
Verifying Recursive Active Documents with
Positive Data Tree Rewriting
Blaise Genest1,2, Anca Muscholl3, and Zhilin Wu4

1 CNRS, IPAL UMI, joint with I2R-A*STAR-NUS, Singapore
2 CNRS, IRISA UMR, joint with Université Rennes I, France

bgenest@irisa.fr
3 LaBRI, Université Bordeaux/CNRS, France

anca@labri.fr
4 LaBRI, Université Bordeaux/CNRS, France

zlwu@labri.fr

Abstract
This paper considers a tree-rewriting framework for modeling documents evolving through service
calls. We focus on the automatic verification of properties of documents that may contain data
from an infinite domain. We establish the boundaries of decidability: while verifying documents
with recursive calls is undecidable, we obtain decidability as soon as either documents are in the
positive-bounded fragment (while calls are unrestricted), or when there is a bound on the number
of service calls (bounded model-checking of unrestricted documents). In the latter case, the
complexity is NexpTime-complete. Our data tree-rewriting framework resembles Guarded Active
XML, a platform handling XML repositories that evolve through web services. The model here
captures the basic features of Guarded Active XML and extends it by node renaming and subtree
deletion.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.469

1 Introduction

From static in house solutions, databases have become more and more open to the world,
offering e.g. half-open access through web services. As usual for open systems, their design
requires a careful static analysis process, helping to guarantee that no malicious client may
take advantage of the system in a way for which the system was not designed. Static analysis
of such systems very recently brought together two areas - databases, with emphasis on
semi-structured XML data, and automated verification, with emphasis on model-checking
infinite-state systems. Systems modeling dynamical evolution of data are pretty challenging
for automated verification, as they involve feedback loops between semi-structured data,
possibly with values from unbounded domains, and the workflow of services. If both topics
have been studied extensively on its own, very few papers tackle decidability of algorithms
when all aspects are present at the same time.

An interesting model emerged recently for handling XML repositories evolving through
web services, namely Active XML (AXML) [4]. These are XML documents that evolve
dynamically, containing implicit data in form of embedded service calls. Services may be
recursive, so the evolution of such documents is both non-deterministic and unbounded in
time. A first paper analyzing the evolution of AXML documents considered monotonous
documents [3]. With this restriction, as soon as a service is enabled in a document, then from
this point on the service cannot be disabled and calling it can only extend the document.
In particular, information can never be deleted. Recently, a workflow-oriented version of
AXML was proposed in [5]: the Guarded AXML model (GAXML for short) adds guards

© Blaise Genest, Anca Muscholl and Zhilin Wu;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 469–480

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.469
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

470 Verifying Recursive Active Documents with Positive Data Tree Rewriting

to service calls, thus controlling the possible evolution of active documents. Decidability in
co-2NexpTime of static analysis for the recursion-free GAXML fragment w.r.t. a variant of
LTL with data tree patterns as atomic formulas was established in [5]. Static analysis is
more complex in [5], due to the presence of unbounded data. The crucial restriction needed
for decidability is a uniform bound on the number of possible service calls. Compared to [3],
service invocation can terminate, and more importantly, negative guards can be used. But
still, deletion of data is not possible. Finally, the GAXML model relies on a rather involved
semantics of service calls.

In this work, our aim is twofold. First, we aim at embedding and extending the GAXML
model in a simpler framework based on tree rewriting. Our model DTPRS (data tree pattern
rewriting systems) uses the same basic ingredients as GAXML, which are tree patterns
for guards and queries. However, our formalism allows to describe several possible effects
of a service call: materialization of implicit data like in GAXML, but also deletion and
modification of existing document parts. This model is a simplified version of the TPRS
model proposed in [15], but in this setting it can additionally handle unbounded data.

Our second, and main objective is to get decidability of static analysis of DTPRS without
relying on a bound on the number of service calls. For doing that, we use a technique that
emerged in the verification of particular infinite-state systems such as Petri nets and lossy
channel systems. The main concept is known in verification as well-structured transition
systems (WSTS for short) [1, 13]. WSTSs are one example for infinite-state systems
where (potentially) infinite sets of states can be represented (and effectively manipulated)
symbolically in a finite way.

Our basic objects are data trees, i.e., trees with labels from an infinite domain. We
view data trees as graphs, and define in a natural way a quasi-order on such graphs. Then
we show that a uniform bound on the length of simple paths in such graphs, together
with positive guards, makes DTPRS well-structured systems [1, 13]. As a technical tool
we use here tree decompositions of graphs. In a nutshell we trade here recursion against
positiveness, since considering both leads to undecidable static analysis. We show that
for positive-bounded DTPRS, termination and tree pattern reachability are both decidable.
On the negative side, we show that the verification of very simple Tree-LTL properties is
undecidable even for positive-bounded DTPRS. On the positive side, the decidability result
for pattern reachability can be extended to the verification of existential positive Tree-LTL
properties. We then consider the type-checking problem, another static analysis problem,
and show its Co-NexpTime-completeness for arbitrary DTPRS. Finally, we show that bounded
model-checking of arbitrary DTPRS is NexpTime-complete.

Related work: Verification of web services often ignores unbounded data (c.f. e.g. [17,
14]). On the other hand, several data-driven workflow process models have been proposed.
Document-driven workflow was proposed in [20]. Artifact-based workflow was outlined in
[16], in which artifacts are used to represent key business entities, including both their data
and life cycles. An early line of results involving data establishes decidability boundaries for
the verification of temporal (first-order based) properties of a data-driven workflow processes,
based on a relational data model [11, 10, 12]. This approach has been recently extended to
the artifact-based model [9].

On the verification side, there is a rich literature on the verification of well-structured
infinite transition systems [1, 13], ranging from faulty communication systems [7] to programs
manipulating dynamic data [2] (citing only a few recent contributions). The latter work is
one of the few examples where well-quasi-order on graphs is used.

Organization of the paper: In the next section, we fix some definitions and notations, then

Blaise Genest, Anca Muscholl, and Zhilin Wu 471

define the DTPRS model. In Section 3 we show that analysis of DTPRS with recursive DTD
or negated tree patterns is undecidable. In Section 4 we define positive-bounded DTPRS
and prove our decidability results. Then in Section 5, we show the undecidability of the
verification of simple Tree-LTL properties and the decidability of existential positive Tree-LTL
properties for positive-bounded DTPRS. In Section 6, we consider the type-checking problem
for DTPRS and show its Co-NexpTime completeness. Finally in Section 7, we consider
bounded model-checking problem for DTPRS and show its NexpTime-completeness.

2 Definitions and notations

In this paper, documents are labeled, unranked, unordered trees. We fix a finite alphabet Σ
(with symbols a, b, c, . . . , called tags) and an infinite data domain D (with symbols d, . . .).
A data tree (see Figure 1) is a (rooted) tree T with nodes labeled by Σ ∪ D. A data tree
T can be represented as a tuple T = 〈V,E, root, `〉, with labeling function ` : V → Σ ∪ D.
Internal nodes are Σ-labeled, whereas leaves are (Σ ∪ D)-labeled. We also fix a (finite) set
of variables X (with symbols X,Y, Z, . . .) that will take values in D, and use ∗ as special
symbol standing for any tag. Let T denote the set Σ ∪ X ∪ {∗}.

library

book

bid

123456

available

book

bid

826312

rid

M2036

lent

reader

rid

M2036

capacity

4

Figure 1 A document for a library system: The reader M2036 borrows a book with identifier
826312 from the library, and has capacity 4, namely he or she is able to borrow at most 4 other
books.

We now introduce the different components used in our rewriting rules: data tree patterns
to locate and specify a pattern of the document, data constraints to express data equalities
and inequalities, data tree pattern queries to extract information from a document.

A data constraint is a Boolean combination of relations X = Y , with1 X,Y ∈ X . A data
tree pattern (DTP) P = 〈V,E, root, `, τ, cond〉 is a (rooted) T -labeled tree 〈V,E, root, `〉,
together with an edge-labeling function τ : E → {|, ||} and a data constraint cond. Edges
that are |-labeled denote child edges, and ||-labeled edges denote descendant ones. Internal
nodes are labeled by Σ ∪ {∗}, and leaves by T . A matching of a DTP P into a data tree
T is defined as a mapping preserving the root, the Σ- and D-labels (with ∗ as wildcard),
the child and the descendant relations, satisfying cond and mapping X -labeled nodes to
D-labeled ones. In particular, a relation X = Y (X,Y ∈ X) in a DTP P means that the
corresponding leaves of P must be mapped to leaves of T carrying the same data value. An
injective matching of P into T means that the mapping above is injective. A relative DTP is
a DTP with one designated node self . A relative DTP (P, self) is matched to a pair (T, v),
where T is a tree and v is a node of T .

We use Boolean combinations of (relative) DTPs as rule guards. DTPs in a Boolean
combination are matched independently of each other, except that nodes designated by self

1 For simplicity we disallow here explicit data constants X = d (d ∈ D): they can be simulated by tags
from Σ.

FSTTCS 2010

472 Verifying Recursive Active Documents with Positive Data Tree Rewriting

library

book

bid

Y

rid

X

lent

reader

rid

X

4

Figure 2 A data tree pattern (DTP).

must be matched to the same node of T . Boolean operators are interpreted by the standard
meaning.

A data tree pattern query (DTPQ) is of the form body head, with body a DTP and
head a tree such that

the internal nodes of head are labeled by Σ and its leaves are labeled by (Σ ∪ D ∪ X),
every variable occurring in head also occurs in body,
there is at least one variable occurring in head, i.e., at least one leaf of head is labeled by
X (i.e., head is not a constant tree).

Let T be a data tree and Q = body head be a DTPQ. The evaluation result of Q over
T is the forest Q(T) of all instantiations of head by matchings from body to T . For example,
the DTPQ P head with P given by Figure 2 and head consisting of a unique node labeled
by Y , returns a forest consisting of one-node trees labeled by identifiers of books which are
borrowed by readers with capacity 4. A relative DTPQ is defined like a DTPQ, except that
its body is a relative DTP. A relative DTPQ Q is evaluated on a pair (T, v). The result of
Q(T, v) is defined as above, except that matchings of body must map node self to v. For
instance, the relative DTPQ P head where the reader node is labeled self will return a
forest of one-node trees labeled by identifiers of books which are borrowed by a particular
reader with capacity 4 designated by self .

Similar to GAXML, data tree rewriting rules are guarded by (Boolean combinations of)
DTPs and they can add information to a tree via queries. In addition, our rules can rename
tags and delete nodes, together with their subtrees. Each rule comes along with a context
called locator, that also describes all the operations related to a rewriting step. A locator
L is a relative DTP with additional labels append, del, and rena (a ∈ Σ). The meaning of
these labels is to add information (append), delete a node and its subtree (del) and rename
a tag into a (rena). Labels append and rena are not exclusive. They are restricted to be
attached to nodes of L that are labeled by Σ ∪ {∗}. Label del can be attached to any node.
We assume that all descendants in L of a node with del are also labeled by del, and that
nodes labeled by del cannot be labeled by append or rena.

library

book append(F)

available renlent

L

reader

rid

X

capacity

5 ren4

ridF

X

Figure 3 DTP rule “borrow”: The reader identifier is added as a subtree to the node “book”
whose state is renamed as “lent”, and the capacity of the reader is decreased by renaming.

A data tree pattern rewriting rule (DTP rule for short) R is a tuple 〈L,G,Q,F , χ〉 with:
L is a locator ,

Blaise Genest, Anca Muscholl, and Zhilin Wu 473

G is a guard: a Boolean combination of (relative) DTPs,
Q is a finite set of relative DTPQs,
F is a finite set of forests with internal nodes labeled by Σ and leaves labeled by
Σ ∪ D ∪ X ∪Q,
χ is a mapping from the set of nodes of L labeled by append to F .

A DTP rewriting system (DTPRS) is a pair (R,∆) consisting of a finite set R of DTP
rules and a static invariant ∆. The latter is a DTD τ together with a data invariant inv,
i.e. a Boolean combination of DTPs. As usual for unordered trees, the DTD τ describes
the syntax of trees. It is defined as a tuple (Σr,P) such that Σr is the set of allowed root
labels, and P is a finite set of rules a→ ψ such that a ∈ Σ and ψ is a Boolean combination
of inequalities of the form |b| ≥ k, where b ∈ Σ ∪ {dom} (dom is a symbol standing for any
data value), and k is a non-negative integer. A positive DTD is one where the Boolean
combinations above are positive. A non-recursive DTD is one where the rule graph is acyclic
(the rule graph has Σ as vertex set and edges (a, b) for every a, b such that b occurs in a
a→ ψ). For ∆ = (τ, inv) we write T |=∆ for a data tree T satisfying both τ and inv.

An example of a DTP rule for a reader of capacity 5 to borrow a book from a library is
illustrated in Figure 3, including the locator L and F = {F}.

We first describe the semantics of DTP rules informally. First, the locator is mapped
against the data tree in a non-deterministic way. Then, queries are evaluated, thus determining
the information that will possibly enhance the tree using the append-labels in the locator.
Deletion and renaming are performed as expected. The resulting data tree must satisfy the
static invariant ∆.

We now define the semantics formally. Let T = 〈V,E, root, `〉 be a data tree with T |=∆,
and let R = 〈L,G,Q,F , χ〉 be a DTP rule.

Let µ be an injective matching from L to T . Let ν be the assignment of data values to
variables in L such that ν(X) = `(µ(v)) for every v labeled by X ∈ X in L.
For each variable X ∈ X we denote its evaluation as X(T), with X(T) = ν(X) if defined,
and X(T) a fresh data value otherwise. Here a fresh data value is a data value
which does not appear in T . Furthermore, it is required that all the new variables of R,
i.e. variables occurring in F , but not in L, should take mutually distinct fresh values.
For each forest F ∈ F , we denote its evaluation by F (T), by replacing labels Q ∈ Q by
Q(T) and labels X ∈ X by X(T). Recall that all queries Q ∈ Q are evaluated relatively
to µ(self).
A data tree T ′ is obtained from T by

deleting subtrees rooted at nodes µ(v) whenever v is labeled by del in L,
changing the tag of a node µ(v) to a whenever v is labeled by rena in L,
appending F (T) as a subforest of nodes µ(v) whenever v is labeled by append in L
and χ(v) = F ,
every other node of T keeps its tag or data.

The rule R is enabled on data tree T if there exists an injective matching µ of L into T
such that (1) the guard G is true on (T, µ(v)) with v labeled by self in L, and (2) there
is a data tree T ′, obtained from T and µ by the operations specified above, satisfying
T ′|=∆.

Let T R−→ T ′ denote the transition from T to T ′ using DTP rule R ∈ R.

I Remark. 1. The injectivity of the matching µ ensures that the outcome of a rewriting
step is well-defined. In particular, no two nodes with label del and append (or rena),

FSTTCS 2010

474 Verifying Recursive Active Documents with Positive Data Tree Rewriting

resp., can be mapped to the same node in the data tree. Notice that mappings used for
guards or queries may be non-injective.

2. For the new variables occurring in F , but not in L, we choose mutually distinct fresh
values. We could have chosen arbitrary values instead, and enforce that they are fresh
and mutually distinct a posteriori using the data invariant inv. In this case, inv needs
negation. The inv (or the locator) can be also used to enforce that the (arbitrarily)
chosen values already occur in T . This kind of invariant would be positive.

3. In our definition of DTP rules, it might appear that guards are redundant w.r.t. the
locator. However, this is not the case in general, e.g. in the situation that guards include
disjunctions or negations of DTPs.

Given a DTPRS (R,∆), let T −→ T ′ denote the union of T R−→ T ′ for some R ∈ R,
and T

+−→ T ′ (or T ∗−→ T ′) denote the transitive (or reflexive and transitive) closure of
T −→ T ′. Moreover, let T ∗R(T) denote the set of trees that can be reached from a data tree
T by rewriting with DTP rules from R, i.e. T ∗R(T) = {T ′ | T ∗−→ T ′}. For a set of data trees
I, let T ∗R(I) be the union of T ∗R(T), for T ∈ I.

We are interested in the following questions, given a DTPRS (R,∆):
Pattern reachability: Given a DTP P and a set of initial trees2 Init, given as the
conjunction of a DTD and a Boolean combination of DTPs, is there some T ∈ T ∗R(Init)
such that P matches T?
Termination: Given an initial data tree T0, are all runs (rewriting paths) T0 → T1 → · · ·
starting from T0 finite?

The reason for the fact that termination of DTPRS is defined above w.r.t. a single initial
data tree is that termination from a set of initial trees is already undecidable without data
(see Proposition 3).

3 Undecidability

As one might expect, the analysis of DTPRS is quickly undecidable – and sometimes already
without using any unbounded data. The proof of the proposition below is obtained by a
straightforward simulation of 2-counter machines.
I Proposition 1. Both pattern reachability and termination for DTPRS (R,∆) are undecidable
whenever one of the following holds:
1. the DTD in ∆ is recursive,
2. either guards in R or the invariant ∆ contain negated DTPs.
The above result holds already without data.

The next result shows that with data, we can relax both conditions above and still get
undecidability of DTPRS. The main idea is to use data for creating long horizontal paths
(although trees are supposed to be unordered). Such horizontal paths can be obtained
e.g. with a tree of depth 2, with each subtree (of the root) containing three nodes, a node
plus its two children labeled respectively by data values di, di+1. Assuming all data values di

are distinct (and distinguishing d1), then a linear order on these subtrees is obtained.

I Theorem 2. Both pattern reachability and termination are undecidable for DTPRS (R,∆)
such that (1) the DTD in ∆ is non-recursive and (2) all DTPs from guards in R and the
invariant ∆ are positive.

2 We require that every tree in Init satisfies ∆.

Blaise Genest, Anca Muscholl, and Zhilin Wu 475

We end this section with a remark on the undecidability of termination from an initial
set of trees. First we notice that – already without data – DTPRS can simulate so-called
reset Petri nets [15]. These are Petri nets (or equivalently, multi-counter automata without
zero test) with additional transitions that can reset places (equivalently, counters) to zero.
They can be represented by trees of depth 2, where nodes at depth one represent places, and
their respective number of children (leaves) is the number of tokens on that place. A DTPRS
(without data) can easily simulate increments, decrements and resets (using deletion in
DTPRS). It is known that so-called structural termination for reset Petri nets is undecidable
[18], i.e., the question whether there are infinite computations from any initial configuration,
is undecidable. This implies:
I Proposition 3. The following question is undecidable: Given a DTPRS (R,∆), is there
some tree T0 satisfying ∆ and an infinite computation T0 −→ T1 −→ · · · in (R,∆)? This
holds already for non-recursive DTD in ∆ and without data constraints in DTPs.

It follows from Proposition 3 that termination from an initial set of trees, namely to
decide whether for every T0 ∈ Init, all the runs starting from T0 terminate, is undecidable.

4 Positive-bounded DTPRS

In this section we consider positive-bounded DTPRS, a fragment of DTPRS for which we
show that pattern reachability and termination are decidable.

From Proposition 1, we know that in order to get decidability, the DTD in the static
invariant ∆ must be non-recursive. For a non-recursive DTD, there is some B such that every
tree satisfying the DTD has depth bounded by B. In the following, we assume the existence
of such a bound B. Also from Proposition 1, we know that for obtaining decidability we
need to restrict ourselves to positive guards and positive data invariants.

However, from Theorem 2, we know that these restrictions alone do not suffice to achieve
decidability. We also need to disallow long linear orders created by data. For this, we
introduce a last restriction, called simple-path bounded, which is defined in the following.

Let T = 〈V,E, root, `〉 be a data tree. The graph G(T) associated with T is the undirected
graph obtained from T by merging all the nodes labeled by the same d ∈ D into a single node
d. Formally, G(T) = (V ′, E′), where V ′ = {v ∈ V | `(v) ∈ Σ} ∪ {`(v) | v ∈ V, `(v) ∈ D} and
E′ = {{v, w} | `(v), `(w) ∈ Σ, (v, w) ∈ E} ∪ {{v, d} | `(v) ∈ Σ,∃w s.t. (v, w) ∈ E, `(w) = d}.
A simple path of T is a simple path in G(T), i.e. a sequence of vertices v1, . . . , vn in G(T)
such that for all i 6= j, {vi, vi+1} ∈ E′ and vi 6= vj . The length of a path v1, . . . , vn is n− 1.

Formally, a DTPRS (R,∆) is positive-bounded with set of initial trees Init, if:
non-recursive-DTD: the DTD in the static invariant ∆ is non-recursive. In particular,
trees satisfying the DTD have depth bounded by some B > 0.
positive: all guards in R and the data invariant in ∆ are positive Boolean combinations
of DTPs. The DTD in ∆ is positive as well.
simple-path bounded: there exists K > 0 such that for any T0 ∈ Init, the length of
any simple path in any T ∈ T ∗R(T0), is bounded by K.

Notice that the third condition above implies that all data trees have depth bounded
by K. So we always assume that B ≤ K. Notice also that in positive-bounded DTPRS,
the data value inequality is allowed in DTPs, that is, we can state that two data values are
different. Moreover, fresh data values (for the new variables in DTP rules) can be used to
model some conceptually negative data constraints, like for instance key properties. Notice
also that there is no restriction on the DTD of the initial set Init. However, since the DTD
in the invariant ∆ is positive, “at most”-constraints must be ensured via the rewriting rules.

FSTTCS 2010

476 Verifying Recursive Active Documents with Positive Data Tree Rewriting

The library example illustrated in Figure 1 includes DTP rules for book borrowing (Figure
3) and returning, the registration of new books and new readers (where fresh data values can
be used to guarantee that the rid and bid are “keys”), and the deletion of reader accounts.
It is easy to notice that the library example satisfies the first 2 conditions above. It is also
the case for the third condition. Indeed, all simple paths are bounded by 7: A longest path
is for instance: library - book - rid - M2036 - rid - reader - capacity - 4. Notice that the
bound still holds even if the capacity of a reader is unbounded.

The rest of the section is devoted to the proof of the following result:

I Theorem 4. Given a positive-bounded DTPRS (R,∆), pattern reachability and termination
are both decidable.

We prove Theorem 4 by using the framework of well-structured transition systems
(WSTS) [1, 13], which has been applied to DTPRS without data in [15]. We recall briefly
some definitions. A WSTS is a triple (S,−→,�) such that S is an (infinite) state space, � is
a well-quasi-ordering3 (wqo for short) on S, and −→ is the transition relation on S. It is
required that −→ is compatible w.r.t. �: for any s, t, s′ ∈ S with s −→ t and s � s′, there
exists t′ ∈ S such that s′ −→ t′ and t � t′.

Let TB,K denote the set of data trees whose depths are bounded by B and lengths of
simple paths are bounded by K. From the definition of positive-bounded DTPRS, we know
that T ∗R(Init) ⊆ TB,K . In the following, we prove Theorem 4 by defining a binary relation �
on TB,K and showing that (TB,K ,−→,�) is a WSTS.

4.1 Well-structure of positive-bounded DTPRS
We define a binary relation � on TB,K as follows. Let T1 = 〈V1, E1, root1, `1〉, T2 =
〈V2, E2, root2, `2〉 ∈ TB,K , then T1 � T2 if there is an injective mapping φ from V1 to
V2 such that

root preservation: φ(root1) = root2,
parent-child relation preservation: (v1, v2) ∈ E1 iff (φ(v1), φ(v2)) ∈ E2,
tag preservation: If `1(v) ∈ Σ, then `1(v) = `2(φ(v)),
data value (in)equality preservation: If v1, v2 ∈ V1 and `1(v1), `1(v2) ∈ D, then
`2(φ(v1)), `2(φ(v2)) ∈ D, and `1(v1) = `1(v2) iff `2(φ(v1)) = `2(φ(v2)).

It is easy to see that � is reflexive and transitive, so it is a quasi-order. In the following,
we first assume that � is a wqo on TB,K and show that −→ is compatible with �, in order to
prove Theorem 4. We show in Section 4.2 that � is indeed a wqo: for any infinite sequence
of data trees T0, T1, . . . ∈ TB,K , there are i < j such that Ti � Tj .

I Proposition 5. Let (R,∆) be a positive-bounded DTPRS. Let T1, T
′
1, T2 ∈ TB,K , T1

R−→ T2

for some R ∈ R, and T1 � T ′1. Then there exists T ′2 ∈ TB,K such that T ′1
R−→ T ′2 and T2 � T ′2.

Consequently, in the positive-bounded fragment −→ is compatible w.r.t. � in TB,K , thus
(TB,K ,−→,�) is a WSTS.

In addition, it can be shown that (TB,K ,−→,�) satisfies some additional computability
conditions which are needed to show the decidability of pattern reachability and termination,
namely, effectiveness of pred-basis for pattern reachability and effectiveness of successor
relation for termination. With these computability conditions, Theorem 4 then follows from
the properties of WSTS (c.f. Theorem 3.6 and Theorem 4.6 in [13]).

3 A wqo � is a reflexive, transitive and well-founded relation with no infinite antichain.

Blaise Genest, Anca Muscholl, and Zhilin Wu 477

4.2 Well-quasi-ordering for data trees
In order to prove that � is a wqo over TB,K , we first represent a data tree T as a (labeled)
undirected graph G`(T), then we encode G`(T) into a tree (without data) of bounded depth
using the concept of tree decompositions. Define a binary relation ≤ on labeled trees (without
data) of bounded depth as follows: T1 ≤ T2 if there is an injective mapping from T1 to T2
preserving the root, the tags, and the parent-child relation. It is known that ≤ is a wqo on
labeled trees of bounded depth without data [15].

Let GK be the set of labeled graphs with the lengths of all simple paths bounded by K.
In the following, we show that � on TB,K corresponds to the induced subgraph relation
(formally defined later) on GK , and the fact that ≤ is a wqo for labeled trees of bounded
depth implies that the induced subgraph relation is a wqo on GK .

Given a data tree T = 〈V,E, root, `〉 ∈ TB,K , the labeled undirected graph representation
G`(T) of T is obtained from G(T), the graph associated to T , by adding labels encoding
information of data tree nodes (tag, depth . . .). Formally, G`(T), is a ((Σ× [B + 1]) ∪ {$})-
labeled (where [B + 1] = {0, 1, · · · , B}) undirected graph (V ′, E′, `′) defined as follows,

V ′ = {v ∈ V | `(v) ∈ Σ} ∪ {`(v) | v ∈ V, `(v) ∈ D},
E′ = {{v, w} | `(v), `(w) ∈ Σ, (v, w) ∈ E} ∪ {{v, d} | `(v) ∈ Σ,∃w, (v, w) ∈ E, `(w) = d},
Let v ∈ V such that `(v) ∈ Σ, then `′(v) = (`(v), i). In addition, `′(d) = $ for each
d ∈ V ′ ∩ D.

Let ΣG denote (Σ× [B + 1])∪{$}. For ΣG-labeled graphs, we define the induced subgraph
relation as follows. Let G1 = (V1, E1, `1), G2 = (V2, E2, `2) be two ΣG-labeled graphs, then
G1 is an induced subgraph of G2 (denoted G1 v G2) iff there is an injective mapping φ from
V1 to V2 such that

label preservation: `1(v1) = `2(φ(v1)) for any v1 ∈ V1,
edge preservation: let v1, v

′
1 ∈ V1, then {v1, v

′
1} ∈ E1 iff {φ(v1), φ(v′1)} ∈ E2.

From the definition of the labeled graph representation of data trees, it is not hard to
show that the induced subgraph relation v corresponds to the relation � on data trees.
I Proposition 6. Let T1, T2 ∈ TB,K , then T1 � T2 iff G`(T1) v G`(T2).

Now we show how to encode any ΣG-labeled graph belonging to GK into a labeled tree of
bounded depth by using tree decompositions.

Let G = (V,E, `) be a connected ΣG-labeled graph, then a tree decomposition of G is a
quadruple T = 〈U,F, r, θ〉 such that:

(U,F, r) is a tree with the domain U , the parent-child relation F , and the root r ∈ U ,
θ : U → 2V is a labeling function attaching each node u ∈ U a set of vertices of G,
For each edge {v, w} ∈ E, there is a node u ∈ U such that {v, w} ⊆ θ(u),
For each vertex v ∈ V , the set of nodes u ∈ U such that v ∈ θ(u) constitutes a connected
subgraph of T .

The sets θ(v) are called the bags of the tree decomposition. The depth of a tree decom-
position T = 〈U,F, r, θ〉 is the depth of the tree (U,F, r) and the width of T is defined as
max{|θ(u)| − 1 | u ∈ U}. The tree-width of a graph G = (V,E) is the minimum width of
tree decompositions of G. For a tree decomposition of width K of a graph G, without loss
of generality, we assume that each bag is given by a sequence of vertices of length K + 1,
v0 . . . vK , with possible repetitions, i.e. possibly vi = vj for some i 6= j (tree decompositions
in this form are sometimes called ordered tree decompositions).

I Theorem 7. ([19, 6]) If G ∈ GK , then G has a tree decomposition with both depth and
width bounded by K.

FSTTCS 2010

478 Verifying Recursive Active Documents with Positive Data Tree Rewriting

Now we describe how to encode labeled graphs by trees using tree decompositions.
LetG = (V,E, `) ∈ GK be a ΣG-labeled graph, and T = 〈U,F, r, θ〉 be a tree decomposition

of G with width K and depth at most K. Remember that each θ(u) is represented as a
sequence of exactly K + 1 vertices, and [K + 1] = {0, . . . ,K}. Define

ΣG,K := (ΣG)K+1 × 2[K+1]2 × 2[K+1]2 × 2[K+1]2 .

We transform T = 〈U,F, r, θ〉 into a ΣG,K-labeled tree T ′ = (U,F, r, η), which encodes
in a uniform way the information about G (including edge relations and vertex labels).
η : U → ΣG,K is defined as follows. Let θ(u) = v0 . . . vK , then η(u) = (`(v0) . . . `(vK), λ),
where λ = (λ1, λ2, λ3),

λ1 = {(i, j) | 0 ≤ i, j ≤ K, vi = vj},
λ2 = {(i, j) | 0 ≤ i, j ≤ K, {vi, vj} ∈ E},
If u = r, then λ3 = ∅, otherwise let u′ be the parent of u in T and θ(u′) = v′0 · · · v′K , then
λ3 = {(i, j) | 0 ≤ i, j ≤ K, v′i = vj}.

The encoding of labeled graphs into labeled trees establishes a connection between the
wqo ≤ of labeled trees and the induced subgraph relation (v) of labeled graphs.
I Proposition 8. Let G1, G2 be two ΣG-labeled graphs with tree-width bounded by K, and
T1, T2 be two tree decompositions of width K of resp. G1, G2, then the two ΣG,K-labeled
trees T ′1, T ′2 obtained from T1, T2 satisfy that: If T ′1 ≤ T ′2, then G1 v G2.

Now we are ready to show that � is a wqo for TB,K . Let T0, T1, . . . be an infinite sequence
of data trees from TB,K . Consider the infinite sequence of ΣG,K-labeled trees T ′0, T ′1, . . .
obtained from the tree decompositions (with width K and depth at most K) of graphs
G`(T0), G`(T1), Then there are i, j : i < j such that T ′i ≤ T ′j , because ≤ is a wqo for
labeled trees of depth at most K. So G`(Ti) v G`(Tj) from Proposition 8, and Ti � Tj from
Proposition 6. We thus prove following theorem.

I Theorem 9. � is a well-quasi-ordering over TB,K .

5 Verification of temporal properties

Until now we considered only two properties for static analysis: pattern reachability and
termination. (Non-)reachability of a DTP can be expressed easily in Tree-LTL [5], which
corresponds roughly to linear time temporal logics where atomic propositions are DTPs4.
We show in this section that allowing for runs of unbounded length makes the validation of
(even very simple) Tree-LTL properties undecidable, even without data:

I Theorem 10. It is undecidable whether a positive-bounded DTPRS satisfies a Tree-LTL
formula Fϕ, where ϕ is a positive Boolean combination of DTPs. This holds already without
data.

The proof of Theorem 10 is by a reduction from the halting problem of two-counter
machines. The idea is to simulate a two-counter machine by a positive bounded DTPRS
ignoring the zero-tests, and describe them by a Tree-LTL formula Fϕ. The proof relies on
the universal semantics of Tree-LTL, requiring that every run of the DTPRS satisfies the
formula.

4 Such formulas use actually free variables in patterns, which are then quantified universally. This is
consistent with the approach of testing whether a model satisfies the negation of a formula.

Blaise Genest, Anca Muscholl, and Zhilin Wu 479

If the existential semantics of Tree-LTL formulas is used instead, i.e. requiring that
there is a run of the DTPRS satisfying a given Tree-LTL formula, then the problem is still
undecidable if negations are available, since the negation of Fϕ in the universal semantics is
G¬ϕ in the existential semantics. If negations are also forbidden, then we get decidability:

I Proposition 11. It is decidable whether a positive-bounded DTPRS satisfies a given positive
existential Tree-LTL formula defined by the following rules,

ϕ ::= true | false | P | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | Xϕ1 | ϕ1Uϕ2,

where P is a DTP.

6 Type-checking DTPRS

This section shows that it can be checked statically whether DTP rules preserve the static
invariant ∆ = (τ, inv) consisting of a DTD τ and a data invariant inv.

Recall that in the definition of DTPRS, if T R−→ T ′, then it is required that T ′ |= ∆.
Here we drop this requirement and consider the following type-checking problem.

DTPRS Type-checking: Given a DTPRS (R,∆) with a non-recursive DTD5, decide
whether for each T, T ′ and each DTP rule R such that T |= ∆ and T R−→ T ′, it holds that
T ′ |= ∆.

I Theorem 12. DTPRS type-checking is Co-NexpTime-complete.

The upper bound of Theorem 12 is shown by a small model argument. The lower bound
follows from [8], that shows that satisfiability of DTPs on depth-bounded data trees relative
to a DTD is NexpTime-hard.

7 Bounded model-checking DTPRS

In this section we consider bounded model-checking for DTPRS: Given a DTPRS (R,∆)
with a non-recursive DTD 6, a set of initial trees Init, a DTP P and a bound N (encoded in
unary) we ask whether there is some T0 satisfying Init and some T s.t. P matches T and
T0
≤N−→ T . We have the following result:

I Theorem 13. Bounded model-checking for DTPRS is NexpTime-complete.

Theorem 13 can be extended to bounded model-checking Tree-LTL properties. Bounded
model-checking of a Tree-LTL formula ϕ with a bound N is the problem checking whether a
counter-example for ϕ can be obtained in at most N rewriting steps. For instance, bounded
model-checking for G¬P with a bound N is to check whether the DTP P can be reached in
≤ N steps.

The proof of Theorem 13 follows the similar line as the proof of Co-2NexpTime com-
pleteness of model-checking Tree-LTL properties over recursion-free GAXML ([5]): The
upper-bound is shown by a (exponential) small-model property, and the lower-bound is
shown by a simulation of the computations of NexpTime-Turing machines. The gap between

5 If the DTD is recursive, then the problem is undecidable, since the satisfiability of Boolean combinations
of DTPs over a recursive DTD is undecidable [8].

6 The recursive DTD will quickly lead to undecidability, as argued for the type-checking problem.

FSTTCS 2010

480 Verifying Recursive Active Documents with Positive Data Tree Rewriting

the NexpTime complexity above and the Co-2NexpTime complexity in [5] is essentially due
to the unary encoding of the bound N for bounded model checking.

Acknowledgements We would like to thank the participants of the ANR Docflow and
the CREATE Activedoc projects for the discussion on the verification of AXML systems,
and in particular Serge Abiteboul and Albert Benveniste.

References
1 P. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theorems for

infinite-state systems. In LICS’96, pages 313–321. IEEE, 1996.
2 P. A. Abdulla, A. Bouajjani, J. Cederberg, F. Haziza, and A. Rezine. Monotonic abstraction

for programs with dynamic memory heaps. In CAV’08, volume 5123 of LNCS, pages 341–
354. Springer, 2008.

3 S. Abiteboul, O. Benjelloun, and T. Milo. Positive Active XML. In PODS’04, pages 35–45.
ACM, 2004.

4 S. Abiteboul, O. Benjelloun, and T. Milo. The Active XML project: an overview. VLDB
Journal, 17(5):1019–1040, 2008.

5 S. Abiteboul, L. Segoufin, and V. Vianu. Static analysis of active XML systems. In
PODS’08, pages 221–230. ACM, 2008. Journal version in ACM Trans. Database Syst. 34(4):
2009.

6 A. Blumensath and B. Courcelle. On the monadic second-order transduction hierarchy.
HAL Archive, 2009. http://hal.archives-ouvertes.fr/hal-00287223/fr.

7 P. Bouyer, N. Markey, J. Ouaknine, P. Schnoebelen, and J. Worrell. On termination for
faulty channel machines. In STACS’08, pages 121–132, 2008.

8 C. David. Complexity of data tree patterns over XML documents. In MFCS ’08, pages
278–289, 2008.

9 A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automatic verification of data-centric
business processes. In ICDT’09, pages 252–267, 2009.

10 A. Deutsch, L. Sui, and V. Vianu. Specification and verification of data-driven web appli-
cations. JCSS, 73(3):442–474, 2007.

11 A. Deutsch, L. Sui, V. Vianu, and D. Zhou. Verification of communicating data-driven web
services. In PODS’06, pages 90–99, 2006.

12 A. Deutsch and V. Vianu. WAVE: Automatic verification of data-driven web services. IEEE
Data Eng. Bull., 31(3):35–39, 2008.

13 A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere! TCS, 256(1-
2):63–92, 2001.

14 X. Fu, T. Bultan, and J. Su. Conversation protocols: a formalism for specification and
verification of reactive electronic services. TCS, 328(1-2):19–37, 2004.

15 B. Genest, A. Muscholl, O. Serre, and M. Zeitoun. Tree pattern rewriting systems. In
ATVA’08, pages 332–346. Springer, 2008.

16 R. Hull. Artifact-centric business process models: Brief survey of research results and
challenges. In OTM’08, pages 1152–1163, 2008.

17 R. Hull, M. Benedikt, V. Christophides, and S. Jianwen. E-services: a look behind the
curtain. In PODS’03, pages 1–14, 2003.

18 R. Mayr. Undecidable problems in unreliable computations. TCS, 297(1-3):337–354, 2003.
19 J. Nes̆etr̆il and P. O. de Mendez. Tree-depth, subgraph coloring and homomorphism bounds.

Eur. J. Comb., 27(6):1022–1041, 2006.
20 J. Wang and A. Kumar. A framework for document-driven workflow systems. In BPM’05,

pages 285–301, 2005.

	Introduction
	Definitions and notations
	Undecidability
	Positive-bounded DTPRS
	Well-structure of positive-bounded DTPRS
	Well-quasi-ordering for data trees

	Verification of temporal properties
	Type-checking DTPRS
	Bounded model-checking DTPRS

