
Satisfiability of Acyclic and Almost Acyclic CNF
Formulas∗

Sebastian Ordyniak1, Daniel Paulusma2, and Stefan Szeider1

1 Institute of Information Systems
Vienna University of Technology, A-1040 Vienna, Austria
sebastian.ordyniak@tuwien.ac.at, stefan@szeider.net

2 School of Engineering and Computing Sciences
Durham University, Durham, DH1 3LE England
daniel.paulusma@durham.ac.uk

Abstract
We study the propositional satisfiability problem (SAT) on classes of CNF formulas (formulas in
Conjunctive Normal Form) that obey certain structural restrictions in terms of their hypergraph
structure, by associating to a CNF formula the hypergraph obtained by ignoring negations and
considering clauses as hyperedges on variables. We show that satisfiability of CNF formulas with
so-called “β-acyclic hypergraphs” can be decided in polynomial time.

We also study the parameterized complexity of SAT for “almost” β-acyclic instances, using
as parameter the formula’s distance from being β-acyclic. As distance we use the size of smallest
strong backdoor sets and the β-hypertree width. As a by-product we obtain the W[1]-hardness
of SAT parameterized by the (undirected) clique-width of the incidence graph, which disproves
a conjecture by Fischer, Makowsky, and Ravve (Discr. Appl. Math. 156, 2008).

Keywords and phrases Satisfiability, chordal bipartite graphs, β-acyclic hypergraphs, backdoor
sets, parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.84

1 Introduction

We study the propositional satisfiability problem (SAT) on classes of CNF formulas (formulas
in Conjunctive Normal Form) that obey certain structural restrictions in terms of their
hypergraph structure, associating to a CNF formula the hypergraph obtained from the
formula by ignoring negations and considering clauses as hyperedges on variables.

Many otherwise hard problems become easy if restricted to acyclic instances. Hence it
is natural to ask if SAT becomes polynomial-time tractable for CNF formulas with acyclic
hypergraphs. However, in contrast to graphs, there are several notions of acyclicity for
hypergraphs: α-acyclicity, β-acyclicity, γ-acyclicity, and Berge acyclicity, as described and
discussed by Fagin [5]. We will provide definitions for the notions of acyclicity that are
relevant to this paper in Section 2. It is known that the various notions of acyclicity are
strictly ordered with respect to their generality, i.e., we have

α-Acyc) β-Acyc) γ-Acyc) Berge-Acyc (1)

where X-Acyc denotes the class of X-acyclic hypergraphs. Let X-Acyc-Sat denote the
propositional satisfiability problem restricted to X-acyclic CNF formulas (i.e., CNF formulas

∗ Ordyniak and Szeider’s research was funded by the ERC (COMPLEX REASON, 239962). Paulusma’s
research was funded by the EPSRC (EP/G043434/1).

© Sebastian Ordynia, Daniel Paulusma, and Stefan Szeider;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 84–95

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.84
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Sebastian Ordyniak, Daniel Paulusma, and Stefan Szeider 85

whose associated hypergraph is X-acyclic). It is not difficult to see that α-Acyc-Sat is
NP-complete (see [19]), and that Berge-Acyc-Sat is solvable in polynomial time. For
the latter, observe that if a CNF formula F is Berge-acyclic, then its incidence graph has
treewidth 1, thus whether F is satisfiable can be decided in linear time [6, 19].

It is natural to ask where in the chain (1) the exact boundary between NP-completeness
and polynomial-time tractability lies. In Section 3 we will answer this question and show
that β-Acyc-Sat (and thus also γ-Acyc-Sat) can be solved in polynomial time. We
establish this result by combining techniques from structural graph theory (a connection
between β-acyclic hypergraphs and chordal bipartite graphs) with a fundamental technique
for satisfiability solving (Davis-Putnam resolution).

In Sections 4 and 5 we will explore possibilities to gradually generalize the class of β-acyclic
CNF formulas. We will study the parameterized complexity of deciding the satisfiability of
formulas parameterized by their “distance” from the class of β-acyclic CNF formulas, with
respect to two distance measures.

The first distance measure is based on the notion of strong backdoor sets: For a CNF
formula F we define its “distance to β-acyclicity” as the size k of a smallest set B of variables
such that for each partial truth assignment to B, the reduct of F under the assignment is
β-acyclic (such a set B is a strong backdoor set). If we know B, then clearly deciding the
satisfiability of F reduces to deciding the satisfiability of at most 2k β-acyclic CNF formulas,
and is thus fixed-parameter tractable with respect to k. We show, however, that finding
such a set B of size k (if it exists) is W[2]-hard, thus unlikely fixed-parameter tractable for
parameter k which limits the algorithmic usefulness of this distance measure.

The second distance measure we consider is the β-hypertree width, a hypergraph invariant
introduced by Gottlob and Pichler [11]. The classes of hypergraphs of β-hypertree width
k = 1, 2, 3, . . . form an infinite chain of proper inclusions. Hypergraphs of β-hypertree
width 1 are exactly the β-acyclic hypergraphs. Thus β-hypertree width is also a way to
define a “distance to β-acyclicity.” The complexity of determining the β-hypertree width of a
hypergraph is open [11]. However, we show that even if we are given the CNF formula together
with a hypertree decomposition of width k, deciding the satisfiability of F parameterized by
k is W[1]-hard. As a side effect, we obtain from this result that SAT is also W[1]-hard when
parameterized by the clique-width (of the undirected incidence graph) of the CNF formula.
This disproves a conjecture by Fischer, Makowsky, and Ravve [6].

2 Preliminaries

We assume an infinite supply of propositional variables. A literal is a variable x or a
negated variable x; if y = x is a literal, then we write y = x. For a set S of literals we put
S = {x | x ∈ S }; S is tautological if S ∩ S 6= ∅. A clause is a finite non-tautological set of
literals. A finite set of clauses is a CNF formula (or formula, for short). A variable x occurs
in a clause C if x ∈ C∪C; var(C) denotes the set of variables which occur in C. For a formula
F we put var(F) =

⋃
C∈F var(C). Let F be a formula and X ⊆ var(F). We denote by FX the

set of clauses of F in which some variable of X occurs; i.e., FX := {C ∈ F | var(C)∩X 6= ∅ }.
A truth assignment is a mapping τ : X → { 0, 1 } defined on some set X of variables; we

write var(τ) = X. For x ∈ var(τ) we define τ(x) = 1− τ(x). For a truth assignment τ and a
formula F , we define F [τ] = {C \ τ−1(0) | C ∈ F, C ∩ τ−1(1) = ∅ }, i.e., F [τ] denotes the
result of instantiating variables according to τ and applying the usual simplifications. A
truth assignment τ satisfies a clause if the clause contains some literal x with τ(x) = 1; τ
satisfies a formula F if it satisfies all clauses of F (i.e., if F [τ] = ∅). A formula is satisfiable if

FSTTCS 2010

86 Satisfiability of Acyclic and Almost Acyclic CNF Formulas

it is satisfied by some truth assignment; otherwise it is unsatisfiable. Two formulas F and F ′
are equisatisfiable if either both are satisfiable or both are unsatisfiable. The Satisfiability
(SAT) problem is to test whether a given CNF formula is satisfiable.

A hypergraph H is a pair (V,E) where V is the set of vertices and E is the set of hyperedges,
which are subsets of V . If |e| = 2 for all e ∈ E then H is also called a graph. We say that
a hypergraph H ′ = (V ′, E′) is a partial hypergraph of H = (V,E) if V ′ ⊆ V and E′ ⊆ E.
The incidence graph I(H) of hypergraph H = (V,E) is the bipartite graph where the sets
V and E form the two partitions, and where e ∈ E is incident with v ∈ V if and only if
v ∈ e. A hypergraph is α-acyclic if it can be reduced to the empty hypergraph by repeated
application of the following rules:

1. Remove hyperedges that are empty or contained in other hyperedges.
2. Remove vertices that appear in at most one hyperedge.

A hypergraph H is β-acyclic if every partial hypergraph of H is α-acyclic. The hypergraph
H(F) of a formula F has vertex set var(F) and hyperedge set { var(C) | C ∈ F }. We say that
F is α-acyclic or β-acyclic if H(F) is α-acyclic or β-acyclic, respectively. The incidence graph
of F is the graph I(F) with vertex set var(F)∪F and edge set {Cx | C ∈ F and x ∈ var(C) }.
The directed incidence graph of F is the directed graph with vertex set var(F) ∪ F and arc
set { (C, x) | C ∈ F and x ∈ C } ∪ { (x,C) | C ∈ F and x ∈ C }. We can also represent
the orientation of edges by labeling them with the signs +,−, such that an edge between a
variable x and a clause C is labeled + if x ∈ C and labeled − if x ∈ C. This gives rise to the
signed incidence graph which carries exactly the same information as the directed incidence
graph.

Note that one can make a hypergraph α-acyclic by adding a universal hyperedge that
contains all vertices (the first step of the above reduction removes all other hyperedges, the
second step all vertices). Using this fact, it is easy to see that SAT is NP-complete for the
class of α-acyclic CNF formulas [19]. In contrast, it is well known that the satisfiability
of α-acyclic instances of the Constraint Satisfaction Problem (CSP) can be decided
in polynomial time [9]. Thus SAT and CSP behave differently with respect to acyclicity
(representing a clause with k literals as a relational constraint requires exponential space of
order k2k).

2.1 Parameterized Complexity
We define the basic notions of Parameterized Complexity and refer to other sources [4, 7]
for an in-depth treatment. A parameterized problem can be considered as a set of pairs
(I, k), the instances, where I is the main part and k is the parameter. The parameter is
usually a non-negative integer. A parameterized decision problem is fixed-parameter tractable
if there exists a computable function f such that instances (I, k) of size n can be decided in
time f(k)nO(1). The class FPT denotes the class of all fixed-parameter tractable decision
problems.

Parameterized complexity offers a completeness theory, similar to the theory of NP-
completeness, that allows the accumulation of strong theoretical evidence that some param-
eterized problems are not fixed-parameter tractable. This theory is based on a hierarchy
of complexity classes W[1],W[2], . . . ,XP. Each class contains all parameterized decision
problems that can be reduced to a certain fixed parameterized decision problem under
parameterized reductions. These are many-to-one reductions where the parameter for one
problem maps into the parameter for the other. More specifically, problem L reduces to
problem L′ if there is a mapping R from instances of L to instances of L′ such that (i) (I, k)

Sebastian Ordyniak, Daniel Paulusma, and Stefan Szeider 87

is a yes-instance of L if and only if (I ′, k′) = R(I, k) is a yes-instance of L′, (ii) k′ = g(k)
for a computable function g, and (iii) R can be computed in time f(k)nO(1) where f is a
computable function and n denotes the size of (I, k). The class W[1] is considered as the
parameterized analog to NP.

3 Polynomial-time SAT Decision for β-acyclic CNF Formulas

I Theorem 1. Satisfiability of β-acyclic CNF formulas can be decided in polynomial time.

The remainder of this section is devoted to a proof of this result. We need two known results
on chordal bipartite graphs, which are bipartite graphs with no induced cycle on 6 vertices or
more. The first one is Proposition 2. The equivalence between statement (i) and (ii) in this
proposition is a result of Tarjan and Yannakakis [20]. The equivalence between statement (ii)
and (iii) in Proposition 2 follows from the facts that I(H(F)) is obtained from I(F) after
removing all but one clause vertices in I(F) with the same neighbors (i.e., clauses with the
same set of variables in F) and that a chordal bipartite graph remains chordal bipartite
under vertex deletion.

I Proposition 2. Let F be a CNF formula. Then the following three statements are
equivalent:

(i) H(F) is β-acyclic;
(ii) I(H(F)) is chordal bipartite;
(iii) I(F) is chordal bipartite.

A vertex v in a graph G is weakly simplicial if (i) the neighborhood of v in G forms an
independent set, and (ii) the neighborhoods of the neighbors of v form a chain under set
inclusion. Uehara [21] showed the following (which also follows from results of Hammer,
Maffray, and Preismann [12], see [17]). We call a bipartite graph nontrivial if it contains at
least one edge.

I Proposition 3 (Uehara [21], Hammer, Maffray, and Preismann [12]). A graph is chordal
bipartite if and only if every induced subgraph has a weakly simplicial vertex. Furthermore, a
nontrivial chordal bipartite graph has a weakly simplicial vertex in each partite set.

We also call a vertex of a hypergraph or a variable of a CNF formula weakly simplicial if the
corresponding vertex in the associated incidence graph is weakly simplicial. The above result
immediately gives a polynomial-time procedure for the recognition of β-acyclic hypergraphs:
delete weakly simplicial vertices from the hypergraph as long as possible (clearly one can
recognize a weakly simplicial vertex in polynomial time). The hypergraph is β-acyclic if and
only if we can eliminate in this way all its vertices.

The notion of Davis-Putnam Resolution allows us to use this elimination procedure to
decide the satisfiability of β-acyclic CNF formulas.

Let C1, C2 be clauses such that C1 ∩ C2 = {x} for some literal x. The clause C =
(C1 ∪ C2) \ {x, x} is called the resolvent of C1 and C2 with respect to x. Note that by
definition any two clauses have at most one resolvent.

Consider a formula F and a variable x of F . We obtain a formula F ′ from F by adding
all possible resolvents with respect to x, and by removing all clauses in which x occurs. We
say that F ′ is obtained from F by Davis-Putnam Resolution with respect to x and we write
DPx(F) = F ′. It is well known (and easy to show) that F and DPx(F) are equisatisfiable.

FSTTCS 2010

88 Satisfiability of Acyclic and Almost Acyclic CNF Formulas

The so-called Davis-Putnam Procedure [3] successively eliminates variables in this manner
until either the empty formula or a formula which contains the empty clause is obtained.
However, DPx(F) contains in general more clauses than F . Hence, repeated application of
Davis-Putnam Resolution to F may cause an exponential growth in the number of clauses.
As a result, the Davis-Putnam Procedure has an exponential worst-case running time. The
key observation for our algorithm is that if x is a weakly simplicial variable of F , then the
size of DPx(F) is not greater than the size of F .

I Lemma 4. If x is a weakly simplicial variable of a CNF formula F , then |DPx(F)| ≤ |F |.

Proof. Let x be a weakly simplicial variable of a CNF formula F . Let F − x := {C \
{x, x} | C ∈ F }. We show that DPx(F) ⊆ F − x.

Assume C1, C2 ∈ F have a resolvent C with respect to x. Consequently we have C1∩C2 ⊆
{x, x}. Because x is weakly simplicial, var(C1) ⊆ var(C2) or var(C2) ⊆ var(C1). Without
loss of generality, assume the former is the case. If x ∈ C1, then we have C1 ∩ C2 = {x},
and so C = C2 \ {x} ∈ F − x. Similarly, if x ∈ C1, then we have C1 ∩ C2 = {x}, and so
C = C2 \ {x} ∈ F − x. Thus indeed DPx(F) ⊆ F − x. From |DPx(F)| ≤ |F − x| ≤ |F | the
result now follows. J

Now it is easy to establish Theorem 1. We extend the above elimination procedure.
Assume we are given a β-acyclic CNF formula F . Then I(F) is chordal bipartite due to
Proposition 2. As long as possible, we select a weakly simplicial variable x and compute
DPx(F). Because I(DPx(F)) is an induced subgraph of I(F), it follows that DPx(F) is again
β-acyclic. Moreover, DPx(F) and F are equisatisfiable, and by Lemma 4, |DPx(F)| ≤ |F |.
Hence we can repeat this elimination procedure, and by induction, we will finally be left with
a CNF formula F0 that has no variables. If F0 = ∅ then F is satisfiable, and if F0 = {∅}
then F is unsatisfiable. Because each reduction step can be carried out in polynomial time,
Theorem 1 follows.

4 Backdoor Sets

Let C be a class of CNF formulas. Consider a CNF formula F together with a set of variables
B ⊆ var(F). We say that B is a strong backdoor set of F with respect to base class C if for
all truth assignments τ : B → {0, 1} we have F [τ] ∈ C. In that case we also say that B is a
strong C-backdoor set. For every CNF formula F and every set B ⊆ var(F) it holds that F is
satisfiable if and only if F [τ] is satisfiable for at least one truth assignment τ : B → {0, 1}.
Thus, if B is a strong C-backdoor set of F , then determining whether F is satisfiable reduces
to the satisfiability problem of at most 2|B| reduced CNF formulas F [τ] ∈ C.

Now consider a base class C of CNF formulas for which SAT can be solved in polynomial
time. Then, if we have found a strong C-backdoor set of F of size k, deciding the satisfiability
of F is fixed-parameter tractable for parameter k. Hence, the key question is whether we can
find a strong backdoor set of size at most k if it exists. To study this question, we consider
the following parameterized problem that is defined for every fixed base class C.

Strong C-Backdoor
Instance: A formula F and an integer k > 0.
Parameter: The integer k.
Question: Does F have a strong C-backdoor set of size at most k?

Sebastian Ordyniak, Daniel Paulusma, and Stefan Szeider 89

It is known that Strong C-Backdoor is fixed-parameter tractable for the class C of Horn
formulas and for the class C of 2CNF formulas [14]. Let BAC be the class of all β-acyclic
CNF formulas. Contrary to the above results, we show that Strong BAC-Backdoor is
W [2]-hard.

I Theorem 5. The problem Strong BAC-Backdoor is W[2]-hard.

Proof. Let S be a family of finite sets S1, . . . , Sm. Then a subset R ⊆
⋃m
i=1 Si is called a

hitting set of S if R ∩ Si 6= ∅ for i = 1, . . . ,m. The Hitting Set problem is defined as
follows.

Hitting Set
Instance: A family S of finite sets S1, . . . , Sm and an integer k > 0.
Parameter: The integer k.
Question: Does S have a hitting set of size at most k?

It is well known that Hitting Set is W[2]-complete [4]. We reduce from this problem to
prove the theorem.

Let S = {S1, . . . , Sm } and k be an instance of Hitting Set. We write V (S) =
⋃m
i=1 Si

and construct a formula F as follows. For each s ∈ V (S) we introduce a variable xs, and we
write X = {xs | s ∈ V (S) }. For each Si we introduce two variables h1

i and h2
i . Then, for

every 1 ≤ i ≤ m, the formula F contains three clauses Ci, C1
i , and C2

i such that:
Ci = {h1

i , h
2
i };

C1
i = {h1

i } ∪ {xs | s ∈ Si } ∪ {xs | s ∈ V (S) \ Si) };
C2
i = {h2

i } ∪ {xs | s ∈ V (S) }.

We need the following claims. The first claim characterizes the induced cycles in I(F)
with length at least 6. We need it to prove the second claim.

Claim 1. Let D be an induced cycle in I(F). Then |V (D)| ≥ 6 if and only if V (D) =
{h1

i , h
2
i , xs, Ci, C

1
i , C

2
i } for some 1 ≤ i ≤ m and s ∈ V (S).

We prove Claim 1 as follows. Suppose D is an induced cycle in I(F) with |V (D)| ≥ 6.
By construction, D contains at least one vertex from X. Because any two vertices in X

have exactly the same neighbors in I(F), D contains at most one vertex from X. Hence,
D contains exactly one vertex from X, let xs be this vertex. Let Cji and Cj

′

i′ be the two
neighbors of xs on D. Because xs is the only of D that belongs to X, we find that hji and
hj
′

i′ belong to D. By our construction, Ci and Ci′ then belong to D as well. If Ci 6= Ci′ , then
D contains at least two vertices from X, which is not possible. Hence Ci = Ci′ , as desired.
The reverse implication is trivial, and Claim 1 is proven.

Claim 2. Let B be a strong BAC-backdoor set that contains variable hji . Then, for any
s∗ ∈ Si, the set (B\{hji}) ∪ {xs∗} is a strong BAC-backdoor set.

We prove Claim 2 as follows. Let s∗ ∈ Si and define B′ = (B\{hji}) ∪ {xs∗}. Suppose B′
is not a strong BAC-backdoor set. Then there is a truth assignment τ : B′ → {0, 1} with
F [τ] /∈ BAC. This means that I(F [τ]) contains an induced cycle D with |V (D)| ≥ 6. Because
B is a strong BAC-backdoor set, hji must belong to V (D). We apply Claim 1 and obtain
V (D) = {h1

i , h
2
i , xs, Ci, C

1
i , C

2
i } for some xs ∈ X. Suppose τ(xs∗) = 1. Then C1

i /∈ F [τ].
Hence τ(xs∗) = 0, but then C2

i /∈ F [τ]. This contradiction proves Claim 2.

FSTTCS 2010

90 Satisfiability of Acyclic and Almost Acyclic CNF Formulas

We are ready to prove the claim that S has a hitting set of size at most k if and only if
F has a strong BAC-backdoor set of size at most k.

Suppose S has a hitting set R of size at most k. We claim that B = {xs | s ∈ R } is
a strong BAC-backdoor set of F . Suppose not. Then there is a truth assignment τ with
F [τ] /∈ BAC. This means that I(F [τ]) contains an induced cycle D with |V (D)| ≥ 6. By
Claim 1, we obtain V (D) = {h1

i , h
2
i , xs, Ci, C

1
i , C

2
i } for some 1 ≤ i ≤ m and s ∈ S. Because

C1
i , C

2
i are in I(F [τ]), we find that R∩Si = ∅. This is not possible, because R is a hitting set

of S. Conversely, suppose F has a strong BAC-backdoor set B of size at most k. By Claim 2,
we may without loss of generality assume that B ⊆ X. We claim that R = { s | xs ∈ B }
is a hitting set of S. Suppose not. Then R ∩ Si = ∅ for some 1 ≤ i ≤ m. This means that
B contains no vertex from {xs | s ∈ Si }. Let τ : B → {0, 1} be the truth assignment with
τ(xs) = 1 for all xs ∈ B. Then C1

i and C2
i are in F [τ]. Let s ∈ Si. Then the cycle D with

V (D) = {h1
i , h

2
i , xs, Ci, C

1
i , C

2
i } is an induced 6-vertex cycle in I(F [τ]). This means that

F [τ] /∈ BAC, which is not possible. Hence, we have proven Theorem 5. J

4.1 Deletion Backdoor Sets
Let F be a formula and let B ⊆ var(F) be a set of variables. Then F −B denotes the formula
obtained from F after removing all literals x and x with x ∈ B from the clauses in F . We
call B a deletion backdoor set with respect to a base class C if F −B ∈ C.

Deletion C-backdoor sets can be seen as a relaxation of strong C-backdoor sets if the base
class C is clause-induced, i.e., if for every F ∈ C and F ′ ⊆ F , we have F ′ ∈ C. In that case
every deletion C-backdoor set B is also a strong C-backdoor set. This is well known [15]
and can easily be seen as follows. Let τ : B → {0, 1} be a truth assignment. Then by
definition F [τ] ⊆ F −B. Because B is a deletion C-backdoor set, F −B ∈ C. Because C is
clause-induced and F [τ] ⊆ F −B, this means that F [τ] ∈ C, as required.

Now let C be a clause-induced base class. Let B be a smallest deletion C-backdoor set
and let B′ be a smallest strong C-backdoor set. Then, from the above, we deduce |B′| ≤ |B|.
The following example shows that |B| − |B′| can be arbitrarily large.

We consider the base class BAC, which is obviously clause-induced. Let F be the
formula with var(F) = {x1, . . . , xp, y1, . . . , yp, z1, . . . , zp} for some p ≥ 1 and clauses C1 =
{x1, . . . , xp, y1, . . . , yp}, C2 = {y1, . . . , yp, z1, . . . , zp} and C3 = {x1, . . . , xp, z1, . . . , zp} for
some p ≥ 1. Then B = {y1} is a smallest strong BAC-backdoor set. However, a smallest
deletion BAC-backdoor set must contain at least p variables.

Analogously to the Strong C-Backdoor problem we define the problem Deletion
C-Backdoor problem, where C is a fixed clause-induced base class.

Deletion C-Backdoor
Instance: A formula F and an integer k > 0.
Parameter: The integer k.
Question: Does F have a deletion C-backdoor set of size at most k?

Determining the parameterized complexity of Deletion BAC-Backdoor is interesting,
especially in the light of our W[2]-hardness result for Strong BAC-Backdoor. In other
words, is the problem of deciding whether a graph can be modified into a chordal bipartite
graph by deleting at most k vertices fixed-parameter tractable in k? Marx [13] showed that
the version of this problem in which the modified graph is required to be chordal instead of
chordal bipartite is fixed-parameter tractable.

Sebastian Ordyniak, Daniel Paulusma, and Stefan Szeider 91

5 β-Hypertree Width and Clique-Width

Hypertree width is a hypergraph invariant introduced by Gottlob, Leone, and Scarcello [10].
It is defined via the notion of a hypertree decomposition of a hypergraph H, which is a triple
T = (T, κ, λ) where T is a rooted tree and χ and λ are labelling functions with χ(t) ⊆ V (H)
and λ(t) ⊆ E(H), respectively, for every t ∈ V (T), such that the following conditions hold:

1. For every e ∈ E(H) there is a t ∈ V (T) such that e ⊆ χ(t).
2. For every v ∈ V (H), the set { t ∈ V (T) | v ∈ χ(t) } induces a connected subtree of T .
3. For every t ∈ V (T), it holds that χ(t) ⊆

⋃
e∈λ(t) e.

4. For every t ∈ V (T), if a vertex v occurs in some hyperedge e ∈ λ(t) and if v ∈ χ(t′) for
some node t′ in the subtree below t, then v ∈ χ(t).

The width of a hypertree decomposition (T, χ, λ) is max{ |λ(t)| | t ∈ V (T) }. The hypertree
width, denoted hw(H), of a hypergraph H is the minimum width over all its hypertree
decompositions. Many NP-hard problems such as CSP or Boolean database queries can be
solved in polynomial time for instances with associated hypergraphs of bounded hypertree
width [9].

Gottlob and Pichler [11] defined β-hypertree width as a “hereditary variant” of hypertree
width. The β-hypertree width, denoted β-hw(H), of a hypergraph H is defined as the
maximum hypertree width over all partial hypergraphs H ′ of H. Using the fact that α-
acyclic hypergraphs are exactly the hypergraphs of hypertree width 1 [10], one deduces that
the hypergraphs of β-hypertree width 1 are exactly the β-acyclic hypergraphs. Unfortunately,
the complexity of determining the β-hypertree width of a hypergraph is not known [11].
However, we show the following. Here, a β-hypertree decomposition of width k of a hypergraph
H is an oracle that produces for every partial hypergraph H ′ of H a hypertree decomposition
of width at most k.

I Theorem 6. SAT, parameterized by an upper bound k on the β-hypertree width of a CNF
formula F , is W[1]-hard even if a β-hypertree decomposition of width k for H(F) is given.

Proof. A clique in a graph is a subset of vertices that are mutually adjacent. A k-partite
graph is balanced if its k partition classes are of the same size. A partitioned clique of a
balanced k-partite graph G = (V1, . . . , Vk, E) is a clique K with |K ∩ Vi| = 1 for i = 1 . . . , k.
We devise a parameterized reduction from the following problem, which is W[1]-complete [18].

Partitioned Clique
Instance: A balanced k-partite graph G = (V1, . . . , Vk, E).
Parameter: The integer k.
Question: Does G have a partitioned clique?

Before we describe the reduction we introduce some auxiliary concepts. For any three variables
z, x1, x2 let F (z, x1, x2) denote the formula consisting of the clauses {z, x1, x2}, {z, x1, x2},
{z, x1, x2}, {z, x1, x2}, and {z, x1, x2}. This formula has exactly three satisfying assignments,
corresponding to the vectors 000, 101, and 110. Hence each satisfying assignment sets at most
one out of x1 and x2 to true, and if one of them is set to true, then z is set to true as well
(“z = x1 + x2”). Taking several instances of this formula we can build a “selection gadget.”
Let x1, . . . , xm and z1, . . . , zm−1 be variables. We define F=1(x1, . . . , xm; z1, . . . , zm−1) as the
union of F (z1, x1, x2),

⋃m−1
i=2 F (zi, zi−1, xi+1), and {{zm−1}}. Now each satisfying assignment

of this formula sets exactly one variable out of {x1, . . . , xm} to true, and, conversely, for

FSTTCS 2010

92 Satisfiability of Acyclic and Almost Acyclic CNF Formulas

each 1 ≤ i ≤ m there exists a satisfying assignment that sets exactly xi to true and all other
variables from {x1, . . . , xm} to false.

Now we describe the reduction. Let G = (V1, . . . , Vk) be a balanced k-partite graph for
k ≥ 2. We write Vi = {vi1, . . . , vin}. We construct a CNF formula F . As the variables of F
we take the vertices of G plus new variables zij for 1 ≤ i ≤ k and 1 ≤ j ≤ n − 1. We put
F =

⋃k
i=0 Fi where the formulas Fi are defined as follows: F0 contains for any u ∈ Vi and

v ∈ Vj (i 6= j) with uv /∈ E the clause Cu,v = {u, v } ∪ {w | w ∈ (Vi ∪ Vj) \ {u, v } }; for
i > 0 we define Fi = F=1(vi1, . . . , vin; zi1, . . . , zin−1).

We will have proven Theorem 6 after showing the following two claims.

Claim 1. β-hw(H(F)) ≤ k.

We prove Claim 1 as follows.
First we show that that β-hw(H(F0)) ≤ k. Let H ′0 be a partial hypergraph of H(F0).

Let I be the set of indices 1 ≤ i ≤ k such that some hyperedge of H ′0 contains Vi. For each
i ∈ I we choose a hyperedge ei of H ′0 that contains Vi. The partial hypergraph H ′0 admits
a trivial hypertree decomposition (T0, χ0, λ0) of width at most k with a single tree node
t0 where χ0(t0) contains all vertices of H ′0 and λ0(t0) = { ei | i ∈ I }. Second we observe
that β-hw(H(Fi)) = 1 for 1 ≤ i ≤ k: H(Fi) is β-acyclic, and β-acyclic hypergraphs have
β-hypertree width 1.

Now let H ′ be an arbitrarily chosen partial hypergraph of H(F). For i = 0, . . . , k, we
let H ′i denote the (maximal) partial hypergraph of H ′ that is contained in H(Fi). We let
T0 = (T0, χ0, λ0) be a hypertree decomposition of width at most k of H ′0 as defined above.
For i = 1, . . . , k we let Ti = (Ti, χi, λi) be a hypertree decomposition of width 1 of H ′i. We
combine these k+ 1 hypertree decompositions to a hypertree decomposition of width at most
k for H ′. We will do this by adding the decompositions T1, . . . , Tk to T0 one by one and
without increasing the width of T0.

Let T ∗i = (T ∗i , χ∗i , λ∗i) denote the hypertree decomposition of width at most k obtained
from T0 by adding the first i hypertree decompositions. For i = 0 we let T ∗0 = T0. For i > 0
we proceed as follows.

First we consider the case where there is a hyperedge e ∈ H ′0 with Vi+1 ⊆ e. Observe
that there exists a node t ∈ V (T ∗i) with e ⊆ χ(t). We define T ∗i+1 = (T ∗i+1, χ

∗
i+1, λ

∗
i+1)

as follows. We obtain T ∗i+1 from the disjoint union of T ∗i and Ti+1 by adding an edge
between t and the root of Ti+1. As the root of T ∗i+1 we choose the root of T ∗i . We set
χ∗i+1(t) = χ∗i (t) for every t ∈ V (T ∗i), and χ∗i+1(t) = χi+1(t) ∪ Vi+1 for every t ∈ V (Ti+1); we
set λ∗i+1(t) = λ∗i (t) for every t ∈ V (T ∗i), and λ∗i+1(t) = λi+1(t) ∪ {e} for every t ∈ V (Ti+1)
(hence |λ∗i+1(t)| ≤ max(2, k) = k). Consequently T ∗i+1 has width at most k.

It remains to consider the case where there is no hyperedge e ∈ H ′0 with Vi+1 ⊆ e. We
define T ∗i+1 as follows. We obtain T ∗i+1 from the disjoint union of T ∗i and Ti+1 by adding
an edge between an arbitrary node t ∈ V (T ∗i) and the root of Ti+1. As the root of T ∗i+1 we
choose the root of T ∗i . We set χ∗i+1 = χ∗i ∪ χi+1 and λ∗i+1 = λ∗i ∪ λi+1. Clearly T ∗i+1 has
width at most k.

Claim 2. G has a partitioned clique if and only if F is satisfiable.

To prove Claim 2 we first suppose that G has a partitioned clique K. We define a partial
truth assignment τ : V → {0, 1} by setting τ(v) = 1 for v ∈ K, and τ(v) = 0 for v /∈ K. This
partial assignment satisfies F0, and it is easy to extend τ to a satisfying truth assignment of F .
Conversely, suppose that F has a satisfying truth assignment τ . Because of the formulas Fi,

Sebastian Ordyniak, Daniel Paulusma, and Stefan Szeider 93

1 ≤ i ≤ k, τ sets exactly one variable viji
∈ Vi to true. Let K = {v1

j1
, . . . , vkjk

}. The clauses
in F0 ensure that viji

and vi′ji′
are adjacent in G for each pair 1 ≤ i < i′ ≤ k, hence K is a

partitioned clique of G. This proves Claim 2. J

Clique-width is a graph parameter that measures in a certain sense the structural complex-
ity of a directed or undirected graph [2]. The parameter is defined via a graph construction
process where only a limited number of vertex labels are available; vertices that share the
same label at a certain point of the construction process must be treated uniformly in
subsequent steps. In particular, one can use the following four operations: the creation of
a new vertex with label i, the vertex-disjoint union of already constructed labeled graphs,
the relabeling of all vertices of label i with label j, and the insertion of all possible edges
between vertices of label i and label j (either undirected or directed from label i to j). The
clique-width cw(G) of a graph G is the smallest number k of labels that suffice to construct
G by means of these four operations. Such a construction of a graph can be represented by
an algebraic term called a k-expression.

The (directed) clique-width of a CNF formula is the clique-width of its (directed) incidence
graph. The directed clique-width of a CNF formula can also be defined in terms of the signed
incidence graph and is therefore sometimes called the signed clique-width. Observe that the
clique-width of a CNF formula is always bounded by its directed clique-width. However, in
general the directed clique-width can be much higher than the undirected one. It is well
known that satisfiability decision is fixed-parameter tractable for the parameter directed
clique-width [1, 6]. Fischer, Makowsky, and Ravve [6] developed a dynamic programming
algorithm that counts the number of satisfying truth assignments in linear time for CNF
formulas of bounded directed clique-width. They also conjectured that their method can be
extended to work for formulas of bounded (undirected) clique-width. However, the reduction
in the proof of Theorem 6 shows that this is not possible unless FPT = W[1].

I Corollary 7. SAT, parameterized by an upper bound k on the clique-width of the incidence
graph of F , is W[1]-hard even if a k-expression for I(F) is given.

Proof. It is easy to see that the clique-width of the incidence graph of the formula F in the
proof of Theorem 6 is at most k′ = O(k), and a k′-expression can be found in polynomial
time. Hence the result follows from the same reduction. J

Rank-width is a further graph parameter that has been considered for CNF formulas.
This parameter was introduced by Oum and Seymour [16] for approximating the clique-width
of graphs. A certain structure that certifies that a graph has rank-width at most k is called a
rank-width decomposition of width k. Similar to clique-width, one can define the rank-width
of a directed graph that takes the orientation of edges into account. The directed (or signed)
rank-width of a CNF formula is the rank-width of its directed incidence graph. Ganian,
Hliněný, and Obdržálek [8] developed an efficient dynamic programming algorithm that
counts in linear time the number of satisfying assignments of a CNF formula of bounded
directed rank-width. Because bounded undirected rank-width implies bounded undirected
clique-width [16], the following is a direct consequence of Corollary 7.

I Corollary 8. SAT, parameterized by an upper bound k on the rank-width of the incidence
graph of F , is W[1]-hard even if a rank-decomposition of width k for I(F) is given.

FSTTCS 2010

94 Satisfiability of Acyclic and Almost Acyclic CNF Formulas

6 Conclusion

We have identified a new class of CNF formulas, the class BAC of β-acyclic formulas, for
which recognition and satisfiability decision are solvable in polynomial time. Furthermore,
we have established hardness results for two natural strategies for gradually extending this
class: extensions via strong backdoor sets and extensions via β-hypertree decompositions.
The first extension is fixed-parameter intractable because the backdoor sets are hard to find;
the second extension is fixed-parameter intractable because satisfiability decision remains
hard even if the β-hypertree decomposition is provided. It would be interesting to know
whether the satisfiability of CNF formulas of β-hypertree width bounded by an arbitrary
constant k can be decided in polynomial time (of order depending on k) if a β-hypertree
decomposition is provided.

References
1 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. On the fixed parameter complexity

of graph enumeration problems definable in monadic second-order logic. Discr. Appl. Math.,
108(1-2):23–52, 2001.

2 Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. Context-free handle-rewriting
hypergraph grammars. In Hartmut Ehrig, Hans-Jörg Kreowski, and Grzegorz Rozenberg,
editors, Graph-Grammars and their Application to Computer Science, 4th International
Workshop, Bremen, Germany, March 5–9, 1990, Proceedings, volume 532 of Lecture Notes
in Computer Science, pages 253–268, 1991.

3 Martin Davis and Hillary Putnam. A computing procedure for quantification theory. J.
ACM, 7(3):201–215, 1960.

4 Rod G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in Com-
puter Science. Springer Verlag, New York, 1999.

5 Ronald Fagin. Degrees of acyclicity for hypergraphs and relational database schemes. J.
ACM, 30(3):514–550, 1983.

6 Eldar Fischer, Johann A. Makowsky, and Elena V. Ravve. Counting truth assignments of
formulas of bounded tree-width or clique-width. Discr. Appl. Math., 156(4):511–529, 2008.

7 Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts in
Theoretical Computer Science. An EATCS Series. Springer Verlag, Berlin, 2006.

8 Robert Ganian, Petr Hliněný, and Jan Obdržálek. Better algorithms for satisfiability prob-
lems for formulas of bounded rank-width. Technical Report arXiv:1006.5621v1, CoRR,
2010.

9 Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions: a survey.
In Mathematical foundations of computer science, 2001 (Mariánské Láznĕ), volume 2136
of Lecture Notes in Computer Science, pages 37–57. Springer, 2001.

10 Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions and
tractable queries. J. of Computer and System Sciences, 64(3):579–627, 2002.

11 Georg Gottlob and Reinhard Pichler. Hypergraphs in model checking: acyclicity and
hypertree-width versus clique-width. SIAM J. Comput., 33(2):351–378, 2004.

12 Peter L. Hammer, Frederic Maffray, and Myriam Preismann. A characterization of chordal
bipartite graphs. Technical report, Rutgers University, New Brunswick, NJ, 1989.

13 Dániel Marx. Chordal deletion is fixed-parameter tractable. Algorithmica, 57(4):747–768,
2010.

14 Naomi Nishimura, Prabhakar Ragde, and Stefan Szeider. Detecting backdoor sets with
respect to Horn and binary clauses. In Proceedings of SAT 2004 (Seventh International

Sebastian Ordyniak, Daniel Paulusma, and Stefan Szeider 95

Conference on Theory and Applications of Satisfiability Testing, 10–13 May, 2004, Vancou-
ver, BC, Canada), pages 96–103, 2004.

15 Naomi Nishimura, Prabhakar Ragde, and Stefan Szeider. Solving #SAT using vertex
covers. Acta Informatica, 44(7-8):509–523, 2007.

16 Sang-il Oum and Paul Seymour. Approximating clique-width and branch-width. J. Combin.
Theory Ser. B, 96(4):514–528, 2006.

17 Michael J. Pelsmajer, Jacent Tokazy, and Douglas B. West. New proofs for strongly chordal
graphs and chordal bipartite graphs. Unpublished Manuscript, 2004.

18 Krzysztof Pietrzak. On the parameterized complexity of the fixed alphabet shortest com-
mon supersequence and longest common subsequence problems. J. of Computer and System
Sciences, 67(4):757–771, 2003.

19 Marko Samer and Stefan Szeider. Algorithms for propositional model counting. J. Discrete
Algorithms, 8(1):50–64, 2010.

20 Robert E. Tarjan and Mihalis Yannakakis. Simple linear-time algorithms to test chordality
of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM
J. Comput., 13(3):566–579, 1984.

21 Ryuhei Uehara. Linear time algorithms on chordal bipartite and strongly chordal graphs. In
Automata, languages and programming, volume 2380 of Lecture Notes in Computer Science,
pages 993–1004. Springer, 2002.

FSTTCS 2010

	Introduction
	Preliminaries
	Parameterized Complexity

	Polynomial-time SAT Decision for -acyclic CNF Formulas
	Backdoor Sets
	Deletion Backdoor Sets

	-Hypertree Width and Clique-Width
	Conclusion

