
Linear temporal logic for regular cost functions

Denis Kuperberg

L IAFA /CNRS/Université Paris 7, Denis Diderot, France

Abstract

Regular cost functions have been introduced recently as an extension to the notion of regular languages
with counting capabilities, which retains strong closure,equivalence, and decidability properties. The
specificity of cost functions is that exact values are not considered, but only estimated.

In this paper, we define an extension of Linear Temporal Logic(LTL) over finite words to describe
cost functions. We give an explicit translation from this new logic to automata. We then algebraically
characterize the expressive power of this logic, using a newsyntactic congruence for cost functions intro-
duced in this paper.

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.627

1 Introduction

Since the seminal works of Kleene and Rabin and Scott, the theory of regular languages is one of
the cornerstones in computer science. Regular languages have many good properties, of closure, of
equivalent characterizations, and of decidability, whichmakes them central in many situations.

Recently, the notion of regular cost function for words has been presented as a candidate for being
a quantitative extension to the notion of regular languages, while retaining most of the fundamental
properties of the original theory such as the closure properties, the various equivalent characteriz-
ations, and the decidability [2]. A cost function is an equivalence class of the functions from the
domain (words in our case) toN∪{∞}, modulo an equivalence relation≈ which allows some dis-
tortion, but preserves the boundedness property over each subset of the domain. The model is an
extension to the notion of languages in the following sense:one can identify a language with the
function mapping each word inside the language to 0, and eachword outside the language to∞. It is
a strict extension since regular cost functions have counting capabilities, e.g., counting the number
of occurrences of letters, measuring the length of intervals, etc...

Linear Temporal Logic (LTL), which is a natural way to describe logical constraints over a linear
structure, have also been a fertile subject of study, particularly in the context of regular languages and
automata [10]. Moreover quantitative extensions of LTL have recently been successfully introduced.
For instance the model Prompt-LTL introduced in [8] is interested in bounding the waiting time of
all requests of a formula, and in this sense is quite close to the aim of cost functions.

In this paper, we extend LTL (over finite words) into a new logic with quantitative features
(LTL≤), in order to describe cost functions over finite words with logical formulae. We do this by
adding a new operatorU≤N : a formulaφU≤Nψ means thatψ holds somewhere in the future, and
φ has to hold until that point, except at mostN times (we allow at mostN "mistakes" of the until
formula).

Related works and motivating examples

Regular cost functions are the continuation of a sequence ofworks that intend to solve difficult
questions in language theory. Among several other decisionproblems, the most prominent example
is the star-height problem: given a regular languageL and an integerk, decide whetherL can be
expressed using a regular expression using at mostk-nesting of Kleene stars. The problem was

© Denis Kuperberg;
licensed under Creative Commons License NC-ND

28th Symposium on Theoretical Aspects of Computer Science (STACS’11).
Editors: Thomas Schwentick, Christoph Dürr; pp. 627–636

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2011.627
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

628 Linear temporal logic for regular cost functions

resolved by Hashigushi [5] using a very intricate proof, andlater by Kirsten [7] using an automaton
that has counting features.

Finally, also using ideas inspired from [1], the theory of those automata over words has been
unified in [2], in which cost functions are introduced, and suitable models of automata, algebra, and
logic for defining them are presented and shown equivalent. Corresponding decidability results are
provided. The resulting theory is a neat extension of the standard theory of regular languages to a
quantitative setting.

On the logic side, Prompt-LTL, introduced in [8], is an interesting way to extend LTL in order
to look at boundedness issues, and already gave interestingdecidability and complexity results.
Prompt-LTL would correspond in the framework of regular cost functions to a subclass of temporal
cost functions introduced in [3]; in particular it is weakerthan LTL≤ introduced here.

Contributions

It is known from [2] that regular cost functions are the ones recognizable by stabilization semigroups
(or in an equivalent way, stabilization monoids), and from [3] than there is an effective quotient-wise
minimal stabilization semigroup for each regular cost function. This model of semigroups extends
the standard approach for languages.

We introduce a quantitative version of LTL in order to describe cost functions by means of lo-
gical formulas. The idea of this new logic is to bound the number of "mistakes" of Until operators,
by adding a new operatorU≤N . The first contribution of this paper is to give a direct translation from
LTL≤-formulas toB-automata, which is an extension of the classic translationfrom LTL to Büchi
automaton for languages. This translation preserves exactvalues (i.e. not only cost functions equi-
valence), which could be interesting in terms of future applications. We then show that regular cost
functions described by LTL formulae are the same as the ones computed by aperiodic stabilization
semigroups, and this characterization is effective. The proof uses a syntactic congruence for cost
functions, introduced in this paper.

This work validates the algebraic approach for studying cost functions, since the analogy extends
to syntactic congruence. It also allows a more user-friendly way to describe cost functions, since LTL
can be more intuitive than automata or stabilization semigroups to describe a given cost function.

As it was done in [3] for temporal cost functions, the characterization result obtained here for
LTL≤-definable cost functions follows the spirit of Schützenberger’s theorem which links star-free
languages with aperiodic monoids [9].

Organisation of the paper

After some notations, and reminder on cost functions, we introduce in Section 3 LTL≤ as a quantit-
ative extension of LTL, and give an explicit translation from LTL≤-formulae toB-automata. We then
present in Section 4 a syntactic congruence for cost functions, and show that it indeed computes the
minimal stabilization semigroup of any regular cost function. We finally use this new tool to show
that LTL≤ has the same expressive power as aperiodic stabilization semigroups.

Notations

We will noteN the set of non-negative integers andN∞ the setN∪{∞}, ordered by 0< 1< · · ·< ∞.
If E is a set,EN is the set of infinite sequences of elements ofE (we will not use here the notion
of infinite words). Such sequences will be denoted by bold letters (~a,~b,...). We will work with a
fixed finite alphabetA. The set of words overA is A∗ and the empty word will be notedε. The
concatenation of wordsu andv is uv. The length ofu is |u|. The number of occurrences of lettera

Denis Kuperberg 629

in u is |u|a. FunctionsN→ N will be denoted by lettersα,β, . . . , and will be extended toN∪{∞}
by α(∞) = ∞.

2 Regular Cost functions

2.1 Cost functions and equivalence

If L⊆A∗, we will noteχL the function defined byχL(u) = 0 if u ∈ L, ∞ if u /∈ L. LetF be the set of
functions :A∗→N∞. For f ,g ∈ F andα a function (see Notations), we say thatf ≤α g if f ≤ α◦g,
and f ≈α g if f ≤α g andg ≤α f . Finally f ≈ g if f ≈α g for someα. This equivalence relation
doesn’t pay attention to exact values, but preserves the existence of bounds.

A cost function is an equivalence class ofF /≈. Cost functions are notedf ,g, . . . , and in practice
they will be always be represented by one of their elements inF .

2.2 B-automata

A B-automaton is a tuple〈Q,A, In,Fin,Γ,∆〉 whereQ is the set of states,A the alphabet,In andFin
the sets of initial and final states,Γ the set of counters, and∆⊆Q×A× ({i,r,c}∗)Γ×Q is the set of
transitions.

Counters have integers values starting at 0, and an actionσ ∈ ({i,r,c}∗)Γ performs a sequence of
atomic actions on each counter, where atomic actions are either i (increment by 1),r (reset to 0) or
c (check the value). In particular we will noteε the action corresponding to the empty word : doing
nothing on every counter. Ife is a run, letC(e) be the set of values checked duringe on all counters
of Γ.

A B-automatonA computes a regular cost function[[A]] via the following semantic :[[A]](u) =
inf {supC(e),e run ofA overu}.

With the usual conventions that sup/0 = 0 and inf/0 = ∞. There exists also a dual model ofB-
automata, namelyS-automata, that has the same expressive power, but we won’t develop this further
in this paper. See [2] for more details.

◮ Example 1. Let A = {a,b}. The cost function| · |a is the same as 2| · |a + 5, it is computed by
the following one-counterB-automaton on the left-hand side. The cost functionu 7→min{n ∈ N, an

factor ofu} is computed by the nondeterministic one-counterB-automaton on the right-hand side.

a : ic

b : ε

a,b : ε a : ic a,b : ε

b : ε b : r

Moreover, as in the case of languages, cost functions can be recognized by an algebraic structure
that extends the classic notion of semigroups, called stabilization semigroups. A stabilization semig-
roupS= 〈S, ·,≤, ♯〉 is a partially ordered setS together with an internal binary operation· and an
internal unary operationa 7→ a♯ defined only on idempotent elements (elementsa such thata ·a= a).
The formalism is quite heavy, see appendix for all details onaxioms of stabilization semigroups and
recognition of regular cost functions.

STACS’11

630 Linear temporal logic for regular cost functions

3 Quantitative LTL

We will now use an extension of LTL to describe some regular cost functions. This has been done
successfully with regular languages, so we aim to obtain thesame kind of results. Can we still go
efficiently from an LTL-formula to an automaton?

3.1 Definition

The first thing to do is to extend LTL so that it can decribe costfunctions instead of languages. We
must add quantitative features, and this will be done by a newoperatorU≤N . Unlike in most uses of
LTL, we work here over finite words.

Formulas of LTL≤ (on finite words on an alphabetA) are defined by the following grammar :

φ := a | φ∧φ | φ∨φ | Xφ | φUφ| φU≤Nφ | Ω

Note the absence of negation in the definition of LTL≤. The negations have been pushed to the
leaves.

a means that the current letter isa, ∧ and∨ are the classic conjunction and disjunction;
Xφ means thatφ is true at the next letter;
φUψ means thatψ is true somewhere in the future, andφ holds until that point;
φU≤Nψ means thatψ is true somewhere in the future, andφ can be false at mostN times before
ψ. The variableN is unique, and is shared by all occurrences ofU≤N operator;
Ω means that we are at the end of the word.

We can define⊤ = (
∨

a∈A a)∨Ω and⊥ = ¬⊤, meaning respectively true and false, and¬a =

(
∨

b 6=a b)∨Ω to signify that the current letter is nota.
We also define connectors "eventually" :Fϕ =⊤Uϕ and "globally" :Gϕ = ϕUΩ.

3.2 Semantics

We want to associate a cost function[[φ]] on words to any LTL≤-formulaφ.
We will say thatu,n |= φ (u,n is a model ofφ) if φ is true onu with n as valuation forN, i.e. as

number of errors for all theU≤N ’s in the formulaφ. We finally define

[[φ]](u) = inf {n ∈ N/u,n |= φ}

We can remark that ifu,n |= φ, then for allk≥ n,u,k |= φ, since theU≤N operators appear always
positively in the formula (that is why we don’t allow the negation of an LTL≤-formula in general).
In particular,[[φ]](u) = 0 means that∀n ∈ N,u,n |= φ, and[[φ]](u) = ∞ means that∀n ∈ N,u,n 6|= φ
(since inf/0 = ∞).

◮ Proposition 2.

[[a]](u) = 0 if u ∈ aA∗, and∞ otherwise
[[Ω]](u) = 0 if u = ε, and∞ otherwise
[[φ∧ψ]] = max([[φ]], [[ψ]]), and[[φ∨ψ]] = min([[φ]], [[ψ]])
[[Xφ]](au) = [[φ]](u), [[Xφ]](ε) = ∞
[[⊤]] = 0, and[[⊥]] = ∞

◮ Example 3. Let φ = (¬a)U≤NΩ, then[[φ]] = | · |a
We use LTL≤-formulae in order to describe cost functions, so we will always work modulo cost

function equivalence≈.

◮ Remark 4. If φ does not contain any operatorU≤N , φ is a classic LTL-formula computing a
languageL, and[[φ]] = χL.

Denis Kuperberg 631

3.3 From LTL ≤ to B-Automata

We will now give a direct translation from LTL≤-formula toB-automata, i.e. given an LTL≤-formula
φ on a finite alphabetA, we want to build aB-automaton recognizing[[φ]]. This construction is
adapted from the classic translation from LTL-formula to Büchi automata [4].

Let φ be an LTL≤-formula. We define sub(φ) to be the set of subformulae ofφ, andQ = 2sub(φ)

to be the set of subsets of sub(φ).
We want to define aB-automatonA φ = 〈Q,A, In,Fin,Γ,∆〉 such that[[A]]B ≈ [[φ]].
We set the initial states to beIn = {{φ}} and the final ones to beFin = { /0,{Ω}} We choose

as set of countersΓ = {γ1, . . . ,γk} wherek is the number of occurences of theU≤N operators inφ,
labeled fromU≤N

1 to U≤N
k .

A state is basically the set of constraints we have to verify before the end of the word, so the
only two accepting states are the one with no constraint, or with only constraint to be at the end of
the word.

The following definitions are the same as for the classical case (LTL to Büchi automata) :

◮ Definition 5. An atomic formula is either a lettera ∈ A or Ω
A setZ of formulae is consistent if there is at most one atomic formula in it.
A reduced formula is either an atomic formula or a Next formula (of the formXϕ).
A setZ is reduced if all its elements are reduced formulae.
If Z is consistent and reduced, we define next(Z) = {ϕ/Xϕ ∈ Z}.

◮ Lemma 6 (Next Step). If Z is consistent and reduced, for allu ∈A∗,a ∈ A andn ∈ N,

au,n |=
∧

Z iff u,n |=
∧

next(Z) andZ∪{a} consistent

We would like to defineA φ with Z −→ next(Z) as transitions.
The problem is that next(Z) is not consistent and reduced in general. If next(Z) is inconsistent

we remove it from the automaton. If it is consistent, we need to apply some reduction rules to get
a reduced set of formulae. This consists in addingε-transitions (but with possible actions on the
counter) towards intermediate sets which are not actual states of the automaton (we will call them
"pseudo-states"), until we reach a reduced set.

Let ψ be maximal (in size) not reduced inY , we add the following transitions
If ψ = ϕ1∧ϕ2 : Y

ε:ε
−→ Y \ {ψ}∪{ϕ1,ϕ2}

If ψ = ϕ1∨ϕ2 :

{

Y
ε:ε
−→ Y \ {ψ}∪{ϕ1}

Y
ε:ε
−→ Y \ {ψ}∪{ϕ2}

If ψ = ϕ1Uϕ2 :

{

Y
ε:ε
−→ Y \ {ψ}∪{ϕ1,Xψ}

Y
ε:ε
−→ Y \ {ψ}∪{ϕ2}

If ψ = ϕ1U≤N
j ϕ2 :

Y
ε:ε
−→ Y \ {ψ}∪{ϕ1,Xψ}

Y
ε:ic j
−→ Y \ {ψ}∪{Xψ} (we count one mistake)

Y
ε:r j
−→ Y \ {ψ}∪{ϕ2}

where actionr j (resp.ic j) performr (resp.ic) on counterγ j andε on the other counters.
The pseudo-states don’t (a priori) belong toQ= 2sub(φ) because we add formulaeXψ for ψ∈ sub(φ),
so if Z is a reduced pseudo-state, next(Z) will be in Q again since we remove the new next operators.

The transitions of automatonA φ will be defined as follows:

∆ =
{

Y
a:σ
−→ next(Z) | Y ∈ Q,Z∪{a} consistent and reduced,Y

ε:σ
−→∗ Z

}

STACS’11

632 Linear temporal logic for regular cost functions

whereY
ε:σ
−→∗ Z means that there is a sequence ofε-transitions fromY to Z with σ as combined

action on counters.

◮ Definition 7. If σ is a sequence of actions on counters, we will call val(σ) the maximal value
checked on a counter duringσ with 0 as starting value of the counters, and val(σ) = 0 if there is no
check inσ. It corresponds to the value of a run of aB-automaton withσ as combined action of the
counter.

◮ Lemma 8. Let u = a1 . . .am be a word onA andY0
a1:σ1→ Y1

a2:σ2→ . . .
am:σm→ Ym an accepting run of

A φ.

Then for allψ ∈ sub(φ), for all n ∈ {0, . . . ,m}, for all Yn
ε:σ
→∗ Y

ε:σ′
→∗ Z with Z∪{an+1} consistent

and reduced, andYn+1 = next(Z)

ψ ∈ Y =⇒ an+1an+2 . . .am,N |= ψ

whereN = val(σ′σn+1 . . .σm).

Lemma 8 implies the correctness of the automatonA φ :

Let Y0
a1:σ1→ Y1

a2:σ2→ . . .
am:σm→ Ym be a valid run ofA φ on u of valueN = [[A φ]]B, applying Lemma 8

with n = 0 andY = Y0 = {φ} gives usu,N |= φ. Hence[[φ]]≤ [[A φ]]B.
Conversely, letN = [[φ]](u), thenu,N |= φ so by definition ofA φ, it is straightforward to verify

that there exists an accepting run ofA φ overu of value≤N (each counterγi doing at mostN mistakes
relative to operatorU≤N

i). Hence[[A φ]]B ≤ [[φ]].
We finally get[[A φ]]B = [[φ]], the automatonA φ computes indeed the exact value of function[[φ]]

(and so we have obviously[[A φ]]B ≈ [[φ]]).

4 Algebraic characterization

We remind that as in the case of languages, stabilization semigroups recognize exactly regular cost
functions, and there exists a quotient-wise minimal stabilization semigroup for each regular cost
function [3].

In standard theory, it is equivalent for a regular language to be described by an LTL-formula,
or to be recognized by an aperiodic semigroup. Is it still thecase in the framework of regular cost
functions? To answer this question we first need to develop a little further the algebraic theory of
regular cost functions.

4.1 Syntactic congruence

In standard theory of languages, we can go from a descriptionof a regular languageL to a description
of its syntactic monoid via the syntactic congruence. Moreover, when the language is not regular,
we get an infinite monoid, so this equivalence can be used to “test” regularity of a language.

The main idea behind this equivalence is to identify wordsu andv if they “behave the same”
relatively to the languageL, i.e. L cannot separateu from v in any context :∀(x,y),xuy ∈ L⇔ xvy ∈
L.

The aim here is to define an analog to the syntactic congruence, but for regular cost functions
instead of regular languages. Since cost functions look at quantitative aspects of words, the notions
of "element" and "context" have to contain quantitative information : we want to be able to say
things like “words with a lot ofa’s behave the same as words with a fewa’s”.

That is why we won’t define our equivalence over words, but over ♯-expressions, which are a
way to describe words with quantitative information.

Denis Kuperberg 633

4.2 ♯-expressions

We first define general♯-expressions as in [6] and [3] by just adding an operator♯ to words in order
to repeat a subexpression “a lot of times”. This differs fromthe stabilization monoid definition, in
which the♯-operator can only be applied to specific elements (idempotents).

The set Expr of♯-expressions on an alphabetA is defined as follows:

e := a ∈ A | ee | e♯

If we choose a stabilization semigroupS= 〈S, ·,≤, ♯〉 together with a functionh : A→ S, the
eval function (from Expr toS) is defined inductively by eval(a) = h(a),eval(ee′) = eval(e) ·eval(e′),
and eval(e♯) = eval(e)♯ (eval(e) has to be idempotent). We say thate is well-formed for S if eval(e)
exists. Intuitively, it means that♯ was applied to subexpressions that corresponds to idempotent
elements inS.

If f is a regular cost function,e is well-formed for f iff e is well-formed for the minimal stabil-
ization semigroup off .

◮ Example 9. Let f be the cost function defined over{a}∗ by

f (an) =

{

n if n even
∞ otherwise

The minimal stabilization semigroup off is :
{

a,aa,(aa)♯,(aa)♯a
}

, with aa ·a = a and(aa)♯a ·
a = (aa)♯. Hence the♯-expressionaaa(aa)♯ is well-formed for f but the♯-expressiona♯ is not.

The♯-expressions that are not well-formed have to be removed from the set we want to quotient,
in order to get only real elements of the syntactic semigroup.

4.3 ω♯-expressions

We have defined the set of♯-expressions that we want to quotient to get the syntactic equivalence
of cost functions. However, we saw that some of these♯-expressions may not be well-typed for the
cost functionf we want to study, and therefore does not correspond to an element in the syntactic
stabilization semigroup off .

Thus we need to be careful about the stabilization operator,and apply it only to “idempotent
♯-expressions”. To reach this goal, we will add an “idempotent operator”ω on ♯-expressions, which
will always associate an idempotent element (relative tof) to a ♯-expression, so that we can later
apply♯ and be sure of creating well-formed expressions forf .

We define the set Oexpr ofω♯-expressions on an alphabetA :

E := a ∈A | EE | Eω | Eω♯

The intuition behind operatorω is thatxω is the idempotent obtained by iteratingx (which always
exists in finite semigroups).

A context C[x] is a ω♯-expression with possible occurrences of a free variablex. Let E be a
ω♯-expression,C[E] is theω♯-expression obtained by replacing all occurrences ofx by E in C[x], i.e.
C[E] =C[x][x← E]. Let COE be the set of contexts onω♯-expressions.

We will now formally define the semantic of operatorω, and useω♯-expressions to get a syntactic
equivalence on cost functions, without mistyped♯-expressions.

◮ Definition 10. If E ∈Oexpr andk,n ∈N, we defineE(k,n) to be the wordE[ω← k, ♯← n], where
the exponential is relative to concatenation of words.

STACS’11

634 Linear temporal logic for regular cost functions

◮ Lemma 11. Let f be a regular cost function, there existsK f ∈N such that for anyE ∈Oexpr, the
♯-expressionE[ω← K f !] is well-formed for f , and we are in one of these two cases
1. ∀k ≥ K f ,{ f (E(k!,n)),n ∈ N} is bounded : we say thatE ∈ f B.
2. ∀k ≥ K f , limn→∞ f (E(k!,n)) = ∞ : we say thatE ∈ f ∞.

Proof. The proof is a little technical, since we have to reuse the definition of recognization by
stabilization semigroup.K f can simply be taken to be the size of the minimal stabilization semigroup
of f . ◭

Here, f B and f ∞ are the analogs for regular cost functions of “being inL” and “not being in
L” in language theory. But this notion is now asymptotic, since we look at boundedness properties
of quantitative information on words. Moreover,f ∞ and f B are only defined here for regular cost
functions, sinceK f might not exist if f is not regular.

◮ Definition 12. Let f be a regular cost function, we writeE ⇋ f E ′ if (E ∈ f B⇔ E ′ ∈ f B). Finally
we define

E ≡ f E ′ iff ∀C[x] ∈ COE,C[E]⇋ f C[E ′]

◮ Remark 13. If u,v ∈ A∗, andL is a regular language, thenu ∼L v iff u ≡χL v (∼L being the
syntactic congruence ofL). In this sense,≡ is an extension of the classic syntactic congruence on
languages.

Now that we have properly defined the equivalence≡ f over Oexpr, it remains to verify that it is
indeed a good syntactic congruence, i.e. Oexpr/≡ f is the syntactic stabilization semigroup off .

Indeed if f is a regular cost function, letSf = Oexpr/≡ f . We can provideSf with a structure of
stabilization semigroup〈Sf , ·,≤, ♯〉.

◮ Theorem 14. Sf is the minimal stabilization semigroup recognizing f .

The proof consists basically in a bijection between classesof Oexpr for≡ f , and elements of the
minimal stabilization semigroup as defined in appendix A.7 of [3].

4.4 Expressive power of LTL ≤

If f is a regular cost function, we will callSf the syntactic stabilization semigroup off .
A finite semigroupS= 〈S, ·〉 is calledaperiodic if ∃k ∈N,∀s ∈ S,sk+1 = sk. The definition is the

same ifS is a finite stabilization semigroup.

◮ Remark 15. For a regular cost functionf , the statements “f is recognized by an aperiodic sta-
bilization semigroup” and “Sf is aperiodic” are equivalent, sinceSf is a quotient of all stabilization
semigroups recognizingf .

◮ Theorem 16. Let f be a cost function described by a LTL≤-formula, then f is regular and the
syntactic stabilization semigroup of f is aperiodic.

The proof of this theorem will be the first framework to use thesyntactic congruence on cost func-
tions.

If φ is a LTL≤-formula, we will say thatφ verifies propertyAP if there existsk ∈N such that for
anyω♯-expressionE, Ek ≡[[φ]] Ek+1, which is equivalent to “[[φ]] has an aperiodic syntactic stabiliz-
ation semigroup”.

With this in mind, we can do an induction on LTL≤-formulaes : we first show thatSΩ and allSa

for a ∈ A are aperiodic.
We then proceed to the induction onφ : assuming thatϕ andψ verify propertyAP, we show that

Xψ, ϕ∨ψ, ϕ∧ψ, ϕUψ andϕU≤Nψ verify propertyAP.

Denis Kuperberg 635

◮ Theorem 17. Let f be a cost function recognized by an aperiodic stabilization semigroup, then f
can be described by an LTL≤-formula.

The proof of this theorem is a generalization of the proof of Wilke for aperiodic languages in
[11]. However difficulties inherent to quantitative notions appear here.

The main issue comes from the fact that in the classical setting, computing the value of a word in
a monoid returns a single element. This fact is used to do an induction on the size of the monoid, by
considering the set of possible results as a smaller monoid.The problem is that with cost functions,
there is some additional quantitative information, and we need to associate a sequence of elements
of a stabilization monoid to a single word. Therefore, it requires some technical work to come back
to a smaller stabilization monoid from these sequences.

◮ Corollary 18. The class of LTL≤-definable cost functions is decidable.

Proof. Theorems 16 and 17 imply that it is equivalent for a regular cost function to be LTL≤-
definable or to have an aperiodic syntactic stabilization semigroup. If f is given by an automaton
or a stabilization semigroup, we can compute its syntactic stabilization semigroupSf (see [3]) and
decide if f is LTL≤-definable by testing aperiodicity ofSf . This can be done simply by iterating
at most|Sf | times all elements ofSf and see if each elementa reaches an elementak such that
ak+1 = ak. ◭

5 Conclusion

We first defined LTL≤ as a quantitative extension of LTL. We started the study of LTL≤ by giving an
explicit translation from LTL≤-formulae toB-automata, which preserves exact values (and not only
boundedness properties as it is usually the case in the framework of cost functions). We then showed
that the expressive power of LTL≤ in terms of cost functions is the same as aperiodic stabilization
semigroups. The proof uses a new syntactic congruence, which has a general interest in the study
of regular cost functions. This result implies the decidability of the LTL≤-definable class of cost
functions.

As a further work, we can try to putω♯-expressions in a larger framework, by doing an axio-
matization ofω♯-semigroups. We can also extend this work to infinite words, and define an analog
to Büchi automata for cost functions. To continue the analogy with classic languages results, we
can define a quantitative extension of FO describing the sameclass as LTL≤, and search for ana-
log definitions of counter-freeB-automata and star-freeB-regular expressions. The translation from
LTL≤-formulae toB-automata can be further studied in terms of optimality of number of counters
of the resultingB-automaton.

Acknowledgments

I am very grateful to my advisor Thomas Colcombet for our helpful discussions, and for the guidelines
he gave me on this work, and to Michael Vanden Boom for helpingme with language and presenta-
tion issues.

References

1 Mikolaj Bojańczyk and Thomas Colcombet. Bounds inω-regularity. InLICS 06, pages 285–296,
August 2006.

2 Thomas Colcombet. The theory of stabilization monoids and regular cost functions.ICALP, Lecture
Notes in Computer Science, 2009.

STACS’11

636 Linear temporal logic for regular cost functions

3 Thomas Colcombet, Denis Kuperberg, and Sylvain Lombardy. Regular temporal cost functions. In
ICALP (2), pages 563–574, 2010.

4 Stéphane Demri and Paul Gastin. Specification and verification using temporal logics. InModern
applications of automata theory, volume 2 ofIISc Research Monographs. World Scientific, 2010.
To appear.

5 Kosaburo Hashiguchi. Relative star height, star height andfinite automata with distance functions.
In Formal Properties of Finite Automata and Applications, pages 74–88, 1988.

6 Kosaburo Hashiguchi. Improved limitedness theorems on finite automata with distance functions.
Theor. Comput. Sci., 72(1):27–38, 1990.

7 Daniel Kirsten. Distance desert automata and the star height problem. RAIRO, 3(39):455–509,
2005.

8 Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. From liveness to promptness.Formal Methods
in System Design, 34(2):83–103, 2009.

9 M.-P. Schützenberger. On finite monoids having only trivialsubgroups.Information and Control
8, pages 190–194, 1965.

10 Moshe Y. Vardi and Pierre Wolper. Automata-theoretic techniques for modal logics of programs.
J. Comput. Syst. Sci., 32(2):183–221, 1986.

11 Thomas Wilke. Classifying discrete temporal properties. In Christoph Meinel and Sophie Tison,
editors,STACS, volume 1563 ofLecture Notes in Computer Science, pages 32–46. Springer, 1999.

	Introduction
	Regular Cost functions
	Cost functions and equivalence
	B-automata

	Quantitative LTL
	Definition
	Semantics
	From LTL to B-Automata

	Algebraic characterization
	Syntactic congruence
	-expressions
	-expressions
	Expressive power of LTL

	Conclusion

