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Abstract
Matrix interpretations are a powerful technique for proving termination of term rewrite systems,
which is based on the well-known paradigm of interpreting terms into a domain equipped with
a suitable well-founded order, such that every rewrite step causes a strict decrease. Tradition-
ally, one uses vectors of non-negative numbers as domain, where two vectors are in the order
relation if there is a strict decrease in the respective first components and a weak decrease in
all other components. In this paper, we study various alternative well-founded orders on vectors
of non-negative numbers based on vector norms and compare the resulting variants of matrix
interpretations to each other and to the traditional approach. These comparisons are mainly
theoretical in nature. We do, however, also identify one of these variants as a proper generaliz-
ation of traditional matrix interpretations as a stand-alone termination method, which has the
additional advantage that it gives rise to a more powerful implementation.
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1 Introduction

As far as research on termination of term rewrite systems is concerned, in recent years a
lot of effort has been put on proving termination automatically. Indeed, many powerful
techniques for establishing termination of term rewrite systems that have been developed
in the course of time have been automated successfully, as is evident in the results of the
(annual) international competition for termination tools.1 In particular, the method of matrix
interpretations greatly contributes to the success of these tools.

Matrix interpretations were originally introduced by Hofbauer and Waldmann in the
context of string rewriting [8, 9], allowing them to solve hard termination problems like
{aa → bc, bb → ac, cc → ab}, Problem #104 in the RTA list of open problems.2 One
particular instance of the matrix method of [9] has been extended to term rewriting by
Endrullis et al. in [4]. The method is based on the well-known paradigm of interpreting
terms (strings) into a domain equipped with a suitable well-founded order, such that every
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rewrite step causes a strict decrease with respect to this order. In [4], the authors consider
the set of vectors of natural numbers as domain and equip it with a well-founded order
that is not total, such that two vectors are in the order relation if there is a strict decrease
in the respective first components and a weak decrease in all other components. Function
symbols are interpreted by suitable linear mappings represented by square matrices all of
whose entries are natural numbers. In [1, 5, 15], the method of Endrullis et al. was lifted to
the non-negative rational (real) numbers using the same technique that was already used to
lift polynomial interpretations from the naturals to the rationals (reals) (cf. [7]). Recently,
another generalization appeared in [3] that employs matrices of natural numbers (instead
of vectors) as underlying domain and associates to each function symbol a linear matrix
polynomial. In principle, this approach also allows for non-linear matrix polynomials.

In this paper, we re-examine the basics of the method of Endrullis et al., especially
focusing on the actual role of the well-founded order on vectors of natural numbers it is based
on. Obviously, there are many other orders on vectors of natural numbers having the desired
properties, so why the choice of this particular order? In [4], the justification is as follows (in
addition to the very convincing fact that the resulting termination method is very powerful):

Of course other orders on vectors could have been chosen, too, but many of them
are not suitable for our purpose. For instance, choosing a lexicographic order fails
because then multiplication by a constant matrix is not monotone in general.

But still the question remains whether there exist other orders inducing variants of matrix
interpretations that are also useful for proving termination of term rewrite systems. To this
end, we study various alternative well-founded orders on vectors of (natural) numbers based
on vector norms. The underlying idea is that every rewrite step is supposed to decrease the
“length” of the associated vectors. This leads directly to the notion of normed vector spaces,
norms being a suitable measure of the length or magnitude of a vector. Basically, we consider
two classes of orders, weakly decreasing orders, where two vectors are comparable only if
there is a weak decrease in every single component, and orders without this property. The
conclusion is that the latter kind of orders induces only weak forms of matrix interpretations
that are no more powerful than linear polynomial interpretations. For weakly decreasing
orders (like the order in [4]), however, the situation is different. That is to say that some of
them do indeed induce matrix interpretations that are useful for proving termination. In
particular, one of these variants subsumes traditional matrix interpretations and has the
additional advantage that it gives rise to a more powerful implementation.

The remainder of this paper is organized as follows. In Section 2, we introduce some
preliminary definitions and terminology concerning matrix interpretations. In Section 3, we
present the orders on vectors of natural numbers considered in this paper. Sections 4 and 5
are dedicated to matrix interpretations over weakly decreasing orders and the comparison
between them, while Section 6 features matrix interpretations over non-weakly decreasing
orders. In Section 7 we present a generalization of traditional matrix interpretations, before
concluding in Section 8.

2 Preliminaries

As usual, we denote by N and Z the sets of natural and integer numbers. Given N ∈ {N,Z},
>N denotes the standard order of the respective domain. The cardinality of a (finite) set S is
denoted by |S|. For any ring R, we denote the ring of all n-dimensional square matrices over
R by Rn×n. A matrix is non-negative if all its entries are non-negative. Abusing notation, we
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denote the set of all non-negative n-dimensional square matrices of Zn×n by Nn×n. As usual,
we denote the transpose of a matrix (vector) M by MT . For any vector ~x = (x1, . . . , xn)T ,
(~x)i denotes its i-th component. Likewise, Mij denotes the entry in the i-th row and j-th
column of a matrix M , and Mj− (M−j) refers to the j-th row (column). A zero column
is a column, where all entries are zero. For M ∈ Rn×n and I ⊆ {1, . . . , n}, (M)I denotes
the submatrix of M formed by the rows and columns whose indices are in the index set
I. Finally, a permutation matrix is a square matrix whose entries are all 0’s and 1’s, with
exactly one 1 in each row and exactly one 1 in each column.

We assume familiarity with the basics of term rewriting [2, 14]. Let V denote a countably
infinite set of variables and F a signature, that is, a set of function symbols equipped with
fixed arities. The set of terms over F and V is denoted by T (F ,V). By Var(t) we denote
the set of variables occurring in a term t, and |t|x denotes the number of occurrences of
the variable x. A rewrite rule is a pair of terms (`, r), conveniently written as `→ r, such
that ` is not a variable and all variables in r are contained in `. A term rewrite system R
(TRS for short) over T (F ,V) is a set of rewrite rules. The rewrite relation induced by → is
denoted by →R. As usual, →∗R denotes the reflexive transitive closure of →R and →nR its
n-th iterate. For notational convenience, we sometimes drop the subscript R if it is clear
from the context.

An important concept for establishing termination of TRSs is the notion of well-founded
monotone algebras. An F-algebra A consists of a non-empty carrier A and interpretation
functions fA : An → A for every n-ary function symbol f ∈ F . By [α]A(·) : T (F ,V)→ A we
denote the usual evaluation function of A with respect to a variable assignment α : V → A.
An interpretation fA : An → A is monotone with respect to a binary relation >A on A if
fA(a1, . . . , ai, . . . , an) >A fA(a1, . . . , b, . . . , an) for all a1, . . . , an, b ∈ A and i ∈ {1, . . . , n}
with ai >A b. A well-founded monotone F-algebra is a pair (A, >A), where A is an F -algebra
and >A is a well-founded order on A, such that every fA is monotone with respect to >A. It
is well-known that a TRS R is terminating if and only if it is compatible with a well-founded
monotone algebra (A, >A), where compatibility means that for every rewrite rule `→ r ∈ R,
[α]A(`) >A [α]A(r) for all variable assignments α : V → A.

3 Well-founded Orders on Vectors of Natural Numbers

In this section we introduce several well-founded orders on vectors of natural numbers serving
as foundation for alternative kinds of matrix interpretations. We consider two classes of
orders on Nn, n > 1, weakly decreasing orders and non-weakly decreasing ones.

3.1 Weakly Decreasing Orders

We call a (partial) order > on Nn weakly decreasing if (x1, . . . , xn)T > (y1, . . . , yn)T implies
xi >N yi for all i ∈ {1, . . . , n}. The component-wise (partial) order on Nn induced by >N is
denoted by >w.

I Definition 3.1. Let I ⊆ {1, . . . , n} be a non-empty index set, and let ~x = (x1, . . . , xn)T
and ~y = (y1, . . . , yn)T be vectors in Nn. We define relations >wI , >wΣ, >w` and >wm on Nn as
follows:

Weak decrease + strict decrease in some component(s):

~x >wI ~y :⇐⇒ ~x >w ~y ∧ ∃ j ∈ I : xj >N yj
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Weak decrease + strict decrease in sum of components:

~x >wΣ ~y :⇐⇒ ~x >w ~y ∧
n∑
i=1

xi >N

n∑
i=1

yi

Weak decrease + strict decrease in Euclidean length:

~x >w` ~y :⇐⇒ ~x >w ~y ∧
n∑
i=1

x2
i >N

n∑
i=1

y2
i

Weak decrease + strict decrease in maximum component:

~x >wm ~y :⇐⇒ ~x >w ~y ∧ max
i
xi >N max

i
yi

It is routine to verify that all these relations are in fact well-founded orders on vectors of
natural numbers.

I Lemma 3.2. The relations >wI , >wΣ, >w` and >wm are well-founded orders on Nn. J

The relations listed above are not the only well-founded orders on Nn. Numerous variations
exist. Some of these (like parameterizing >wΣ or >w` by an index set I) are implicitly covered
because of the lemma below, while others (like demanding a strict decrease in all components
specified by an index set I) proved to be impractical.

Intuitively, the order >wI is a generalization of >w1 , the order used in [4], where the strict
decrease is not necessarily fixed to one specific component; in particular, >w1 = >wI for
I = {1}. Moreover, its extension to matrices yields the main order considered in [3]. As to
the remaining three orders, two vectors being in relation means that there is a strict decrease
in the lengths of the vectors with respect to the Manhattan, Euclidean or maximum norm,
respectively [10]. The relationship between these orders is described in the following lemma.

I Lemma 3.3. Let I, J and K be non-empty index sets, such that I = {1, . . . , n} and
J ⊆ K ⊆ I. Then the following statements hold:
1. >wJ ⊆ >wK and >w1 = >w{1},
2. >w1 and >wm are incomparable for n > 2, identical otherwise,
3. >wm ⊂ >wI = >wΣ = >w` for n > 2, all identical otherwise, and
4. >wI is the strict part of >w.

The last item gives rise to the following corollary stressing an important aspect of some
of the orders considered above.

I Corollary 3.4. For I = {1, . . . , n}, >wI is the most general of the weakly decreasing proper
orders on Nn (in the sense that it subsumes any other such order). J

3.2 Non-weakly Decreasing Orders
Taking a closer look at Definition 3.1, one observes that weak decreasingness is not the
essential property for obtaining well-founded orders on vectors of natural numbers, which
is all we need to build matrix interpretations upon. That is to say that the last three
orders remain well-founded orders on Nn even after dropping this property. We denote the
corresponding orders by >Σ, >` and >m, respectively. Concerning >wI , one must be careful
when dropping weak decreasingness because the resulting relation >I is an order only if
the index set I is a singleton set, in which case >I is also well-founded. In the remainder
of this paper this is implicitly assumed whenever we refer to >I . Finally, we note that all
four orders coincide in the one-dimensional case (n = 1), all being equal to >N. For n > 2,
however, all these orders are pairwise incomparable (for all singleton sets I).
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4 Matrix Interpretations and Weakly Decreasing Orders

In this section we take the orders introduced in Definition 3.1 and build matrix interpretations
on top of them. According to Lemma 3.3 (item 3), we only have to consider the family
of orders (>wI )I parametrized by some non-empty index set I ⊆ {1, . . . , n} and >wm, the
order induced by the maximum norm. We shall see, however, that the latter kind of matrix
interpretation is subsumed by an instance of the former.

Before we can go about formally defining matrix interpretations over >wI (>wm), we have
to have an understanding of when a linear function is monotone with respect to the orders >w

and >wI (>wm). We consider linear functions of the form f(~x1, . . . , ~xk) =
∑k
i=1 Fi~xi+ ~f , where

~f ∈ Nn and Fi ∈ Nn×n for all i ∈ {1, . . . , k}. Obviously, all such functions are monotone with
respect to >w. Concerning monotonicity with respect to >wI , we give necessary and sufficient
conditions in the lemma below. A similar lemma, showing sufficiency of the conditions,
appeared in [3].

I Lemma 4.1. Let I ⊆ {1, . . . , n} be a non-empty index set. The function f(~x1, . . . , ~xk) =∑k
i=1 Fi~xi + ~f is monotone with respect to >wI if and only if for each (Fi)I , i = 1, . . . , k, all

column sums are at least one.

Proof. Let ~x1, . . . , ~xk and ~y be arbitrary vectors in Nn, such that ~xi >wI ~y for some argument
position i ∈ {1, . . . , k}. Then there exist a vector ~d ∈ Nn and an index j ∈ I, such that
~xi = ~y+ ~d and dj >N 0. Now f(. . . , ~xi, . . . ) >wI f(. . . , ~y, . . . ) holds if and only if Fi ~xi >wI Fi ~y,
which is equivalent to Fi ~d >wI 0. If all column sums of (Fi)I are at least one, then we have
(Fi)−j >wI 0, which yields Fi ~d >wI 0 because of Fi ~d >w (Fi)−j · dj >w (Fi)−j .

Conversely, if (Fi)I has a zero column, then let j′ ∈ I denote the index of the column of
Fi it originates from, and let ~xi be zero everywhere except for its j′-th component, which we
set to one. Then ~xi >wI 0 but f(. . . , 0, ~xi, 0, . . . ) = (Fi)−j′ + ~f 6>wI ~f = f(0, . . . , 0). J

We are now ready to formally define matrix interpretations over instances of >wI (cf. also
the E-compatible matrix interpretations in [3]).

I Definition 4.2. Let F denote a signature and I ⊆ {1, . . . , n} a non-empty index set. An
n-dimensional matrix interpretation M>wI over >wI is an F -algebra with carrier Nn together
with the well-founded order >wI , where each k-ary function symbol f ∈ F is interpreted by
a function fM : (Nn)k → Nn, (~x1, . . . , ~xk) 7→

∑k
i=1 Fi~xi + ~f with ~f ∈ Nn and Fi ∈ Nn×n for

all i ∈ {1, . . . , k}, such that fM is monotone with respect to >wI .

Clearly, such matrix interpretations are well-founded monotone algebras. Moreover, the
notion of matrix interpretations of Endrullis et al. [4] is included in Definition 4.2 by choosing
the special index set I = {1}. In order to use a matrix interpretationM over >wI to establish
termination of a TRS, one should be able to check whether [α]M(`) >wI [α]M(r) for all
α : V → Nn and rules `→ r. The following well-known lemma is helpful for this purpose.

I Lemma 4.3. LetM be an F-algebra with carrier Nn as in Definition 4.2 and t a term with
Var(t) = {x1, . . . , xm}. Then there exist matrices T1, . . . , Tm ∈ Nn×n and a vector ~t ∈ Nn,
such that for any assignment α : V → Nn, [α]M(t) = T1α(x1) + · · ·+ Tmα(xm) + ~t. J

Therefore, the compatibility checks [α]M(`) >wI [α]M(r) and [α]M(`) >w [α]M(r) boil
down to the comparison of such linear functions, which is decidable according to the next
lemma. Here, > denotes the component-wise (partial) order on Nn×n induced by >N.
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I Lemma 4.4. Let L1, . . . , Lm, R1, . . . , Rm and ~l, ~r correspond to a rewrite rule `→ r as
in Lemma 4.3. Then, for . ∈ {>wI ,>w}, [α]M(`) . [α]M(r) for all variable assignments
α : V → Nn if and only if ~l . ~r and Li > Ri for i = 1, . . . ,m. J

We close this section with the treatment of matrix interpretations over >wm. In particular,
we show that they are subsumed by the instance of matrix interpretations over >wI one
obtains by choosing I = {1, . . . , n}, which is assumed to be the case in the rest of this section.
According to Lemma 3.3, we have >wm ⊆ >wI for all dimensions n > 1. However, this does
not directly imply that the same inclusion also holds for matrix interpretations based on
these two orders because of the monotonicity requirement that all interpretation functions
have to satisfy. If the monotonicity conditions with respect to >wI are more strict than the
ones for >wm, then the set of potential interpretation functions is smaller, and it is therefore
very well conceivable that the inclusion on the base orders does not propagate to the notions
of matrix interpretations built on top of them. However, this is not the case for the two
orders considered here.

I Lemma 4.5. Let f(~x1, . . . , ~xk) =
∑k
i=1 Fi~xi + ~f , where ~f ∈ Nn and F1, . . . , Fk ∈ Nn×n.

Then monotonicity of f with respect to >wm implies monotonicity with respect to >wI .

Proof. This can be shown using contraposition. Assume that f is not monotone with respect
to >wI . According to Lemma 4.1 this means that (at least) one of its matrices has a zero
column. Without loss of generality, let the j-th column of some Fi, i ∈ {1, . . . , k}, be a zero
column and let ~xi be zero everywhere except for its j-th component. Then ~xi >wm 0 but
f(. . . , 0, ~xi, 0, . . . ) = ~f 6>wm ~f = f(0, . . . , 0), i.e., f is not monotone with respect to >wm. J

Hence, ifM>wm is a matrix interpretation over >wm, consisting of a set of interpretation
functions that are monotone with respect to >wm, then the same functions together with >wI
constitute a matrix interpretationM>wI over >wI that is able to orient all rules orientable by
M>wm because of the inclusion >wm ⊆ >wI . In other words,M>wI subsumesM>wm .

5 Comparing Matrix Interpretations over Weakly Decreasing Orders

After the discussion in the previous section the family of orders (>wI )I parametrized by
some non-empty index set I ⊆ {1, . . . , n} remains as a potentially interesting foundation for
matrix interpretations. It includes the traditional order >w1 as well as >wΣ = >w` , the most
general of the weakly decreasing orders on Nn (cf. Lemma 3.3 and Corollary 3.4). Now the
purpose of this chapter is to compare the resulting variants of matrix interpretations to each
other and thus also to the traditional approach.

First, we remark that we do not have to consider all possible index sets since matrix
interpretations are invariant under permutations. For example, matrix interpretations over
>w{1} are equivalent to matrix interpretations over >w{j}, j ∈ {2, . . . , n}, with respect to
termination proving power. The relevant property is that there is a strict decrease in a
single fixed vector component, it is not important which component. All that matters
is the cardinality of the index set I. Hence, for n-dimensional matrix interpretations,
we are left with n different index sets, and, without loss of generality, we can restrict to
the sets Id = {1, . . . , d} for d = 1, 2, . . . , n. By definition, the following inclusions hold:
>wI1
⊂ >wI2

⊂ · · · ⊂ >wIn . However, as explained at the end of the previous section, from this
we cannot immediately conclude that the same inclusions also hold for matrix interpretations
based on these orders because for I ⊂ J , monotonicity of a function with respect to >wI does
not imply monotonicity with respect to >wJ according to Lemma 4.1. In fact, the situation
turns out to be a bit more intricate. To begin with, let us consider the following example.
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I Example 5.1. Consider the TRS R1 = { f(a)→ f(g(a)), g(b)→ g(f(b)) }. Termination of
this system can be shown with the following 2-dimensional matrix interpretation over >w{1,2}:

fM(~x) =
(

0 1
1 1

)
~x gM(~x) =

(
1 1
1 0

)
~x aM =

(
0
1

)
bM =

(
1
0

)
However, one can show that there is no compatible 2-dimensional matrix interpretation
over >w{1}. In the same vein, one can establish termination of the TRS R2

f(g(x))→ f(a(g(g(f(x))), g(g(f(x))))) a(x, x)→ h(x) f(x)→ x

h(h(x))→ c(h(x)) c(x)→ x g(x)→ x

via the following 2-dimensional matrix interpretation over >w{1}

aM(~x, ~y) =
(

1 0
0 0

)
~x+

(
1 0
0 0

)
~y +

(
3
0

)
cM(~x) =

(
1 0
0 2

)
~x+

(
1
0

)
fM(~x) =

(
1 3
0 1

)
~x+

(
1
0

)
gM(~x) =

(
1 0
1 2

)
~x+

(
1
3

)
hM(~x) =

(
2 0
0 0

)
~x+

(
1
0

)
and show that there is no compatible 2-dimensional matrix interpretation over >w{1,2}.

The bottom line of this example is that if we fix the dimension, then matrix interpretations
over >w{1} are incomparable to matrix interpretations over >w{1,2}. (We are not aware of
a general construction that works for any dimension.) However, without this restriction
the situation is altogether different. That is to say that for dimension 3, for example,
there is a compatible matrix interpretation over >w{1} for the TRS R1. Likewise, there
is a compatible 3-dimensional matrix interpretation over >w{1,2} for the TRS R2. Indeed,
that is no coincidence as will be shown in the remainder of this section. In particular, we
shall see that in some sense the various instances of matrix interpretations over >wI are all
equivalent with respect to termination proving power, no matter what the index set I looks
like. To get to the bottom of this phenomenon, we need a couple of transformations on
matrix interpretations.

As to the first transformation, let P ∈ Nn×n be a nonsingular matrix andM some matrix
interpretation consisting of a collection of interpretation functions {fM}f∈F , such that each
k-ary function symbol f in the signature is interpreted by a function fM(~x1, . . . , ~xk) =∑k
i=1 Fi~xi + ~f , where ~f ∈ Nn and Fi ∈ Nn×n for all i ∈ {1, . . . , k}. Then we associate with

M a matrix interpretation ΦP (M), where each k-ary function symbol f is interpreted by a
function fΦP (M)(~x1, . . . , ~xk) =

∑k
i=1 PFiP

−1~xi + P ~f .
I Remark. Note that in general PFiP−1 is not a non-negative matrix, even if P and Fi are
non-negative. As we need this property in our context, we must be careful when applying
this transformation, unless P happens to be a (generalized) permutation matrix. In the
remainder of this paper, non-negativity of PFiP−1 is assumed or explicitly stated.

According to Lemma 4.3, the interpretation of a term with respect toM and a variable
assignment α can be written as [α]M(t) = T1α(x1) + · · ·+ Tmα(xm) + ~t. By construction of
ΦP (M), we obtain the following lemma.

I Lemma 5.2. Let T1, . . . , Tm and ~t correspond to a term t as described in Lemma 4.3.
Then [α]ΦP (M)(t) = PT1P

−1α(x1) + · · ·+ PTmP
−1α(xm) + P~t for any assignment α. J

I Corollary 5.3. For every ground term t, [α]ΦP (M)(t) = P · [α]M(t). J
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Our next transformation associates with an n-dimensional matrix interpretation M
(as above) an (n+ 1)-dimensional matrix interpretation Ψ(M), where each k-ary function
symbol f is interpreted by a function fΨ(M)(~x1, . . . , ~xk) =

∑k
i=1 F

′
i~xi + ~f ′, such that for all

i ∈ {1, . . . , k},

~f ′ =
(

0
~f

)
and F ′i =

(
fi 0
0 Fi

)
for some fi ∈ N \ {0}.

Moreover, we associate with M (resp. Ψ(M)) a linear polynomial interpretation P(M),
where each k-ary function symbol f is interpreted by a linear polynomial fP(M)(x1, . . . , xk) =∑k
i=1 fixi (with the fi’s of Ψ(M)).

I Lemma 5.4. Let t be an arbitrary term. Then for all variable assignments α : V → Nn
and β : V → N, the following statement holds:

[γ]Ψ(M)(t) =
(

[β]P(M)(t)
[α]M(t)

)
for the variable assignment γ : V → Nn+1, x 7→

(
β(x)
α(x)

)
. J

I Corollary 5.5. For every ground term t, [γ]Ψ(M)(t) =
(

0
[α]M(t)

)
. J

Again, by Lemma 4.3, [α]M(t) can be written as [α]M(t) = T1α(x1) + · · ·+ Tmα(xm) +~t.
Likewise, the interpretation of t with respect to P(M) and some variable assignment β can
be written as [β]P(M)(t) = t1β(x1) + · · ·+ tmβ(xm), where t1, . . . , tm ∈ N. Plugging these
expressions into Lemma 5.4, we obtain the following lemma.

I Lemma 5.6. Let T1, . . . , Tm, t1, . . . , tm and ~t correspond to a term t as described above.
Then, in the situation of Lemma 5.4, the following statement holds:

[γ]Ψ(M)(t) =
m∑
i=1

(
ti 0
0 Ti

)
γ(xi) +

(
0
~t

)
J

Moreover, if all the fi’s introduced by Ψ(M) are one, then each ti in [β]P(M)(t) corres-
ponds to the number of occurrences of the associated variable xi.

I Lemma 5.7. Let t be an arbitrary term with Var(t) = {x1, . . . , xm}, and let all inter-
pretation functions in P(M) have the shape fP(M)(x1, . . . , xk) =

∑k
i=1 xi (for each k-ary

function symbol f). Then for any variable assignment β, [β]P(M)(t) =
∑m
i=1 |t|xiβ(xi). J

We are now ready to present the main results of this section comparing matrix interpret-
ations over various instances of >wI with respect to proving (direct) termination of TRSs. In
what follows, for a given TRS R, R ⊆ <P(M) abbreviates [β]P(M)(`) >N [β]P(M)(r) for all
variable assignments β : V → N and all rewrite rules `→ r ∈ R.

I Lemma 5.8. LetM be an n-dimensional matrix interpretation over >wI , I ⊆ {1, . . . , n},
and let R be a TRS satisfying R ⊆ <P(M). Then compatibility of R with M implies
compatibility with an (n+ 1)-dimensional matrix interpretation over >wJ , where |J | = |I|+ 1,
J ⊆ {1, . . . , n+ 1}.

Proof. Assuming thatM is compatible with R, we show that Ψ(M) is compatible as well.
To this end, we let J = {1} ∪ {x + 1 | x ∈ I } and reason as follows. By assumption, all
interpretation functions of M are monotone with respect to >wI , that is, for each matrix
M ∈M, all column sums of (M)I are at least one according to Lemma 4.1. By construction
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of Ψ(M), this implies that for each matrix M ′ ∈ Ψ(M), all column sums of (M ′)J are also
at least one. Hence, all interpretation functions of Ψ(M) are monotone with respect to >wJ .
As to compatibility of Ψ(M) with R, for any rewrite rule `→ r, [γ]Ψ(M)(`) >wJ [γ]Ψ(M)(r)
holds for all variable assignments γ if and only if(

[β]P(M)(`)
[α]M(`)

)
>wJ

(
[β]P(M)(r)

[α]M(r)

)
for all variable assignments α and β (cf. Lemma 5.4).

By definition of >wJ , it remains to show that there is a weak decrease in every single component
and a strict decrease in some component with index j ∈ J . By compatibility ofM with R,
we have [α]M(`) >wI [α]M(r) for all assignments α, which immediately establishes the latter
requirement and, together with the assumption R ⊆ <P(M), also the former. J

With the help of Lemma 5.7 one can replace the semantic condition R ⊆ <P(M) by a
(more familiar) syntactic condition.

I Corollary 5.9. Let R be a non-duplicating TRS. Then compatibility of R with an n-
dimensional matrix interpretation over >wI , I ⊆ {1, . . . , n}, implies compatibility with an
(n+ 1)-dimensional matrix interpretation over >wJ , where |J | = |I|+ 1, J ⊆ {1, . . . , n+ 1}.

Proof. Setting all the fi’s introduced by Ψ(M) to one, the condition R ⊆ <P(M) becomes
equivalent to R being non-duplicating according to Lemma 5.7. J

I Example 5.10. Consider the TRS R3 = { f(x)→ g(h(x, x)), g(a)→ f(a) }. Termination
can be shown with the following 2-dimensional matrix interpretation over >w{1}:

fM(~x) =
(

3 0
2 0

)
~x+

(
2
0

)
gM(~x) =

(
1 1
0 0

)
~x+

(
1
0

)
hM(~x, ~y) =

(
2 0
0 0

)
~x+

(
1 0
0 0

)
~y aM =

(
0
3

)
Moreover, the following linear polynomial interpretation orients all rules weakly:

fP(M)(x) = 2x gP(M)(x) = x hP(M)(x, y) = x+ y aP(M) = 0

Hence, by (the proof of) Lemma 5.8, there exists a compatible 3-dimensional matrix inter-
pretation over >w{1,2}.

Next we argue that the precondition R ⊆ <P(M) in Lemma 5.8 is only technical in
nature (to satisfy the formal definition of a well-founded monotone algebra); when it comes
to termination proving power, it is actually superfluous.
I Remark. In the situation of Lemma 5.8, if M is compatible with R, then, no matter
whether R ⊆ <P(M) or not, Ψ(M) always establishes termination of R by proving the
absence of infinite rewrite sequences of ground terms (assuming that the associated signature
contains at least one constant symbol). This follows from Corollary 5.5 and compatibility
ofM with R. Also note that in the proof of Lemma 5.8 the only purpose of the condition
R ⊆ <P(M) is to ensure a weak decrease in the first components of the vectors associated
with some rewrite rule. However, for ground terms, we always have a weak decrease by
Corollary 5.5.

Finally, we remark that by doubling the dimension of M these technicalities can be
resolved.
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I Lemma 5.11. Compatibility of a TRS R with an n-dimensional matrix interpretation
over >wI , I ⊆ {1, . . . , n}, implies compatibility with a 2n-dimensional matrix interpretation
over >wJ , where |J | = 2 · |I|, J ⊆ {1, . . . , 2n}.

In order to prove Lemma 5.11, we introduce a construction that combines two matrix
interpretationsM and N (not necessarily of the same dimension) to a matrix interpretation
Π(M,N ) as follows. Assuming M consists of interpretation functions fM(~x1, . . . , ~xk) =∑k
i=1 Fi~xi + ~f and N of interpretation functions fN (~x1, . . . , ~xk) =

∑k
i=1 F̃i~xi + f̃ , the

Π(M,N )-interpretation of each k-ary function symbol f is

fΠ(M,N )(~x1, . . . , ~xk) =
k∑
i=1

(
Fi 0
0 F̃i

)
~xi +

(
~f

f̃

)
I Lemma 5.12. Let t be an arbitrary term. Then for all variable assignments α and β,

[γ]Π(M,N )(t) =
(

[α]M(t)
[β]N (t)

)
for the variable assignment γ(x) =

(
α(x)
β(x)

)
.

Proof. By induction on the structure of t. J

Proof of Lemma 5.11. Assuming thatM is an n-dimensional matrix interpretation over
>wI compatible with R, we show that Π(M,M) is compatible as well. To this end, we let
J = I ∪ {x+ n | x ∈ I } and reason as follows. By assumption, all interpretation functions
ofM are monotone with respect to >wI , that is, for each matrix M ∈M, all column sums of
(M)I are at least one according to Lemma 4.1. By construction of Π(M,M), this implies that
for each matrix M ′ ∈ Π(M,M), all column sums of (M ′)J are also at least one. Hence, all
interpretation functions of Π(M,M) are monotone with respect to >wJ . As to compatibility
of Π(M,M) with R, for any rewrite rule ` → r, [γ]Π(M,M)(`) >wJ [γ]Π(M,M)(r) holds for
all variable assignments γ if and only if(

[α]M(`)
[β]M(`)

)
>wJ

(
[α]M(r)
[β]M(r)

)
for all variable assignments α and β (cf. Lemma 5.12).

But this follows directly from compatibility ofM with R since [α]M(`) >wI [α]M(r) for all
assignments α. J

Summarizing the above results, every TRS that can be proved terminating by a matrix
interpretation over >wI , for some index set I, can also be proved terminating by a matrix
interpretation over >wJ , for a larger index set J , at the expense of an increased dimension.

Next we elaborate on the converse of this statement. To this end, let us consider some
TRS R and a compatible n-dimensional matrix interpretationM over >wI , where |I| > 1,
consisting of interpretation functions fM(~x1, . . . , ~xk) =

∑k
i=1 Fi~xi+ ~f for each k-ary function

symbol f in the signature. Our aim is to show that R is also compatible with a matrix
interpretation over >w{1} (or more generally, >wI for a singleton index set I), albeit with a
higher dimension.

First, we transform M into M′ := Ψ(M), which is in turn transformed into M′′ :=
ΦP (M′) for P = I + U , where I is the identity matrix and U is all zero except for the
entries U1,i+1 = 1, for all i ∈ I. As P−1 = I − U is not non-negative, we have to ensure
well-definedness ofM′′, that is, make sure that all its matrices are non-negative. Now for
any matrix (vector) M , PM is equal to M except for the first row, which is the sum of the
rows of M with indices in {1} ∪ { i+ 1 | i ∈ I }. Hence,

P

(
fi 0
0 Fi

)
=
(
fi

∑
c∈I(Fi)c1 · · ·

∑
c∈I(Fi)cn

0 (Fi)−1 · · · (Fi)−n

)
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Multiplying this matrix by P−1 from the right has the effect of subtracting its first column
from the columns with indices in { i+1 | i ∈ I }, thus replacing

∑
c∈I(Fi)cj by

∑
c∈I(Fi)cj−fi

for all indices j ∈ I in the above representation. As these are the only entries that may
eventually be negative,

∑
c∈I(Fi)cj − fi > 0 for all j ∈ I implies well-definedness of M′′.

Note, however, that if all the fi’s introduced by the transformation Ψ are one, then the latter
condition is satisfied without further ado because, by assumption, all interpretation functions
of M are monotone with respect to >wI ; hence, for all j ∈ I,

∑
c∈I(Fi)cj is at least one

according to Lemma 4.1. Moreover, note that the top-left entry of each matrix occurring in
M′′ is positive since fi > 0. Consequently, all interpretation functions ofM′′ are monotone
with respect to >w{1}.

As to compatibility ofM′′ with R, let `→ r be an arbitrary rule in R, and let [α]M(`) =
L1α(x1) + · · ·+Lmα(xm) +~l and [α]M(r) = R1α(x1) + · · ·+Rmα(xm) +~r, where x1, . . . , xm
are the variables occurring in ` and r. Likewise, let [β]P(M)(`) = l1β(x1) + · · ·+ lmβ(xm),
where l1, . . . , lm ∈ N, and similarly for [β]P(M)(r). By compatibility ofM, we have ~l >wI ~r
and Li > Ri for i = 1, . . . ,m (cf. Lemma 4.4). Moreover, by Lemmata 5.2 and 5.6,

[γ]M′′(`) =
m∑
i=1

P

(
li 0
0 Li

)
P−1γ(xi) + P

(
0
~l

)
for γ : V → Nn+1, x 7→

(
β(x)
α(x)

)
.

Therefore, [γ]M′′(`) >w{1} [γ]M′′(r) holds for all variable assignments γ if and only if

P

(
0
~l

)
>w{1} P

(
0
~r

)
and P

(
li − ri 0

0 Li −Ri

)
P−1 > 0 for i = 1, . . . ,m.

The first condition follows directly from ~l >wI ~r and the shape of P . Concerning the second
condition, we first rewrite the corresponding matrix to(

li − ri
∑
c∈I(Li −Ri)c1 · · ·

∑
c∈I(Li −Ri)cn

0 (Li −Ri)−1 · · · (Li −Ri)−n

)
P−1.

Using the fact that Li > Ri, the entire matrix is non-negative if and only if, for i = 1, . . . ,m,
li > ri and

∑
c∈I(Li −Ri)cj > li − ri for all j ∈ I.

Based on these observations, we establish the following lemma.

I Lemma 5.13. LetM be an n-dimensional matrix interpretation over >wI , I ⊆ {1, . . . , n},
such that |I| > 1, and let R be a TRS satisfying R ⊆ <P(M). Moreover, assume that for
each k-ary function symbol f , all column sums of each (Fi)I are greater than or equal to
fi for all i ∈ {1, . . . , k}, and that for each `→ r ∈ R, all column sums of each (Li −Ri)I
are greater than or equal to li − ri for all i ∈ {1, . . . ,m}. Then compatibility of R with
M implies compatibility with an (n+ 1)-dimensional matrix interpretation over >wJ , where
|J | = 1, J ⊆ {1, . . . , n+ 1}. J

I Corollary 5.14. LetM be an n-dimensional matrix interpretation over >wI , I ⊆ {1, . . . , n},
such that |I| > 1, and let R be a non-duplicating TRS. Moreover, assume that for each
` → r ∈ R, all column sums of each (Li −Ri)I are greater than or equal to li − ri for
all i ∈ {1, . . . ,m}. Then compatibility of R with M implies compatibility with an (n+ 1)-
dimensional matrix interpretation over >wJ , where |J | = 1, J ⊆ {1, . . . , n+ 1}.

Proof. Setting all the fi’s introduced by Ψ(M) to one, the condition R ⊆ <P(M) becomes
equivalent to R being non-duplicating according to Lemma 5.7. Moreover, all column sums
of each (Fi)I are greater than or equal to fi = 1 because all interpretation functions ofM
are monotone with respect to >wI . J
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By restricting the class of non-duplicating TRSs further, we can get rid of the condition
that all column sums of (Li −Ri)I are greater than or equal to li − ri.

I Corollary 5.15. Let R be a TRS, such that for all `→ r ∈ R, |`|x = |r|x for all variables x.
Then compatibility of R with an n-dimensional matrix interpretation over >wI , where |I| > 1
and I ⊆ {1, . . . , n}, implies compatibility with an (n+ 1)-dimensional matrix interpretation
over >wJ , where |J | = 1, J ⊆ {1, . . . , n+ 1}. J

I Remark. Let all the fi’s introduced by Ψ(M) be one. Then, in the situation of Lemma 5.13,
if M is compatible with R, then, no matter whether the other preconditions mentioned
in the lemma are satisfied or not,M′′ always establishes termination of R by proving the
absence of infinite rewrite sequences of ground terms. This can be seen as follows. Assume
to the contrary that t1 → t2 → t3 → · · · is such an infinite sequence. By Corollaries 5.3 and
5.5, we have

[γ]M′′(ti) = P · [γ]Ψ(M)(ti) = P ·
(

0
[α]M(ti)

)
=
(∑

c∈I([α]M(ti))c
[α]M(ti)

)
From this and from compatibility ofM with R, we conclude that [γ]M′′(ti) >w{1} [γ]M′′(ti+1)
holds for all i ∈ N \ {0} because of [α]M(ti) >wI [α]M(ti+1). However, this contradicts
well-foundedness of >w{1}.

6 Matrix Interpretations and Non-weakly Decreasing Orders

In this section we investigate the usefulness of the orders >Σ, >`, >m and >I (where I is
a singleton set) introduced in Subsection 3.2 for building matrix interpretations on top of
them. As these orders originated from the orders introduced in Definition 3.1 by dropping
the property of weak decreasingness, each of them obviously subsumes its ancestor, e.g.,
>wΣ ⊂ >Σ, so that one is tempted to believe that these more general base orders would
induce more powerful kinds of matrix interpretations. However, as already mentioned at
the end of Section 4, an inclusion like >wΣ ⊂ >Σ does not necessarily propagate to the
corresponding notions of matrix interpretations because of the monotonicity requirement all
interpretation functions have to satisfy. Indeed, it turns out that the monotonicity conditions
with respect to >Σ, >`, >m and >I are much stronger than the ones associated with their
respective weakly decreasing counterparts, ultimately resulting in weaker notions of matrix
interpretations. In particular, we will see that matrix interpretations over >I and >Σ are
equivalent to linear polynomial interpretations.

As already mentioned in Subsection 3.2, all four orders are equal to >N when the dimension
n is one. Hence, matrix interpretations based on them are at least as powerful as linear
polynomial interpretations. Next we show that matrix interpretations over >I and >Σ
are no more powerful than linear polynomial interpretations. Since matrix interpretations
are invariant under permutations, we consider the index set I = {1} without loss of any
generality.

I Lemma 6.1. Let f(~x1, . . . , ~xk) =
∑k
i=1 Fi~xi + ~f , where ~f ∈ Nn and F1, . . . , Fk ∈ Nn×n.

Then f(~x1, . . . , ~xk) is monotone with respect to >{1} if and only if for each Fi, i = 1, . . . , k,
(Fi)11 > 1 and (Fi)12 = · · · = (Fi)1n = 0. J

Intuitively, this means that the first component of a function application f(~x1, . . . , ~xk)
only depends on the respective first components of its arguments, not on the other compon-
ents. Based on this observation and the fact that for comparisons with >{1} only the first
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components matter, we associate the following linear polynomial interpretation P with a given
matrix interpretationM over >{1}. For each k-ary function symbol f , if fM(~x1, . . . , ~xk) =∑k
i=1 Fi~xi + ~f is its interpretation in M, with all matrices satisfying the conditions of

Lemma 6.1, then we define its P-interpretation as fP(x1, . . . , xk) =
∑k
i=1(Fi)11 xi + (~f)1,

which is monotone because (Fi)11 > 1. By construction, the P-interpretation of an arbit-
rary term coincides with the first component of itsM-interpretation. The straightforward
induction proof is omitted.

I Lemma 6.2. LetM be a matrix interpretation over >{1} of dimension n, P the associated
linear polynomial interpretation as described above and t an arbitrary term. Then for any
variable assignment α : V → Nn, π1([α]M(t)) = [π1 ◦α]P(t), where π1 projects a vector to its
first component. J

Therefore, any rewrite rule `→ r that is orientable byM, is also orientable by P (since
π1 ◦ α covers all assignments V → N), which shows that matrix interpretations over >{1}
(>I) are no more powerful than linear polynomial interpretations. The following lemma
states that this is also the case for matrix interpretations over >Σ.

I Lemma 6.3. Let f(~x1, . . . , ~xk) =
∑k
i=1 Fi~xi + ~f , where ~f ∈ Nn and F1, . . . , Fk ∈ Nn×n.

Then f(~x1, . . . , ~xk) is monotone with respect to >Σ if and only if for each Fi, i = 1, . . . , k,
all column sums are equal and at least one. J

In analogy to the treatment of matrix interpretations over >{1}, given an n-dimensional
matrix interpretationM over >Σ, we again associate a linear polynomial interpretation P
withM as follows. For each k-ary function symbol f , if fM(~x1, . . . , ~xk) =

∑k
i=1 Fi~xi + ~f is

its interpretation inM, with all matrices satisfying the conditions of Lemma 6.3, then its
P-interpretation is defined as fP(x1, . . . , xk) =

∑k
i=1 F

Σ
i xi +

∑n
j=1(~f)j , where FΣ

i denotes
the column sum of Fi, which is equal for all columns of Fi and at least one; hence, fP is
monotone. By construction, the P-interpretation of an arbitrary term coincides with the
sum of the components of itsM-interpretation.

I Lemma 6.4. LetM be a matrix interpretation over >Σ of dimension n, P the associated
linear polynomial interpretation as described above and t an arbitrary term. Then for any
variable assignment α : V → Nn,

∑n
j=1 ([α]M(t))j = [α′]P(t), where α′(x) =

∑n
j=1(α(x))j

for all x ∈ V. J

So, if a rewrite rule `→ r is orientable byM, i.e., [α]M(`) >Σ [α]M(r) for all variable
assignments α, then it is also orientable by P (since α′ covers all assignments V → N), which
shows that matrix interpretations over >Σ are no more powerful than linear polynomial
interpretations.

Finally, concerning matrix interpretations over >m and >`, the situation is similar as
for >Σ and >I . That is to say that the respective monotonicity conditions are too strong,
thus reducing the set of potential interpretation functions down to a size that renders matrix
interpretations over >m and >` useless. For example, one can show that for monotonicity
of a function A~x + ~b with respect to >m, it is necessary that the matrix A satisfies the
conditions of Lemma 6.3, that is, all column sums of A must be equal and at least one; e.g.,
by considering vectors ~x and ~y, such that all components of ~y are equal to some y ∈ N and ~x
is zero everywhere except for its j-th component, j ∈ {1, . . . , n}, which contains the value
y + 1. Similarly, one can show that for monotonicity of A~x +~b with respect to >`, it is
necessary that all column vectors of A are non-zero and have the same (Euclidean) length;
e.g., for dimension 2 and higher, by considering vectors ~x = (y ∓ 1, y ± 1, 0, . . . , 0)T and
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~y = (y, y, 0, . . . , 0)T , where y ∈ N \ {0}. However, these conditions are not sufficient. Even if
A is the identity matrix, A~x+~b is not necessarily monotone with respect to >`.

7 Improved Matrix Interpretations

According to the results presented in Section 5, in theory the various instances of matrix
interpretations over >wI are all equivalent somehow with respect to termination proving
power if there is no bound on the dimension of the matrices. In practice, however, due
to computational restrictions the dimension is limited. But then the various instances of
matrix interpretations over >wI are incomparable as witnessed by Example 5.1 and by the
experiments we performed. Therefore, an implementation should try all instances (cf. also
[3]). Apart from parallelization, one could try to combine the constraints associated with
each instance into a single disjunctive constraint and let the constraint solver figure out which
instance to pursue. This approach was chosen in [3]. However, according to our experiments,
it does not yield an efficient implementation (cf. experimental results below). Therefore, we
propose a different approach, which generalizes traditional matrix interpretations.

Given some signature F , we define an F-algebraM with carrier Nn, where each k-ary
function symbol f ∈ F is interpreted by a linear function as in Definition 4.2 (without the
monotonicity requirement). Concerning monotonicity, we demand that

all functions are monotone with respect to >wI1
, or

all functions are monotone with respect to >wI2
, or

...
all functions are monotone with respect to >wIn .

Compatibility with a given TRS R is established by demanding that for every rewrite rule
`→ r ∈ R, [α]M(`) >wI1

[α]M(r) for all variable assignments α; i.e., every rewrite rule gives
rise to a strict decrease in the first components of the vectors associated with it.

Clearly, if all interpretation functions of M are monotone with respect to >wI1
, then

M corresponds to a traditional matrix interpretation [4]. More generally, M always is a
matrix interpretation over >wId , d ∈ {1, . . . , n}, in the sense of Definition 4.2 because of the
inclusions >wI1

⊂ >wI2
⊂ · · · ⊂ >wIn .

Next we provide some experimental data. We implemented the variants of matrix
interpretations considered in this paper in the termination prover TTT2 [11] and analyzed
their performance on TPDB3 version 7.0.2. All tests have been performed on a laptop
equipped with 2 GB of main memory and one dual-core INTEL® Core 2 Duo T7500 processor
running at a clock rate of 2.2 GHz with a time limit of 60 seconds per system.4

Table 1 summarizes our results for establishing direct termination (using matrix inter-
pretations as a stand-alone method). We searched for matrix interpretations of dimensions
two and three by encoding the constraints as an SMT problem (quantifier-free non-linear
arithmetic), which is solved by bit-blasting. The table lists the number of bits used to
represent matrix/vector coefficients, the number of bits for intermediate results is one higher
than that. The entry >ext

{1} in the first column refers to the notion of matrix interpretations
presented above, whereas the entry [3] refers to the approach proposed in [3]. For the
experiments presented in the table the time limit was hardly ever consumed. Typically, a
termination proof is obtained in about 2 (5) seconds for dimension 2 (3). For dimensions 4

3 Termination Problems Data Base, http://termcomp.uibk.ac.at.
4 For full details see http://colo6-c703.uibk.ac.at/ttt2/fn/matrix.

http://termcomp.uibk.ac.at
http://colo6-c703.uibk.ac.at/ttt2/fn/matrix
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Table 1 Experimental results for various matrix interpretations.

method dimension # bits SCORE

>wI1 2 3 242

>wI2 2 3 247

>ext
{1} 2 3 254

[3] 2 3 250

method dimension # bits SCORE

>wI1 3 2|3 266|285

>wI2 3 2|3 252|264

>wI3 3 2|3 249|269

>ext
{1} 3 2|3 276|287

[3] 3 2|3 267|270

and higher, however, there are many more timeouts, resulting in inferior performance scores;
e.g., for matrix interpretations over >wI1

of dimension 4 (with 3 bits) one loses more than 40
of the 285 systems for dimension 3.

8 Conclusion and Future Work

In this paper we studied various alternative well-founded orders on vectors of natural numbers
based on vector norms. Most of them turned out to be equivalent to or subsumed by an
instance of >wI , an order which already appeared in [3]. In this respect, our main contribution
are the theoretical comparisons presented in Section 5, as well as the variant of matrix
interpretations introduced in Section 7. We do note, however, that the situation is altogether
different when switching from the natural numbers to the rationals and reals. Then it is not
the case anymore that almost all of the orders of Section 3 (suitably adapted) are equivalent.
In particular, one could imagine interpretation functions, all of whose matrices have entries
less than one, but which are still monotone. We leave this issue for the near future. In this
context, we also mention the recent work of Lucas [12] where an attempt is made to simulate
matrix interpretation over the rationals by an interpretation over the naturals.

We also plan to investigate on the ramifications of the kinds of matrix interpretations
proposed in this paper with respect to recent results on the derivational complexity of
TRSs [13]. For example, if a matrix has a diagonal of all zeros, then its trace, the sum of the
diagonal entries, is also zero. As the trace of a matrix is the sum of its eigenvalues, which
have been shown to be the determining factor for the derivational complexity of TRSs, a
lower trace might be beneficial in this context.

In the near future work we will address alternative matrix interpretations in the context of
the DP framework [6], where it suffices to consider weakly monotone algebras. A well-founded
weakly monotone F-algebra (A, >,&) is an F -algebra A equipped with two relations >, & on
A, such that > is well-founded, > ·& ⊆ >, and for every f ∈ F , fA is monotone with respect
to &. If, in addition, fA is also monotone with respect to > (for every f ∈ F), then we
obtain an extended monotone F-algebra [4], the analogon of well-founded monotone algebras
in the context of relative termination.

Based on the results of the previous sections, the following instances of a weakly monotone
algebra (Nn, >,&), where & = >w and (1) > = >wI for I = {1, . . . , n}, (2) > = >Σ, (3)
> = >m, or (4) > = >` need to be considered. As to the first instance, we note that
> is the strict part of & according to Lemma 3.3. Yet this is exactly the case that is
considered in [4], apart from a refinement that reduces the search space in an implementation.
Moreover, by Corollary 3.4, no other weakly decreasing orders need to be considered for
>. However, observing that weak decreasingness is not really needed to obtain a weakly
monotone algebra, one might as well drop it, thus obtaining a weakly monotone algebra,
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where > = >Σ (instance (2) above), which is a proper generalization of the first one since
>wI = >wΣ ⊂ >Σ (cf. Lemma 3.3). Similarly, one can use the non-weakly decreasing orders
>m and >` to obtain other instances of weakly monotone algebras. They are all incomparable
since >Σ, >m and >` are so.

Acknowledgements We thank Bertram Felgenhauer for his helpful comments in the early
stages of this work.
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