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Abstract
The rapidly growing corpus of digital audio material requires novel retrieval strategies for ex-
ploring large music collections. Traditional retrieval strategies rely on metadata that describe
the actual audio content in words. In the case that such textual descriptions are not available,
one requires content-based retrieval strategies which only utilize the raw audio material. In
this contribution, we discuss content-based retrieval strategies that follow the query-by-example
paradigm: given an audio query, the task is to retrieve all documents that are somehow similar
or related to the query from a music collection. Such strategies can be loosely classified according
to their specificity, which refers to the degree of similarity between the query and the database
documents. Here, high specificity refers to a strict notion of similarity, whereas low specificity to
a rather vague one. Furthermore, we introduce a second classification principle based on gran-
ularity, where one distinguishes between fragment-level and document-level retrieval. Using a
classification scheme based on specificity and granularity, we identify various classes of retrieval
scenarios, which comprise audio identification, audio matching, and version identification. For
these three important classes, we give an overview of representative state-of-the-art approaches,
which also illustrate the sometimes subtle but crucial differences between the retrieval scenarios.
Finally, we give an outlook on a user-oriented retrieval system, which combines the various re-
trieval strategies in a unified framework.
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1 Introduction

The way music is stored, accessed, distributed, and consumed underwent a radical change in
the last decades. Nowadays, large collections containing millions of digital music documents
are accessible from anywhere around the world. Such a tremendous amount of readily
available music requires retrieval strategies that allow users to explore large music collections
in a convenient and enjoyable way. Most audio search engines rely on metadata and textual
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(a) (b) (c)

Figure 1 Illustration of retrieval concepts. (a) Traditional retrieval using textual metadata (e. g.,
artist, title) and a web search engine.1 (b) Retrieval based on rich and expressive metadata given
by tags.2 (c) Content-based retrieval using audio, MIDI, or score information.

annotations of the actual audio content [11]. Editorial metadata typically include descriptions
of the artist, title, or other release information. The drawback of a retrieval solely based on
editorial metadata is that the user needs to have a relatively clear idea of what he or she is
looking for. Typical query terms may be a title such as “Act naturally” when searching the
song by The Beatles or a composer’s name such as “Beethoven” (see Figure 1a). In other
words, traditional editorial metadata only allow to search for already known content. To
overcome these limitations, editorial metadata has been more and more complemented by
general and expressive annotations (so called tags) of the actual musical content [5, 25, 49].
Typically, tags give descriptions of the musical style or genre of a recording, but may also
include information about the mood, the musical key, or the tempo [31, 48]. In particular,
tags form the basis for music recommendation and navigation systems that make the audio
content accessible even when users are not looking for a specific song or artist but for
music that exhibits certain musical properties [49]. The generation of such annotations of
audio content, however, is typically a labor intensive and time-consuming process [11, 48].
Furthermore, often musical expert knowledge is required for creating reliable, consistent, and
musically meaningful annotations. To avoid this tedious process, recent attempts aim at
substituting expert-generated tags by user-generated tags [48]. However, such tags tend to
be less accurate, subjective, and rather noisy. In other words, they exhibit a high degree of
variability between users. Crowd (or social) tagging, one popular strategy in this context,
employs voting and filtering strategies based on large social networks of users for “cleaning”
the tags [31]. Relying on the “wisdom of the crowd” rather than the “power of the few” [27],
tags assigned by many users are considered more reliable than tags assigned by only a few
users. Figure 1b shows the Last.fm2 tag cloud for “Beethoven”. Here, the font size reflects
the frequency of the individual tags. One major drawback of this approach is that it relies
on a large crowd of users for creating reliable annotations [31]. While mainstream pop/rock
music is typically covered by such annotations, less popular genres are often scarcely tagged.
This phenomenon is also known as the “long-tail” problem [12, 48]. To overcome these
problems, content-based retrieval strategies have great potential as they do not rely on any
manually created metadata but are exclusively based on the audio content and cover the
entire audio material in an objective and reproducible way [11]. One possible approach is
to employ automated procedures for tagging music, such as automatic genre recognition,
mood recognition, or tempo estimation [4, 49]. The major drawback of these learning-based

1 www.google.com (accessed Dec. 18, 2011)
2 www.last.fm (accessed Dec. 18, 2011)

http://www.google.com
http://www.last.fm
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Figure 2 Specificity/granularity pane showing the various facets of content-based music retrieval.

strategies is the requirement of large corpora of tagged music examples as training material
and the limitation to queries in textual form. Furthermore, the quality of the tags generated
by state-of-the-art procedures does not reach the quality of human generated tags [49].

In this contribution, we present and discuss various retrieval strategies based on audio
content that follow the query-by-example paradigm: given an audio recording or a fragment
of it (used as query or example), the task is to automatically retrieve documents from a
given music collection containing parts or aspects that are similar to it. As a result, retrieval
systems following this paradigm do not require any textual descriptions. However, the notion
of similarity used to compare different audio recordings (or fragments) is of crucial importance
and largely depends on the respective application as well as the user requirements.

Many different audio content-based retrieval systems have been proposed, following
different strategies and aiming at different application scenarios. Generally, such retrieval
systems can be characterized by various aspects such as the notion of similarity, the underlying
matching principles, or the query format. Following and extending the concept introduced
in [11], we consider the following two aspects: specificity and granularity, see Figure 2. The
specificity of a retrieval system refers to the degree of similarity between the query and the
database documents to be retrieved. High-specific retrieval systems return exact copies of the
query (in other words, they identify the query or occurrences of the query within database
documents), whereas low-specific retrieval systems return vague matches that are similar
with respect to some musical properties. As in [11], different content-based music retrieval
scenarios can be arranged along a specificity axis as shown in Figure 2 (horizontally). We
extend this classification scheme by introducing a second aspect, the granularity (or temporal
scope) of a retrieval scenario. In fragment-level retrieval scenarios, the query consists of a
short fragment of an audio recording, and the goal is to retrieve all musically related fragments
that are contained in the documents of a given music collection. Typically, such fragments
may cover only a few seconds of audio content or may correspond to a motif, a theme, or
a musical part of a recording. In contrast, in document-level retrieval, the query reflects
characteristics of an entire document and is compared with entire documents of the database.

Chapte r 09
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Here, the notion of similarity typically is rather coarse and the used features capture global
statistics of an entire recording. In this context, one has to distinguish between some kind of
internal and some kind of external granularity of the retrieval tasks. In our classification
scheme, we use the term fragment-level when a fragment-based similarity measure is used to
compare fragments of audio recordings (internal), even though entire documents are returned
as matches (external). Using such a classification allows for extending the specificity axis to
a specificity/granularity pane as shown in Figure 2. In particular, we have identified four
different groups of retrieval scenarios corresponding to the four clouds in Figure 2. Each of
the clouds, in turn, encloses a number of different retrieval scenarios. Obviously, the clouds
are not strictly separated but blend into each other. Even though this taxonomy is rather
vague and sometimes questionable, it gives an intuitive overview of the various retrieval
paradigms while illustrating their subtle but crucial differences.

An example of a high-specific fragment-level retrieval task is audio identification (some-
times also referred to as audio fingerprinting [8]). Given a small audio fragment as query,
the task of audio identification consists in identifying the particular audio recording that is
the source of the fragment [1]. Nowadays, audio identification is widely used in commercial
systems such as Shazam.3 Typically, the query fragment is exposed to signal distortions
on the transmission channel [8, 29]. Recent identification algorithms exhibit a high degree
of robustness against noise, MP3 compression artifacts, uniform temporal distortions, or
interferences of multiple signals [16, 22]. The high specificity of this retrieval task goes along
with a notion of similarity that is very close to the identity. To make this point clearer, we
distinguish between a piece of music (in an abstract sense) and a specific performance of
this piece. In particular for Western classical music, there typically exist a large number
of different recordings of the same piece of music performed by different musicians. Given
a query fragment, e. g., taken from a Bernstein recording of Beethoven’s Symphony No. 5,
audio fingerprinting systems are not capable of retrieving, e. g., a Karajan recording of the
same piece. Likewise, given a query fragment from a live performance of “Act naturally” by
The Beatles, the original studio recording of this song may not be found. The reason for
this is that existing fingerprinting algorithms are not designed to deal with strong non-linear
temporal distortions or with other musically motivated variations that affect, for example,
the tempo or the instrumentation.

At a lower specificity level, the goal of fragment-based audio matching is to retrieve all
audio fragments that musically correspond to a query fragment from all audio documents
contained in a given database [28, 37]. In this scenario, one explicitly allows semantically
motivated variations as they typically occur in different performances and arrangements of a
piece of music. These variations include significant non-linear global and local differences
in tempo, articulation, and phrasing as well as differences in executing note groups such as
grace notes, trills, or arpeggios. Furthermore, one has to deal with considerable dynamical
and spectral variations, which result from differences in instrumentation and loudness.

One instance of document-level retrieval at a similar specificity level as audio matching is
the task of version identification. Here, the goal is to identify different versions of the same
piece of music within a database [42]. In this scenario, one not only deals with changes in
instrumentation, tempo, and tonality, but also with more extreme variations concerning the
musical structure, key, or melody, as typically occurring in remixes and cover songs. This
requires document-level similarity measures to globally compare entire documents.

Finally, there are a number of even less specific document-level retrieval tasks which

3 www.shazam.com (accessed Dec. 18, 2011)

http://www.shazam.com
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can be grouped under the term category-based retrieval. This term encompasses retrieval
of documents whose relationship can be described by cultural or musicological categories.
Typical categories are genre [50], rhythm styles [19, 41], or mood and emotions [26, 47, 53]
and can be used in fragment as well as document-level retrieval tasks. Music recommendation
or general music similarity assessments [7, 54] can be seen as further document-level retrieval
tasks of low specificity.

In the following, we elaborate the aspects of specificity and granularity by means of
representative state-of-the-art content-based retrieval approaches. In particular, we highlight
characteristics and differences in requirements when designing and implementing systems for
audio identification, audio matching, and version identification. Furthermore, we address
efficiency and scalability issues. We start with discussing high-specific audio fingerprinting
(Section 2), continue with mid-specific audio matching (Section 3), and then discuss version
identification (Section 4). In Section 5, we discuss open problems in the field of content-based
retrieval and give an outlook on future directions.

2 Audio Identification

Of all content-based music retrieval tasks, audio identification has received most interest
and is now widely used in commercial applications. In the identification process, the audio
material is compared by means of so-called audio fingerprints, which are compact content-
based signatures of audio recordings [8]. In real-world applications, these fingerprints need
to fulfill certain requirements. First of all, the fingerprints should capture highly specific
characteristics so that a short audio fragment suffices to reliably identify the corresponding
recording and distinguish it from millions of other songs. However, in real-world scenarios,
audio signals are exposed to distortions on the transmission channel. In particular, the signal
is likely to be affected by noise, artifacts from lossy audio compression, pitch shifting, time
scaling, equalization, or dynamics compression. For a reliable identification, fingerprints have
to show a significant degree of robustness against such distortions. Furthermore, scalability is
an important issue for all content-based retrieval applications. A reliable audio identification
system needs to capture the entire digital music catalog, which is further growing every day.
In addition, to minimize storage requirements and transmission delays, fingerprints should be
compact and efficiently computable [8]. Most importantly, this also requires efficient retrieval
strategies to facilitate very fast database look-ups. These requirements are crucial for the
design of large-scale audio identification systems. To satisfy all these requirements, however,
one typically has to face a trade-off between contradicting principles.

There are various ways to design and compute fingerprints. One group of fingerprints
consist of short sequences of frame-based feature vectors such as Mel-Frequency Cepstral
Coefficients (MFCC) [9], Bark-scale spectrograms [22, 23], or a set of low-level descriptors [1].
For such representations, vector quantization [1] or thresholding [22] techniques, or temporal
statistics [38] are needed for obtaining the required robustness. Another group of fingerprints
consist of a sparse set of characteristic points such as spectral peaks [14, 52] or characteristic
wavelet coefficients [24]. As an example, we now describe the peak-based fingerprints
suggested by Wang [52], which are now commercially used in the Shazam music identification
service4.

The Shazam system provides a smartphone application that allows users to record a
short audio fragment of an unknown song using the built-in microphone. The application

4 www.shazam.com (accessed Dec. 18, 2011)
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Figure 3 Illustration of the Shazam audio identification system using a recording of “Act
naturally” by The Beatles as example. (a) Database document with extracted peak fingerprints. (b)
Query fragment (10 seconds) with extracted peak fingerprints. (c) Constellation map of database
document. (d) Constellation map of query document. (e) Superposition of the database fingerprints
and time-shifted query fingerprints.

then derives the audio fingerprints which are sent to a server that performs the database
look-up. The retrieval result is returned to the application and presented to the user together
with additional information about the identified song. In this approach, one first computes
a spectrogram from an audio recording using a short-time Fourier transform. Then, one
applies a peak-picking strategy that extracts local maxima in the magnitude spectrogram:
time-frequency points that are locally predominant. Figure 3 illustrates the basic retrieval
concept of the Shazam system using a recording of “Act naturally” by The Beatles. Figure 3a
and Figure 3b show the spectrogram for an example database document (30 seconds of
the recording) and a query fragment (10 seconds), respectively. The extracted peaks are
superimposed to the spectrograms. The peak-picking step reduces the complex spectrogram
to a “constellation map”, a low-dimensional sparse representation of the original signal by
means of a small set of time-frequency points, see Figure 3c and Figure 3d. According to [52],
the peaks are highly characteristic, reproducible, and robust against many, even significant
distortions of the signal. Note that a peak is only defined by its time and frequency values,
whereas magnitude values are no longer considered.

The general database look-up strategy works as follows. Given the constellation maps
for a query fragment and all database documents, one locally compares the query fragment
to all database fragments of the same size. More precisely, one counts matching peaks, i. e.,
peaks that occur in both constellation maps. A high count indicates that the corresponding
database fragment is likely to be a correct hit. This procedure is illustrated in Figure 3e,
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Figure 4 Illustration of the peak pairing strategy of the Shazam algorithm. (a) Anchor peak
and assigned target zone. (b) Pairing of anchor peak and target peaks to form hash values.

showing the superposition of the database fingerprints and time-shifted query fingerprints.
Both constellation maps show a high consistency (many red and blue points coincide) at a
fragment of the database document starting at time position 10 seconds, which indicates a
hit. However, note that not all query and database peaks coincide. This is because the query
was exposed to signal distortions on the transmission channel (in this example additive white
noise). Even under severe distortions of the query, there still is a high number of coinciding
peaks thus showing the robustness of these fingerprints.

Obviously, such an exhaustive search strategy is not feasible for a large database as the
run-time linearly depends on the number and sizes of the documents. For the constellation
maps, as proposed in [29], one tries to efficiently reduce the retrieval time using indexing
techniques—very fast operations with a sub-linear run-time. However, directly using the
peaks as hash values is not possible as the temporal component is not translation-invariant
and the frequency component alone does not have the required specificity. In [52], a strategy
is proposed, where one considers pairs of peaks. Here, one first fixes a peak to serve as
“anchor peak” and then assigns a “target zone” as indicated in Figure 4a. Then, pairs are
formed of the anchor and each peak in the target zone, and a hash value is obtained for each
pair of peaks as a combination of both frequency values and the time difference between the
peaks as indicated in Figure 4b. Using every peak as anchor peak, the number of items to
be indexed increases by a factor that depends on the number of peaks in the target zone.
This combinatorial hashing strategy has three advantages. Firstly, the resulting fingerprints
show a higher specificity than single peaks, leading to an acceleration of the retrieval as
fewer exact hits are found. Secondly, the fingerprints are translation-invariant as no absolute
timing information is captured. Thirdly, the combinatorial multiplication of the number of
fingerprints introduced by considering pairs of peaks as well as the local nature of the peak
pairs increases the robustness to signal degradations.

The Shazam audio identification system facilitates a high identification rate, while scaling
to large databases. One weakness of this algorithm is that it can not handle time scale
modifications of the audio as frequently occurring in the context of broadcasting monitoring.
The reason for this is that time scale modifications (also leading to frequency shifts) of the
query fragment completely change the hash values. Extensions of the original algorithms
dealing with this issue are presented in [14, 51].

3 Audio Matching

The problem of audio identification can be regarded as largely solved even for large scale
music collections. Less specific retrieval tasks, however, are still mostly unsolved. In this
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Figure 5 Illustration of various feature representations for the beginning of Beethoven’s Opus
67 (Symphony No. 5) in a Bernstein interpretation. (a) Score of the excerpt. (b) Waveform. (c)
Spectrogram with linear frequency axis. (d) Spectrogram with frequency axis corresponding to
musical pitches. (e) Chroma features. (f) Normalized chroma features. (g) Smoothed version of
chroma features, see also [36].

section, we highlight the difference between high-specific audio identification and mid-specific
audio matching while presenting strategies to cope with musically motivated variations. In
particular, we introduce chroma-based audio features [2, 17, 34] and sketch distance measures
that can deal with local tempo distortions. Finally, we indicate how the matching procedure
may be extended using indexing methods to scale to large datasets [10, 28].

For the audio matching task, suitable descriptors are required to capture characteristics
of the underlying piece of music, while being invariant to properties of a particular recording.
Chroma-based audio features [2, 34], sometimes also referred to as pitch class profiles [17],
are a well-established tool for analyzing Western tonal music and have turned out to be
a suitable mid-level representation in the retrieval context [10, 28, 37, 34]. Assuming the
equal-tempered scale, the chroma attributes correspond to the set {C, C], D, . . . , B} that
consists of the twelve pitch spelling attributes as used in Western music notation. Capturing
energy distributions in the twelve pitch classes, chroma-based audio features closely correlate
to the harmonic progression of the underlying piece of music. This is the reason why basically
every matching procedure relies on some type of chroma feature.

There are many ways for computing chroma features. For example, the decomposition
of an audio signal into a chroma representation (or chromagram) may be performed either
by using short-time Fourier transforms in combination with binning strategies [17] or by
employing suitable multirate filter banks [34, 36]. Figure 5 illustrates the computation of
chroma features for a recording of the first five measures of Beethoven’s Symphony No. 5
in a Bernstein interpretation. The main idea is that the fine-grained (and highly specific)
signal representation as given by a spectrogram (Figure 5c) is coarsened in a musically
meaningful way. Here, one adapts the frequency axis to represent the semitones of the equal
tempered scale (Figure 5d). The resulting representation captures musically relevant pitch
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Figure 6 Different representations and peak fingerprints extracted for recordings of the first 21
measures of Beethoven’s Symphony No. 5. (a) Spectrogram-based peaks for a Bernstein recording.
(b) Chromagram-based peaks for a Bernstein recording. (c) Spectrogram-based peaks for a Karajan
recording. (d) Chromagram-based peaks for a Karajan recording.

information of the underlying music piece, while being significantly more robust against
spectral distortions than the original spectrogram. To obtain chroma features, pitches
differing by octaves are summed up to yield a single value for each pitch class, see Figure 5e.
The resulting chroma features show increased robustness against changes in timbre, as
typically resulting from different instrumentations.

The degree of robustness of the chroma features against musically motivated variations
can be further increased by using suitable post-processing steps. See [36] for some chroma
variants.5 For example, normalizing the chroma vectors (Figure 5f) makes the features
invariant to changes in loudness or dynamics. Furthermore, applying a temporal smoothing
and downsampling step (see Figure 5g) may significantly increase robustness against local
temporal variations that typically occur as a result of local tempo changes or differences
in phrasing and articulation. There are many more variants of chroma features comprising
various processing steps. For example, applying logarithmic compression or whitening
procedures enhances small yet perceptually relevant spectral components and the robustness
to timbre [33, 35]. A peak picking of spectrum’s local maxima can enhance harmonics while
suppressing noise-like components [17, 13]. Furthermore, generalized chroma representations
with 24 or 36 bins (instead of the usual 12 bins) allow for dealing with differences in tuning [17].
Such variations in the feature extraction pipeline have a large influence and the resulting
chroma features can behave quite differently in the subsequent analysis task.

Figure 6 shows spectrograms and chroma features for two different interpretations (by
Bernstein and Karajan) of Beethoven’s Symphony No. 5. Obviously, the chroma features
exhibit a much higher similarity than the spectrograms, revealing the increased robustness
against musical variations. The fine-grained spectrograms, however, reveal characteristics of
the individual interpretations. To further illustrate this, Figure 6 also shows fingerprint peaks

5 MATLAB implementations for some chroma variants are supplied by the Chroma Toolbox:
www.mpi-inf.mpg.de/resources/MIR/chromatoolbox (accessed Dec. 18, 2011)
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Figure 7 Illustration of the the audio matching procedure for the beginning of Beethoven’s

Opus 67 (Symphony No. 5) using a query fragment corresponding to the first 22 seconds (measures
1-21) of a Bernstein interpretation and a database consisting of an entire recording of a Karajan
interpretation. Three different strategies are shown leading to three different matching curves. (a)
Strict subsequence matching. (b) DTW-based matching. (c) Multiple query scaling strategy.

for all representations. As expected, the spectrogram peaks are very inconsistent for the
different interpretations. The chromagram peaks, however, show at least some consistencies,
indicating that fingerprinting techniques could also be applicable for audio matching [6]. In
practice, however, the fragile peak picking step on the basis of the rather coarse chroma
features may not lead to robust results. Furthermore, one has to find a technique to deal with
the local and global tempo differences between the interpretations. See [21] for a detailed
investigation of this approach.

Instead of using sparse peak representations, one typically employs a subsequence search,
which is directly performed on the chroma features. Here, a query chromagram is compared
with all subsequences of database chromagrams. As a result one obtains a matching curve as
shown in Figure 7, where a small value indicates that the subsequence of the database starting
at this position is similar to the query sequence. Then the best match is the minimum
of the matching curve. In this context, one typically applies distance measures that can
deal with tempo differences between the versions, such as edit distances [3], dynamic time
warping (DTW) [34, 37], or the Smith-Waterman algorithm [43]. An alternative approach is
to linearly scale the query to simulate different tempi and then to minimize over the distances
obtained for all scaled variants [28]. Figure 7 shows three different matching curves which
are obtained using strict subsequence matching, DTW, and a multiple query strategy.

To speed up such exhaustive matching procedures, one requires methods that allow for
efficiently detecting near neighbors rather than exact matches. A first approach in this
direction uses inverted file indexing [28] and depends on a suitable codebook consisting
of a finite set of characteristic chroma vectors. Such a codebook can be obtained in an
unsupervised way using vector quantization or in a supervised way exploiting musical
knowledge about chords. The codebook then allows for classifying the chroma vectors of the
database and to index the vectors according to the assigned codebook vector. This results in
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an inverted list for each codebook vector. Then, an exact search can be performed efficiently
by intersecting suitable inverted lists. However, the performance of the exact search using
quantized chroma vectors greatly depends on the codebook. This requires fault-tolerance
mechanisms which partly eliminate the speed-up obtained by this method. Consequently, this
approach is only applicable for databases of medium size [28]. An approach presented in [10]
uses an index-based near neighbor strategy based on locality sensitive hashing (LSH). Instead
of considering long feature sequences, the audio material is split up into small overlapping
shingles that consist of short chroma feature subsequences. The shingles are then indexed
using locality sensitive hashing which allows for scaling this approach to larger datasets.
However, to cope with temporal variations, each shingle covers only a small portion of the
audio material and queries need to consist of a large number of shingles. The high number
of table look-ups induced by this strategy may become problematic for very large datasets
where the index is stored on a secondary storage device. The approach presented in [20] is
also based on LSH. However, to reduce the number of table look-ups, each query consists of
only a single shingle covering 15–25 seconds of the audio. To handle temporal variations, a
combination of local feature smoothing and global query scaling is proposed.

In summary, mid-specific audio matching using a combination of highly robust chroma
features and sequence-based similarity measures that account for different tempi results in a
good retrieval quality. However, the low specificity of this task makes indexing much harder
than in the case of audio identification. This task becomes even more challenging when
dealing with relatively short fragments on the query and database side.

4 Version Identification

In the previous tasks, a musical fragment is used as query and similar fragments or documents
are retrieved according to a given degree of specificity. The degree of specificity was very
high for audio identification and more relaxed for audio matching. If we allow for even less
specificity, we are facing the problem of version identification [42]. In this scenario, a user
wants to retrieve not only exact or near-duplicates of a given query, but also any existing
re-interpretation of it, no matter how radical such a re-interpretation might be. In general, a
version may differ from the original recording in many ways, possibly including significant
changes in timbre, instrumentation, tempo, main tonality, harmony, melody, and lyrics. For
example, in addition to the aforementioned Karajan’s rendition of Beethoven’s Symphony
No. 5, one could be also interested in a live performance of it, played by a punk-metal band
who changes the tempo in a non-uniform way, transposes the piece to another key, and skips
many notes as well as most parts of the original structure. These types of documents where,
despite numerous and important variations, one can still unequivocally glimpse the original
composition are the ones that motivate version identification.

Version identification is usually interpreted as a document-level retrieval task, where
a single similarity measure is considered to globally compare entire documents [3, 13, 46].
However, successful methods perform this global comparison on a local basis. Here, the
final similarity measure is inferred from locally comparing only parts of the documents—a
strategy that allows for dealing with non-trivial structural changes. This way, comparisons
are performed either on some representative part of the piece [18], on short, randomly chosen
subsequences of it [32], or on the best possible longest matching subsequence [43, 44].

A common approach to version identification starts from the previously introduced
chroma features; also more general representations of the tonal content such as chords or
tonal templates have been used [42]. Furthermore, melody-based approaches have been
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Figure 8 Similarity matrix for “Act naturally” by The Beatles, which is actually a cover version
of a song by Buck Owens. (a) Chroma features of the version by The Beatles. (b) Score matrix.
(c) Chroma features of the version by Buck Owens.

suggested, although recent findings suggest that this representation may be suboptimal
[15, 40]. Once a tonal representation is extracted from the audio, changes in the main
tonality need to be tackled, either in the extraction phase itself, or when performing pairwise
comparisons of such representations.

Tempo and timing deviations have a strong effect in the chroma feature sequences, hence
making their direct pairwise comparison problematic. An intuitive way to deal with global
tempo variations is to use beat-synchronous chroma representations [6, 13]. However, the
required beat tracking step is often error-prone for certain types of music and therefore may
negatively affect the final retrieval result. Again, as for the audio matching task, dynamic
programming algorithms are a standard choice for dealing with tempo variations [34], this time
applied in a local fashion to identify longest matching subsequences or local alignments [43, 44].

An example of such an alignment procedure is depicted in Figure 8 for our “Act naturally”
example by The Beatles. The chroma features of this version are shown in Figure 8c. Actually,
this song is originally not written by The Beatles but a cover version of a Buck Owens
song of the same name. The chroma features of the original version are shown in Figure 8a.
Alignment algorithms rely on some sort of scores (and penalties) for matching (mismatching)
individual chroma sequence elements. Such scores can be real-valued or binary. Figure 8b
shows a binary score matrix encoding pair-wise similarities between chroma vectors of the
two sequences. The binarization of score values provides some additional robustness against
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Figure 9 Accumulated score matrix with optimal alignment path for the “Act naturally” example
(as shown in Figure 8).

small spectral and tonal differences. Correspondences between versions are revealed by the
score matrix in the form of diagonal paths of high score. For example, in Figure 8, one
observes a diagonal path indicating that the first 60 seconds of the two versions exhibit a
high similarity.

For detecting such path structures, dynamic programming strategies make use of an
accumulated score matrix. In their local alignment version, where one is searching for
subsequence correspondences, this matrix reflects the lengths and quality of such matching
subsequences. Each element (consisting of a pair of indices) of the accumulated score matrix
corresponds to the end of a subsequence and its value encodes the score accumulated over all
elements of the subsequence. Figure 9 shows an example of the accumulated score matrix
obtained for the score matrix in Figure 8. The highest-valued element of the accumulated
score matrix corresponds to the end of the most similar matching subsequence. Typically,
this value is chosen as the final score for the document-level comparison of the two pieces.
Furthermore, the specific alignment path can be easily obtained by backtracking from
this highest element [34]. The alignment path is indicated by the red line in Figure 9.
Additional penalties account for the importance of insertions/deletions in the subsequences.
In fact, the way of deriving these scores and penalties is usually an important part of the
version identification algorithms and different variants have been proposed [3, 43, 44]. The
aforementioned final score is directly used for ranking candidate documents to a given query.
It has recently been shown that such rankings can be improved by combining different scores
obtained by different methods [39], and by exploiting the fact that alternative renditions of
the same piece naturally cluster together [30, 45].

The task of version identification allows for these and many other new avenues for
research [42]. However, one of the most challenging problems that remains to be solved is
to achieve high accuracy and scalability at the same time, allowing low-specific retrieval in
large music collections [6]. Unfortunately, the accuracies achieved with today’s non-scalable
approaches have not yet been reached by the scalable ones, the latter remaining far behind
the former.
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Figure 10 Joystick-like user interface for continuously adjusting the specificity and granularity
levels used in the retrieval process.

5 Outlook

In this paper, we have discussed three representative retrieval strategies based on the query-
by-example paradigm. Such content-based approaches provide mechanisms for discovering
and accessing music even in cases where the user does not explicitly know what he or she
is actually looking for. Furthermore, such approaches complement traditional approaches
that are based on metadata and tags. The considered level of specificity has a significant
impact on the implementation and efficiency of the retrieval system. In particular, search
tasks of high specificity typically lead to exact matching problems, which can be realized
efficiently using indexing techniques. In contrast, search tasks of low specificity need more
flexible and cost-intensive mechanisms for dealing with spectral, temporal, and structural
variations. As a consequence, the scalability to huge music collections comprising millions of
songs still poses many yet unsolved problems.

Besides efficiency issues, one also has to better account for user requirements in content-
based retrieval systems. For example, one may think of a comprehensive framework that
allows a user to adjust the specificity level at any stage of the search process. Here, the
system should be able to seamlessly change the retrieval paradigm from high-specific audio
identification, over mid-specific audio matching and version identification to low-specific
genre identification. Similarly, the user should be able to flexibly adapt the granularity
level to be considered in the search. Furthermore, the retrieval framework should comprise
control mechanisms for adjusting the musical properties of the employed similarity measure
to facilitate searches according to rhythm, melody, or harmony or any combination of these
aspects.

Figure 10 illustrates a possible user interface for such an integrated content-based retrieval
framework, where a joystick allows a user to continuously and instantly adjust the retrieval
specificity and granularity. For example, a user may listen to a recording of Beethoven’s Sym-
phony No. 5, which is first identified to be a Bernstein recording using an audio identification
strategy (moving the joystick to the leftmost position). Then, being interested in different
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versions of this piece, the user moves the joystick upwards (document-level) and to the right
(mid-specific), which triggers a version identification. Subsequently, shifting towards a more
detailed analysis of the piece, the user selects the famous fate motif as query and moves the
joystick downwards to perform some mid-specific fragment-based audio matching. Then, the
system returns the positions of all occurrences of the motif in all available interpretations.
Finally, moving the joystick to the rightmost position, the user may discover recordings of
pieces that exhibit some general similarity like style or mood. In combination with immediate
visualization, navigation, and feedback mechanisms, the user is able to successively refine and
adjust the query formulation as well as the retrieval strategy, thus leading to novel strategies
for exploring, browsing, and interacting with large collections of audio content.

Another major challenge refers to cross-modal music retrieval scenarios, where the query
as well as the retrieved documents can be of different modalities. For example, one might use
a small fragment of a musical score to query an audio database for recordings that are related
to this fragment. Or a short audio fragment might be used to query a database containing
MIDI files. In the future, comprehensive retrieval frameworks are to be developed that
offer multi-faceted search functionalities in heterogeneous and distributed music collections
containing all sorts of music-related documents.
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