, this is a heuristic choice that turns out to be sufficient for many

practical problem instances. Nonetheless it is possible to construct examples
where a larger N would be required. Our current implementation detects these
cases and automatically moves to a sufficiently larger ring with size N ′ > N .

As a second step we transform every equation into an element of the polyno-

mial ring Z/2N [X] over Z/2N . This is achieved by introducing new variables s
(j)
t

called slack variables and by considering the polynomials

G̃
(t)
j :=

t−1∑
i=0

2ir
(j)
i − f

(t)
j

(
a
(j)
1 , a

(j)
2 , . . . , a(j)mj

)
− 2ts

(j)
t .

The set of common roots for the G̃
(t)
j projected on the variables in S cor-

responds to V ({Gj}). We can omit some of the extra variables s
(j)
t if we know

that 0 ≤ f
(t)
j ≤ 2t−1 holds over Z. If this condition cannot be guaranteed and we

need to know the exact value of s
(j)
t during the computation we can replace s

(j)
t

by a polynomial in the variables a
(j)
1 , a

(j)
2 , . . . , a

(j)
mj , i. e., a subset of the inputs

of Gj . For example, in the polynomial r0 − a0 − a1 + 2s determining the lower
result bit r0 of a half adder the the slack variable s is can be substitued by the
polynomial a0a1. In general, the polynomials for the slack variables can be very

large even for small polynomials f
(t)
j . In order to avoid these large polynomials

it is often better to introduce the slack variables. This especially applies to cases
where the slack variables are canceled out in the further course of computation.

Let G = {G̃(t)
j | j = 1, . . . ,m and t = 1, . . . , nj} and I = 〈G〉 be the ideal gener-

ated by this set. Using the language of computer algebra our decision problem
can be formulated by the following question regarding the variety V (I):
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Is V (I) ⊂ V ({2N−ng}), where V (P ) denotes the set of all common roots of the
polynomials in an arbitrary polynomial set P ?

In the next section we will detail how to efficiently solve this so called variety
subset problem.

2.3 Solving arithmetic decision problems by normal form
computation

The following proposition is key for an effective solution of the variety subset
problem introduced in the previous section.

Proposition 1 The set G = {G̃(t)
j } is a Gröbner basis with respect to any

monomial order refining the following partial order

r
(j)
i > every monomial in the variables a

(j)
k , s

(j)
t , r

(j)
l

for all i, k, t, j and l < i.

By Lemma 1 we prove that normal form computation can be used as an
effective procedure for solving our problem.

Lemma 1 Let G be a Gröbner basis of an ideal I ⊂ Z/2N [X], X = (X ′, X ′′),
and g a polynomial such that the normal form h of g with respect to G is
in Z/2N [X ′]. Assume that for all X ′ there exist X ′′ with f(X ′, X ′′) = 0 for
all f ∈ G. Then, h defines the zero function if and only if V (G) ⊂ V (g).

Let g ∈ Z/2n[X] and h be the normal form of 2N−ng with respect to G
which can be computed [24] by Algorithm 1. Since we are only interested in the
function of h on V (I) we can always replace portions of h by equivalent polyno-
mials with respect to V (I). In particular, we can replace every slack variable in
the normal form by a polynomial expression in the inputs of the corresponding
equation Gj . Therefore, we may assume that h does not contain any slack vari-
ables. Furthermore, the output variables of the equations Gj do not occur in h

as otherwise h would be reducible by some of the generated sub-identities G
(t)
j ,

hence h satisfies the assumptions of Lemma 1.
This guarantees that the variables present in h are inputs to the bit vector

netlist representing the ABL decision problem. Every valuation of these variables
can be extended to a consistent valuation for the remaining signals of this netlist.
Furthermore, we can effectively decide whether h defines the zero function for
all rings Z/m (cf. [23]) and therefore decide the ABL problem by Lemma 1.

3 Extracting local ABL information

In this section we recall a local extraction technique [25] that generates ABL
information for those problem parts of an SMT instance where local parts of
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an arithmetic problem are specified at the gate-level. Representing gate-level
circuitry by a polynomial equation Gj as introduced in Equation 1 of Sec-
tion 2.2 is not straight forward. In particular, only a few bit vector functions
f : (Z/ 〈2n〉)k → Z/ 〈2n〉 are polynomial functions [23]. This explains why it is
not advisable to encode an entire SMT instance as a monolithic algebraic prob-
lem. However, for Boolean functions f : (Z/ 〈2〉)k → Z/ 〈2〉 a polynomial repre-
sentation is always feasible. In principle, every Boolean function can be repre-
sented by the above mentioned polynomial equation Gj based on its Reed-Muller
form. The positive Reed-Muller (positive Davio) decomposition for a Boolean
function f : {0, 1}n → {0, 1} with respect to a variable xi is given by the follow-
ing equation:

f(x0, . . . , xm) = f |xi=0 ⊕ xi ∧ (f |xi=0 ⊕ f |xi=1), (2)

where f |xi=1 = f(x0, . . . , xi−1, 1, xi+1, . . . , xm) and
f |xi=0 = f(x0, . . . , xi−1, 0, xi+1, . . . , xm) denote the positive and negative cofac-
tors of f with respect to xi. Recursive application of this decomposition results
in the Reed-Muller form for a given Boolean function.

Notice that the Reed-Muller form f(x0, . . . , xm) for a signal y is essentially a
Boolean polynomial, i. e., a polynomial with coefficients and exponents in {0, 1}
resulting in the following equation:

y = f(x0, . . . , xm)%2. (3)

In this equation and throughout the remainder of this paper the binary operation
x%y on integers x, y ∈ Z shall compute the remainder of the integer division of
x by y, i. e., the smallest integer k ≥ 0 such that there exists an integer l ∈ Z
with x = ly + k.

Unless the Reed-Muller form only consists of a single product term, this
equation requires a new slack variable to be introduced if we follow the transfor-
mation steps presented in Section 2.2. Moreover, the slack variable is very likely
to remain in the final normal form h of the proof goal. In the following sub-
section we study how to transform the Reed-Muller form of a Boolean function
into a polynomial equation that is suitable for our verification approach based
on algebraic normal form computation.

We calculate a polynomial f ′ ∈ Z/ 〈2n〉[x0, . . . , xm] such that

f ′(x0, . . . , xm) = y = f(x0, . . . , xm)%2

for all Boolean valuations of the xi.

Proposition 2 Let f =
∑k

i=0 ti ∈ Z[X] be a Boolean polynomial, i. e., the
coefficients ci of the terms ti are restricted to ci = 1. Likewise, all variables have
exponent 1. For every n ∈ N a polynomial f ′ ∈ Z/ 〈2n〉 [X] exists such that the
following condition holds for all Boolean valuations of the variables in X:

f ′(X)%2n = f(X)%2.
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By means of this proposition we can generate ABL information for Boolean
functions that is suitable for proving properties by normal form computation.
The following example illustrates this transformation.

Example 6 We consider the Boolean function r(a, b, c) = a⊕ b⊕ c and poly-
nomials over the ring Z/ 〈8〉 [a, b, c]. For corresponing polynomial f = a + b + c
for r we want to determine a polynomial f ′ with f ′%8 = f%2 for all Boolean
valuations of a, b and c. For these valuations, the polynomial function defined
by f can take values in {0, 1, 2, 3}. Encoding this result by three bits (r2, r1, r0)
results in the Boolean functions r1(a, b, c) = ab⊕ ac⊕ bc and r2(a, b, c) = 0 with
the corresponding polynomials f1 = ab + ac + bc and f2 = 0. f ′2 = f2 fulfills
the proposition. However, f1 can take values {0, 1, 2, 3}. Again, we only need to
consider the second bit of this result that can be expressed by the Boolean func-
tion r3(a, b, c) = abc. The corresponding polynomial f ′3 = f3 = abc fulfills the
condition of the proposition. Obviously, the polynomial

f ′1 = f1 − 2f ′3 = ab + ac + bc− 2abc

fulfills the condition f ′1%8 = f1%2 of the proposition. This also applies to the
polynomial

f ′ = f − 2f ′1 = a + b + c− 2ab− 2ac− 2bc + 4abc

.
A circuit for evaluation of this polynomial for Boolean values of the variables

can be implemented by the half-adder/full-adder netlist depicted in Figure 1.
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Fig. 1. Synthesized ABL model for the Reed-Muller form

Our overall procedure for extraction of polynomial for local gate-level parts
of an SMT instance has two phases:

– Transform the local gate-level descriptions into Reed-Muller forms.
– Transform the Reed-Muller forms into equivalent polynomial equations as

needed during normal form computation.
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These algorithms are invoked on demand whenever the normal form computation
terminates with a non-zero polynomial such that a gate level representation for
the leading monomial of this polynomial exists. After converting this representa-
tion into a polynomial equation we continue with the normal form computation

We conclude this section by illustrating the extraction process by means of
a small example. Suppose it is required to verify the design of a 2x2 unsigned
multiplier with (radix-4) Booth-encoded partial products. We further assume
that the partial products of the design are implemented at the gate level. The
partial products provided for the addition tree of the design are listed in the
third column of Table 1.

Table 1. Partial products and extracted polynomial equation for Booth-encoded
unsigned multiplier

column result Booth-encoded (radix 4) extracted
bit partial products polynomials

0 r0 cpl0 = {b1} cpl0 = b1%16
p′0[0] = {a0b0 ⊕ b1} p′0[0] = a0b0 + b1 − 2a0b0b1%16

1 r1 p′0[1] = {b1 ⊕ a1b0 ⊕ a0b1 ⊕ a0b0b1} p′0[1] = b1 + a1b0 − a0b1
+a0b0b1 − 2a1b0b1%8

2 r2 p′1[2] = {a0b1} p′1[2] = a0b1%8,
cpl1 = {0} cpl1 = 0%4
p′0[2] = {b1 ⊕ a1b1 ⊕ a1b0b1} p′0[2] = b1 − a1b1 + a1b0b1%4

3 r3 signext = {1} signext = 1%2
p′1[3] = {a1b1} p′1[3] = a1b1%2

p′0[3] = cpl0 = {b1 ⊕ 1} p′0[3] = 1− b1%2

Furthermore, we annotate in braces the corresponding Reed-Muller form in
terms of the multiplier inputs ak and bi. We assume the addition tree of the
implementation to be specified at the ABL. After normal form computation for
the proof goal

8r3 + 4r2 + 2r1 + r0 − 4a1b1 − 2a0b1 − 2a1b0 − a0b0

with respect to the polynomials generated from this addition tree we obtain the
following polynomial:

8(signext + p′1[3] + p′0[3]) + 4(p′1[2] + p′0[2] + cpl1)

+2p′0[1] + cpl0 + p′0[0]− 4a1b1 − 2a0b1 − 2a1b0 − a0b0.

It is obvious that normal form computation alone cannot establish equiva-
lence between reference and implementation, as the partial products a0b0 and
a1b0 do not have an equivalent counterpart in the implementation. In order to
continue with the normal form computation we convert the Reed-Muller forms
for the partial products of the implementation into the corresponding polyno-
mial equations. The results of this computation step are summarized in the
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fourth column of Table 1. Based on these polynomials we conduct the normal
form computation, i.e., a series of reductions, that is illustrated in Figure 2. The
computation of Figure 2 reduces the prove goal to the zero polynomial and this
proves that our implementation is correct.

Fig. 2. Normal form computation of the proof goal with respect to extracted
polynomials

8(signext + p′1[3] + p′0[3]) + 4(p′1[2] + p′0[2] + cpl1) + 2p′0[1] + cpl0 + p′0[0]

−4a1b1 − 2a0b1 − 2a1b0 − a0b0

→
signext

8(p′1[3] + p′0[3]) + 4(p′1[2] + p′0[2] + cpl1) + 2p′0[1] + cpl0 + p′0[0]

−4a1b1 − 2a0b1 − 2a1b0 − a0b0 + 8

→
p′1[3]

8(p′0[3]) + 4(p′1[2] + p′0[2] + cpl1) + 2p′0[1] + cpl0 + p′0[0]

+4a1b1 − 2a0b1 − 2a1b0 − a0b0 + 8

→
p′0[3]

+4(p′1[2] + p′0[2] + cpl1) + 2p′0[1] + cpl0 + p′0[0] + 4a1b1 − 2a0b1 − 2a1b0 − a0b0 − 8b1

→
p′1[2]

+4(p′0[2] + cpl1) + 2p′0[1] + cpl0 + p′0[0] + 4a1b1 + 2a0b1 − 2a1b0 − a0b0 − 8b1

→
p′0[2]

+4(cpl1) + 2p′0[1] + cpl0 + p′0[0] + 2a0b1 − 2a1b0 − a0b0 − 4b1 + 4a1b0b1

→
cpl1

+2p′0[1] + cpl0 + p′0[0] + 2a0b1 − 2a1b0 − a0b0 − 4b1 + 4a1b0b1

→
p′0[1]

+cpl0 + p′0[0]− a0b0 − 2b1 + 2a0b0b1

→
cpl0

+p′0[0]− a0b0 − b1 + 2a0b0b1 →
+p′0[0]

0

4 The SMT solver STABLE

In this section we will study how to integrate the techniques presented in Sec-
tions 2 and 3 into a generic solver for the quantifier-free logic over fixed-sized
bit vectors (QF-BV). We present our SMT solver for this logic called STABLE
following the flow chart illustrated in Figure 3.

The solver supports multiple input formats like the SMT-LIB format and the
Spear format. Moreover, we support an intermediate format of the industrial in-
terval property checker Onespin 360 MW [2]. In a preprocessing step we start
with identifying control variables for the datapath as branching variables. Re-
call that our primary application domain is interval property checking. Interval
properties usually focus on individual operations of a design. These operations
may require a specific behavior of the environment of design as well as a specific
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mode of operation for the design. In order to restrict environment and design
with respect to the scenario covered by the property a verification engineer will
specify so called assumptions. The intended behavior of the design is then spec-
ified as a commitment that is only valid for the current scenario. This allows
for a compact and easy-to-review representation of the properties. The resulting
SMT instances have an implicative overall structure a → c. The sub formulas
a and c correspond to assumption and commitment of the property and may
share subexpressions. For example, if both, commitment and assumption of a
property, refer to the same design signal, the cone of influence of this signal will
become part of the instance and will be shared by both expressions. The assump-
tion a typically restricts the valid valuations for control variables in the cone of
influence of the commitment, i.e., these variables may only take a subset of all
possible value assignments. We identify the constraints in the SMT instance that
encode the assumption and assert that the assumption is fulfilled. In an outer
loop of the solving algorithm we determine every possible valuation v = Vbranch

of the control values v that leads to a new configuration of the datapath. We
propagate these assignments in order to remove the control logic between the
arithmetic components in the instance. Given a specific configuration for the
control part of the instance, we determine the arithmetic constraints in the cone
of influence of the proof goal. For these constraints polynomials are generated as
described in section 2.2. Recall that the generated set of polynomials G forms a
Gröbner basis for the generated ideal I = 〈G〉.

In the next step of the algorithm, we decide whether the arithmetic proof
goal is valid under the current configuration of the datapath indicated by the
current valuation Vbranch of the branching variables v. We encode the proof goal
by an appropriate polynomial f and compute its normal form with respect to
the Gröbner basis G. If the normal form NF(f,G) is a vanishing polynomial, the
proof goal is valid under the current configuration of the control logic and we
learn the constraint v 6= Vbranch. Otherwise, we analyze whether the remaining
variables in the normal form of the proof goal are defined by non arithmetic
constraints. If this is the case, we try to extract further polynomials with the
technique described in section 3 and start the normal form computation again.

This inner loop is repeated until either the normal form vanishes or no new
polynomials can be extracted. In the latter case we learn the constraint (v =
Vbranch ∧ NF(f,G) = 0)→ var(f). The constraint refers to the variable var(f)
in the cone of influence of c that encodes the proof goal. In our implementation
the above mentioned constraint is only learned, when it is considerably simpler
than the original problem. The decision whether the constraint is simple enough
is based on the number of variables used in NF(f,G).

This completes the description of the analysis of the arithmetic problem
parts. When the outer loop of the algorithm terminates we bit-blast the in-
stance, including the learned constraints and hand it over to a standard SAT
solver. Note, that we also bit-blast the arithmetic problem parts. The learned
constraints guide the solver in searching a counterexamples for satisfiable in-
stances and speed up the proof of unsatisfiability otherwise. In the next section
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we present some preliminary experimental results that demonstrate the effec-
tiveness of this strategy.

5 Experimental Results

In order to evaluate our solver STABLE we conducted a series of experiments.
At first, we examined the applicability of the algebraic proof techniques in cases
where ABL information is available in the arithmetic problem parts of the SMT
instance. In order to demonstrate scalability of the approach we ran the solver
on a set of scalable benchmarks with both word and bit-level arithmetic compo-
nents.

In a second series of experiments, we evaluated the interplay of our ABL ex-
traction techniques with the algebraic engine. These experiments used instances
originating from interval property checking. The properties check generated HDL
code of a commercial module generator for functional correctness. The instances
contain arithmetic problem parts that are partially specified below the arith-
metic bit level using the boolean constraints of the logic.

5.1 Evaluation of the algebraic techniques

We present preliminary results comparing our most recent of STABLE with
current releases of Spear [9], Boolector [8] and MathSAT [6]. Note that earlier
versions of these solvers won the SMT competitions of 2007, 2008 and 2009 in
the category QF-BV. Finally, we also ran bit-blasted versions of the instances
on the SAT solver PrecoSAT [26] that we use as our base SAT solver.

The benchmark suite consists of a combinational multiplier with Booth-
encoded partial products (mult ub) where the Booth encoder is specified at
the gate level and the addition network is specified at the ABL. Furthermore,
a sequential implementation for the multiplication of four values with a single
shared word-level multiplier (shared mult) is included.

Table 2 summarizes the results of these experiments. The table is organized as
follows. Columns one contains the name of the instance. The remaining columns
show the CPU times required by the respective solver to complete the proof. All
experiments were carried out on an Intel Xeon CPU E5420 2,50 GHz 32 GB
RAM running Linux with a time-out limit (TO) of 1000 s.

The presented results of the experiments show that the proposed models and
algorithms are adequate to solve verification problems of industrial size.

5.2 Evaluation of the ABL extraction technique

In this section we present data on the experimental evaluation of the extraction
technique for ABL information presented in Section 3. The instances considered
in this experiment are property checking problems that check the HDL out-
put of a commercial module generator for functional correctness. We compare
against the same solvers as in subsection 5.1. The benchmark set consists of



STABLE 17

 

Ye)s 

Yes 

identify  variables 
or branching ( V branch ) 

(not data path variable!) 

exist further 
assignment  v to 

V branch 

propagate  
assignment 

SMT   problem in QF - BV 

create  polynomials  G 
for  arith . constraints   
in COI of proof goal 

NF( f,G ) is  a vanishing 
polynomial 

compute  normal form 
NF( f,G ) of polynomial f 

encoding proof goal 
with respect to  G 

extract further  
polynomials 

new polynomials 
exist 

learn constraint 
(v= V branch ∧ NF( f,G )=0))  var(f) 

solve bit - blasted  
instance with SAT 

No 

Yes 

No 

No Yes 

Fig. 3. High-level flow chart of the solver STABLE
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Table 2. CPU-times(s) of scalability experiments

PrecoSAT 236 Spear Boolector 1,2 MathSAT 4,3 STABLE

shared 4 0,1 0,2 0,1 0,1 0,2
shared 8 TO 64,8 TO TO 1,2

shared 12 TO TO TO TO 5,6
shared 16 TO TO TO TO 22
shared 20 TO TO TO TO 81
shared 23 TO TO TO TO TO

mult ub 4x4 0 0,02 0 0,01 0,1
mult ub 8x8 17,8 21,47 12 31 0,3

mult ub 16x16 TO TO TO TO 1
mult ub 32x32 TO TO TO TO 6
mult ub 64x64 TO TO TO TO 52

about 1040 instances. Every instance includes a Booth-encoded multiplier with
custom-designed components. These components are specified at the gate level.
Table 3 presents a representative subset of the benchmark set and is organized
in the same manner as Table 2. The names of the instances indicate the bit-
width of the operands and whether signed or unsigned arithmetic operations are
performed.

Table 3. CPU-times(s) on industrial benchmarks

PrecoSAT 236 Spear Boolector 1,2 MathSAT 4,3 STABLE

unsigned 4x4 0 0,02 0 0,07 0,08
unsigned 8x8 15,6 64,8 17,9 17,8 0,36

unsigned 16x16 TO TO TO TO 2,2
unsigned 23x23 TO TO TO TO 5,7
unsigned 32x32 TO TO TO TO 10,2
unsigned 64x64 TO TO TO TO 167

signed 4x4 0 0,02 0 0,06 0,1
signed 8x8 17,4 64,1 15,6 25,2 0,3

signed 16x16 TO TO TO TO 2,1
signed 23x23 TO TO TO TO 5,7
signed 32x32 TO TO TO TO 9,4
signed 64x64 TO TO TO TO 163

The results again indicate that STABLE is the only solver that can handle
problems of relevant size for industrial applications. STABLE proved all 1040
instances successfully in 48,5 min.
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6 Conclusion

In this paper, we describe recently developed SMT solver technology for for-
mal arithmetic circuit verification. In particular, we introduce our SMT solver
STABLE for the quantifier-free logic over bit-vectors (QF-BV). Problem parts
specified at the arithmetic bit level are modeled using polynomials over finite
rings Z/ 〈2n〉. We obtain variety subset problems that are equivalent to the orig-
inal decision problem. The generated sets of polynomials, by construction, form
a Gröbner basis of their generated ideal with respect to monomial orderings
derived from the topological ordering of design signals.

This is the key for an efficient solution of the variety subset problems by
normal form computation for the polynomials encoding the proof goals.

Custom-designed components with hand-crafted optimizations conducted at
the pure gate level may result in incomplete arithmetic bit level descriptions for
the data paths under verification. We provide an extraction technique based on
local Reed-Muller forms that smoothly integrates with the normal form compu-
tation approach used in our arithmetic prover.

We demonstrate the effectiveness of the proposed approaches for industrial
problems originating from the formal verification of arithmetic designs. These
problems are beyond the capacity limits of today’s formal property checkers.
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