
Descriptive complexity of approximate counting
CSPs
Andrei Bulatov∗1, Victor Dalmau†2, and Marc Thurley3

1 School of Computing Science, Simon Fraser University, Burnaby, Canada
abulatov@sfu.ca

2 Department of Information and Communication Technologies, Universitat
Pompeu Fabra, Barcelona, Spain
victor.dalmau@upf.edu

3 Oracle, Buenos Aires, Argentina
marc.thurley@googlemail.com

Abstract
Motivated by Fagin’s characterization of NP, Saluja et al. have introduced a logic based frame-
work for expressing counting problems. In this setting, a counting problem (seen as a mapping
C from structures to non-negative integers) is ’defined’ by a first-order sentence ϕ if for every
instance A of the problem, the number of possible satisfying assignments of the variables of ϕ
in A is equal to C(A). The logic RHΠ1 has been introduced by Dyer et al. in their study of
the counting complexity class #BIS. The interest in the class #BIS stems from the fact that,
it is quite plausible that the problems in #BIS are not #P-hard, nor they admit a fully poly-
nomial randomized approximation scheme. In the present paper we investigate which counting
constraint satisfaction problems #CSP(H) are definable in the monotone fragment of RHΠ1. We
prove that #CSP(H) is definable in monotone RHΠ1 whenever H is invariant under meet and
join operations of a distributive lattice. We prove that the converse also holds if H contains the
equality relation. We also prove similar results for counting CSPs expressible by linear Datalog.
The results in this case are very similar to those for monotone RHΠ1, with the addition that H
has, additionally, > (the greatest element of the lattice) as a polymorphism.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.4.1 Mathematical
Logic

Keywords and phrases Constraint Satisfaction Problems, Approximate Counting, Descriptive
Complexity.

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.149

1 Introduction

Constraint Satisfaction Problems (CSPs) form a rich class of algorithmic problems with
applications in many areas of computer science. In a CSP the goal is to find an assignment
to variables subject to specified constraints. It has been observed by Feder and Vardi [19]
that CSPs can be viewed as homomorphisms problems: given two relational structures A
and H, decide if there is a homomorphism from A to H.

In this paper we consider counting constraint satisfaction problems (#CSPs), in which the
problem of computing the number of solutions of a given CSP instance. Substantial amount

∗ supported by NSERC Discovery grant
† supported by MICINN grant TIN2010-20967-C04-02

© Andrei Bulatov, Victor Dalmau, and Marc Thurley;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 149–164

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.149
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

150 Descriptive complexity of approximate counting CSPs

of attention has been paid in the last decade to the complexity and algorithms for problems of
the form CSP(H) (see, for example, [1, 3, 5, 8, 23]) and #CSP(H) [4, 6, 7, 10, 16, 17, 18, 21],
in which the target structure H is fixed. In the case of exact counting, there is a complete
complexity classification of problems #CSP(H) [4, 17, 18], which states that every problem
of this form is either solvable in polynomial time, or complete in #P. This classification was
recently extended to computing partition functions of weighted homomorphisms [10, 21].

Very few non-trivial counting problems can be solved using a polynomial-time determ-
inistic algorithm. When efficient exact counting is not possible one might try to find a good
approximation. Dyer et al. [14] argued that the most natural model of efficient approxima-
tion is the one by means of fully polynomial randomized approximation schemes (FPRAS),
where the desired approximation error is a part of input, randomization is allowed, and the
algorithm must stop within time polynomial in the size of the input and the bound on the
approximation error. The approximation complexity of counting problems is then measured
through approximation preserving, or AP-reductions, designed so that the class of problems
solvable by FPRAS is closed under AP-reductions (more details can be found in §2.3).

The approximation complexity of #CSP(H) for 2-element structures H is determined
in [15]. It turns out that, along with problems admitting a FPRAS (indeed, even solvable
exactly in polynomial-time) and #P-hard problems, there are also problems that apparently
do not fall into any of these two categories. Furthermore, all the problems that seemingly
lie strictly between the class of problems admitting an FPRAS and the class of #P-hard
problems are interreducible with each other and with other natural and well-studied prob-
lems (see also [14]) such as the problem of counting independent sets in a bipartite graph,
denoted #BIS. It is argued in [14] that the set of problems interreducible with #BIS form a
separate complexity class different from both FPRAS and #P. This class includes the prob-
lem of finding the number of downsets and the problem of finding the number of antichains
in a partially ordered set, SAT-based problems such as finding the number of satisfying
assignments of a CNF in which every clause is an implication or a unit clause, certain graph
homomorphism problems, e.g., BeachConfig [14], and many others.

In this paper we shed light on the complexity of approximate counting CSPs by studying
its descriptive complexity. We follow Saluja et al.’s framework [27] for studying the logical
definability of counting problems. Let ϕ be a first-order formula that can have first and
second-order free variables. In the setting of [27], a counting problem C (seen as a mapping
from structures over a finite signature τ to non-negative integers) is defined by formula
ϕ if, for every structure A with signature τ , C(A) is equal to the number of different
interpretations of the free variables that make ϕ true on A.

For example, the problem #IS of counting the number of independent sets of a graph
G = (V,E) is defined by the sentence

∀x, y (¬E(x, y) ∨ ¬I(x) ∨ ¬I(y)),

where I is a monadic second order free variable.
It is shown in [27] that, on ordered structures, the class #P coincides with the class #FO

of counting problems definable by a first-order formula. Furthermore it is also shown that
the expressiveness of subclasses of #FO obtained by restricting the quantifier alternation
depth form the strict hierarchy

#Σ0 = #Π0 ⊂ #Σ1 ⊂ #Π1 ⊂ #Σ2 ⊂ #Π2 = #FO,

where #L denotes the set of counting problems definable by a formula in L.

A. Bulatov, V. Dalmau, and M. Thurley 151

A different approach to expressing counting problems over graphs in logical terms has
been developed in a series of papers by Makowsky et al. (see [24] and the references therein).
The framework there is more liberal allowing to define a wide range of graph invariants and
polynomials, such as the the chromatic polynomial, various generalizations of the Tutte
polynomial, matching polynomials, interlace polynomials, and many others.

Dyer et al. have introduced the logic RHΠ1 ⊆ Π1 (to be defined below) in their study
of the class of problems AP-interreducible with #BIS. It is shown in [14] that all problems
in #RHΠ1 are AP-reducible to #BIS. Also, many problems AP-interreducible with #BIS
(for example all problems listed in §2.3.1) are known to be in #RHΠ1. The logic RHΠ1
contains all first-order formulas of the form ∀yψ, where ψ is a quantifier-free CNF, in which
every clause has at most one occurrence of a unnegated second-order variable and at most
one occurrence of a negated second-order variable.

Our main result concerns the monotone fragment of RHΠ1, namely, the subset of RHΠ1
containing all formulas in which every relation from τ (the signature of the input structure)
appears only negatively. It is natural to consider monotone logics in the context of CSP
as for every input structure A of #CSP(H), every atomic formula with a predicate from τ

holding in A makes the existence of a homomorphism from A to H less likely. Furthermore,
it follows from the results of [20] that in the decision variant (that is, if our goal is merely
to decide if the number of homomorphisms is greater than zero) monotone RHΠ1 is as
expressive as full RHΠ1.

To tackle our question we consider the algebraic invariance properties of the relations in
H, namely, so-called polymorphisms of H (see §2.1). This approach has lead to impressive
progress in the study of the complexity of CSP(H) and of #CSP(H).

We prove that #CSP(H) is definable by a monotone RHΠ1 formula whenever H has, as
polymorphisms, the meet and join operations of a distributive lattice. We also show that this
is the best-possible considering only the algebraic invariants of H. In particular, we prove
that if #CSP(H) is definable in monotone RHΠ1 and H contains one relation interpreted as
the equality then H must be invariant under the meet and join operations of a distributive
lattice. Since the set of polymorphisms of a structure does not change if one adds the
equality relation to it, our results imply a complete characterization for the definability of
#CSPs in monotone RHΠ1 under the assumption that every pair of structures H and H′
with the same polymorphisms give rise to counting CSPs, #CSP(H) and #CSP(H′) that
are both definable or both undefinable in monotone RHΠ1. Although the majority of the
properties of CSPs investigated so far are completely determined by the algebraic invariants
(see [26]), there are some which are not [25].

As a byproduct of our main result we obtain a similar characterization of definability
on the fragment of monotone RHΠ1 known as linear Datalog. Linear Datalog has been
investigated in the decision CSPs as a tool to show the membership in NL [2, 11, 12, 13].
For our purposes, linear Datalog is precisely the class of monotone RHΠ1-formulas that
do not contain free first-order variables and where every clause of its quantifier-free part
contains an unnegated second-order variable. We show that #CSP(H) is definable in linear
Datalog if H has, as polymorphisms, the join, meet, and top operations of a distributive
lattice and that the converse holds whenever H contains the equality relation.

CSL’13

152 Descriptive complexity of approximate counting CSPs

2 Preliminaries

2.1 Basic definitions
Let A be a finite set. A k-ary tuple (a1, . . . , ak) over A is any element of Ak. We shall
use boldface letters to denote tuples of any length. A k-ary relation on A is a collection of
k-ary tuples over A or, alternatively, a subset of Ak. A relational signature (also relational
vocabulary) τ is a collection of relational symbols (also called predicates), in which every
symbol has an associated arity. A (relational) structure A with signature τ (also called
τ -structure) consists of a set A called the universe of A, and for each symbol R ∈ τ , say of
arity k, a k-ary relation RA on A, called the intepretation of R in A. We shall use the same
boldfaced and slanted capital letters to denote a structure and its universe, respectively. In
this paper all signatures and structures are finite. A fact of a relational structure is any
atomic formula holding in it. Sometimes we will regard relational structures as a universe
and a collection of facts on it.

Let R be a relation on a set A and f : An → A an n-ary operation on the same set.
Operation f is said to be a polymorphism of R if for any choice a1, . . . ,an of tuples from
R the tuple f(a1, . . . ,an) obtained by applying f component-wise also belongs to R. Then,
it is also said that R is invariant under f . Operation f is a polymorphism of a relational
structure A if it is a polymorphism of every relation in A.

Let A,B be finite sets and let f : A→ B. For every tuple a on A we use f(a) to denote
the tuple on B obtained by applying f to a component-wise. Similarly, for every relation R
on A we use f(R) to denote {f(a) | a ∈ R}. Let A,B be relational structures of the same
signature with universes A and B, respectively. Mapping f is said to be a homomorphism
from A to B if for any symbol R from τ , f(RA) ⊆ RB. If, furthermore, B ⊆ A and f acts
as the identity on B then f is said to be a retraction. A homomorphism f from A to B is
said to be an isomorphism if it is bijective and f−1 is a homomorphism from B to A.

A lattice H is a structure with a universe H equipped with two binary operations
u,t : H × H → H (see, e.g., [22]) satisfying the following conditions for any x, y, z ∈ H:
(1) x u x = x t x = x, (2) x u y = y u x, x t y = y t x, (3) x u (y u z) = (x u y) u z,
xt (yt z) = (xt y)t z, (4) xu (xt y) = xt (xu y) = x. Lattice H is said to be distributive
if it satisfies an additional equation x u (y t z) = (x u y) t (x u z). Every lattice has an
associated partial order ≤ on its universe given by x ≤ y if and only if x u y = x.

2.2 Constraint satisfaction problem
For a relational structure H an instance of the constraint satisfaction problem CSP(H) is a
structure A of the same signature. The goal in CSP(H) is to decide whether or not there is
a homomorphism from A to H. In the counting constraint satisfaction problem #CSP(H)
the objective is to find the number of such homomorphisms.

I Example 1. In a 3-SAT problem we are given a propositional formula ϕ in conjunctive
normal form whose clauses contain 3 literals (3-CNF). The task is to decide if ϕ is satisfiable.
As is easily seen, the 3-SAT problem is equivalent to CSP(H3−SAT), where H3−SAT is the
relational structure with universe {0, 1} that contains, for every a, b, c ∈ {0, 1}, the relation
Ra,b,c = {0, 1}3 \ {(a, b, c)}. In the counting version of 3-SAT, denoted #3-SAT, the goal is
to find the number of satisfying assignments of a 3-CNF formula. Clearly, this problem can
be represented as #CSP(H3−SAT).

I Example 2. Let F be a finite field. The LINEAR SYSTEM(F) problem over F is the
problem of checking the consistency of a given system of linear equations over F . This

A. Bulatov, V. Dalmau, and M. Thurley 153

b

a

c

d

Figure 1 The HBIS graph.

problem cannot be represented as a CSP because the set of possible linear equations that
can appear in an instance is infinite, while we only allow finite structures. However, for any
system of linear equations one can easily obtain an equivalent system in which every equation
contains at most 3 variables (although it may be necessary to introduce new variables).
Hence, LINEAR SYSTEM(F) reduces to the restricted problem 3-LINEAR SYSTEM(F),
in which only equations with 3 variables are allowed. For every α, β, γ, δ ∈ F , denote by
Rαβγδ, the ternary relation that contains all tuples (x, y, z) ∈ F 3 satisfying the equation
αx + βy + γz = δ. Then the 3-LINEAR SYSTEM(F) problem can be represented as
CSP(HLIN), where HLIN is the relational structure with universe F equipped with all relations
Rαβγδ, α, β, γ, δ ∈ F . The counting version of this problem, #CSP(HLIN), concerns finding
the number of solutions of a system of linear equations.

2.3 Counting and approximation
Counting CSPs is a particular case of counting problems. For every problem L in NP,
one can associate a corresponding counting problem; namely, the problem of counting the
accepting paths of a nondeterministic Turing machine deciding L in polynomial time. The
set of problems defined this way is denoted by #P.

I Example 3. In the counting Bipartite Independent Set problem (#BIS) we are given
a bipartite graph G and asked to find the number of independent sets in G. Let HBIS
be the digraph shown in Fig. 1. Given a bipartite graph G with bipartition (V1, V2) let
G′ be the digraph obtained by orienting all edges from V1 to V2. As is easily seen, the
number of homomorphisms from G′ to HBIS equals the number of independent sets in G,
as the preimage of {a, c} is an independent set of G. Thus, #BIS can be easily ‘reduced’ to
#CSP(HBIS), but it is not clear if it can be represented as a counting CSP.

Algorithms and the complexity of counting problems, including counting CSPs, have
attracted considerable amount of attention starting from the seminal paper by Valiant [28].
The complexity of exact counting CSPs is largely known, see, [4, 17, 18]. Every problem
of the form #CSP(H) is either solvable in polynomial time or is complete in #P under
polynomial time reductions1.

The approximation complexity of #CSP(H) is much more diverse. Let C be a counting
problem and, for an instance I of C, let us denote the solution of I by #I. For ε > 0, a
randomized algorithm Alg is said to be an ε-approximating algorithm for the problem C if
for any instance I of C it returns a number Alg(I) such that

Pr
[
e−ε <

Alg(I)
#I < eε

]
≥ 2

3 .

1 In fact, the class #P is not closed under polynomial time reductions; therefore it is technically more
correct to say that these problems are complete in FP#P

CSL’13

154 Descriptive complexity of approximate counting CSPs

Arguably, the most general, but still practical type of approximation algorithm for counting
problems is fully polynomial randomized approximation schemes (FPRAS): An algorithm
Alg is said to be an FPRAS for a counting problem C if it takes as input an instance I of C
and a number ε > 0, outputs a number Alg(I, ε) satisfying the inequality above, and works
in time polynomial in |I| and log 1

ε . To compare the relative complexity of approximating
counting problems one uses approximation preserving reduction (or AP-reduction for short).
If A and B are counting problems, an AP-reduction from A to B is a probabilistic algorithm
Alg, using B as an oracle, that takes as input a pair (I, ε) where I is an instance of A and
0 < ε < 1, and satisfies the following three conditions: (i) every oracle call made by Alg
is of the form (I ′, δ), where I ′ is an instance of B, and 0 < δ < 1 is an error bound such
that log 1

δ is bounded by a polynomial in the size of I and log 1
ε ; (ii) the algorithm Alg

meets the specifications for being approximation scheme for A whenever the oracle meets
the specification for being approximation scheme for B; and (iii) the running time of Alg
is polynomial in the size of I and log 1

ε . If an AP-reduction from A to B exists we write
A ≤AP B, and say that A is AP-reducible to B.

2.3.1 The class of problems AP-interreducible with #BIS

The two most natural approximation complexity classes are FPRAS, the class of problems
solvable by an FPRAS, and the class FP#P, the class of problems AP-interreducible with
#SAT (note that #P is not closed under AP-reductions). In [14] Dyer et al. argued that
#BIS (see Example 3) defines a class of its own: No FPRAS is known for this problem, and
it is not believed to be interreducible with #SAT. There are many natural and well studied
problems that are AP-interreducible with #BIS. The following list contains some examples:

#DOWNSET. A downset in a partial order (P,≤) is a set A ⊆ P such that whenever
b ∈ A and a ≤ b, the element a belongs to A. The #DOWNSET problem asks, given a
partial order (P,≤) to find the number of downsets in P .
#ANTICHAIN. An antichain in a partial order (P,≤) is a set C ⊆ P such that a ≤ b for
no a, b ∈ C. In the #ANTICHAIN problem we are required, given a partial order (P,≤),
to find the number of antichains. #ANTICHAIN and #DOWNSET are essentially the
same problem. Clearly, every downset A ⊆ P is determined by the set of its maximal
elements that form an antichain. Conversely, if C ⊆ P is an antichain then the set
{a ∈ P | a ≤ b for some b ∈ C} is a downset.
#IMPLICATION. Let ϕ be a 2-CNF, in which every clause is of the form ¬x ∨ y, or,
equivalently, x → y. In the #IMPLICATION problem, given such a 2-CNF, the goal
is to compute the number of its satisfying assignments. There are easy AP-reductions
between #DOWNSET and #IMPLICATION. In one direction, the downsets of a partial
order (P,≤) are exactly the satisfying assignments of the formula that includes clause
b → a for every pair a, b ∈ P with a ≤ b. For the opposite direction, every instance
ϕ of #IMPLICATION can be represented as a digraph G(ϕ), in which the nodes are
the variables of ϕ and edges (x, y) correspond to clauses x → y. The set of strongly
connected components P (ϕ) of G(ϕ) can be equipped with the natural partial order:
U1 ≤ U2 for U1, U2 ∈ P (ϕ) if and only if there is a directed path from a node from U2 to
a node from U1. It is straightforward to see that the number of satisfying assignments
of ϕ equals the number of downsets in P (ϕ).
Also, #IMPLICATION is precisely #CSP(HIMP), where HIMP is the digraph shown in
Fig. 2.

A. Bulatov, V. Dalmau, and M. Thurley 155

0 1

Figure 2 The HIMP digraph.

A classification of problems of the form #CSP(H) for 2-element structures H according to
their approximation complexity given in [15] provides another evidence of the significance of
#BIS. Indeed, every such problem turns out to be either solvable exactly in polynomial time
(and so belongs to FPRAS), or is AP-interreducible with #SAT, or else is AP-interreducible
with #BIS.

2.4 Descriptive complexity of (approximate) counting problems
Motivated by Fagin’s characterization of NP, Saluja et al. [27] have introduced a logic based
framework for expressing counting problems. In what follows we describe the setting of [27].

Let τ and σ be finite signatures, let C be a counting problem (seen as a mapping from
τ -structures to non-negative integers), let ϕ(z) be a first-order formula with signature τ ∪ σ
with free (first-order) variables z, and let A be a τ -structure. Formula ϕ is monadic if all
predicates in σ have arity at most one. An A-assignment for ϕ (or just an assignment, if A
and ϕ are clear) is a pair (T,a) where T and a are interpretations of σ and z, respectively,
over the universe, A, of A. We write (A,T) to denote the (τ ∪ σ)-structure with universe
A where every R ∈ τ is interpreted as in A and every I ∈ σ is interpreted as in T. We say
that (T,a) satisfies ϕ if (A,T) |= ϕ(a) that is, if ϕ(a) is true on the structure (A,T). We
say that ϕ defines C if for every τ -structure A

C(A) = |{(T,a) | (A,T) |= ϕ(a)}|

We note here that we deviate—although only formally—from the framework in Sajula et al.
in the following sense: we use predicate symbols in σ to represent second-order variables.
Hence, our first-order formulas only have, formally, first-order free variables.

We shall denote by #FO the set of all counting problems definable by a first-order
formula. For every fragment L of FO we define #L as the set of all counting problems
definable by a formula in L. An structure A is ordered if it has a binary relation that is
interpreted as a total order on the universe.

I Theorem 4 ([27]). On ordered structures, the class #P coincides with the class #FO. In
fact, #P is the class of all counting problems definable with a Π2 formula.

Saluja et al. [27] study the expressiveness of subclasses of #FO obtained by restricting
the quantifier alternation depth obtaining the strict hierarchy

#Σ0 = #Π0 ⊂ #Σ1 ⊂ #Π1 ⊂ #Σ2 ⊂ #Π2 = #FO

Dyer et al. [14] introduced the fragment RHΠ1 ⊆ Π1 in their study of the complexity
class of problems AP-interreducible with #BIS. A first-order formula ϕ(z) with signature
τ ∪ σ is in RHΠ1 if it is of the form ∀yψ(y, z) where ψ is a quantifier-free CNF in which
every clause has at most one occurrence of an unnegated relation symbol from σ and at most
one occurrence of a negated symbol from σ. The part Π1 in notation #RHΠ1 indicates that
the formula involves only universal quantification, and RH indicates that ψ is in ‘restricted
Horn’ form.

CSL’13

156 Descriptive complexity of approximate counting CSPs

It is shown in [14] that all problems in #RHΠ1 are AP-reducible to #BIS. Also, many
problems AP-interreducible with #BIS (for example all problems listed in §2.3.1) are known
to be in #RHΠ1.

I Example 5. Consider the problem #DOWNSET. By encoding a partial order (P,≤) as
a structure with a binary relation we can define #DOWNSET with the RHΠ1-sentence

∀x, y (I(x) ∨ ¬(x ≤ y) ∨ ¬I(y))

Our ultimate goal is to characterize under which circumstances #CSP(H) belongs to
#RHΠ1. Towards this end, in this paper we consider the fragment of RHΠ1 obtained by
requiring that, in addition, the predicates from τ occur only negatively. The resulting logic
is called monotone RHΠ1.

It makes sense to restrict to monotone formulas in the context of problems of the form
#CSP(H) as the addition of more facts to an input structure cannot increase the number
of homomorphisms. Indeed, all problems listed in §2.3.1 are also definable by a formula
in monotone RHΠ1. Furthermore, it follows from the results of [20] that, if our goal is
merely to decide if the number of homomorphisms is greater than zero, monotone RHΠ1 is
as expressive as RHΠ1. Additionally we will deal exclusively with unordered structures as
the analysis for ordered structures becomes much more complicated.

We say that a τ -structure H contains equality if τ contains a binary relational symbol
eq that is interpreted as the equality on the set H (that is, Heq = {(b, b) | b ∈ H}). Note
that we do not require that eq is interpreted as the equality in the instances of #CSP(H).

We are now in a position to state the main result of the paper.

I Theorem 6. For every structure H the following holds:
1. If H has polymorphisms xu y and xt y for some distributive lattice (H;u,t) then there

exists a monotone RHΠ1-formula defining #CSP(H).
2. Furthermore, if H contains equality then the converse also holds.

Observe that since the set of polymorphisms of a structure H does not change if one
adds the equality relation to it, it follows that the sufficient condition of Theorem 6 is the
best it can be achieved by considering only the algebraic invariants of H. Also, note that it
follows from Theorem 6 that the problem of deciding whether for a relational structure H
containing equality the problem #CSP(H) is definable in monotone RHΠ1 belongs to NP.
Indeed, after guessing lattice operation u,t on the universe of H, it is polynomial time to
verify that these binary operations are polymorphisms of the structure.

3 Reduction to the monadic case

In this section, as a first step toward proving the necessary condition of Theorem 6, we prove
the following proposition.

I Proposition 7. For every structure H, if #CSP(H) is definable in monotone RHΠ1 then
it is also definable by a monadic monotone formula from RHΠ1 without free variables.

In what follows, τ and σ are finite vocabularies, H is a τ -structure, and ϕ(z) is a monotone
RHΠ1-formula with signature τ ∪ σ defining #CSP(H).

For every n ≥ 1, define Isoln (from isolated nodes) to be the τ -structure with universe
{1, . . . , n}, where all relations are interpreted as the empty set.

I Lemma 8. ϕ is a sentence (i.e, has no free variables).

A. Bulatov, V. Dalmau, and M. Thurley 157

Proof. Consider structure Isolp where p is a prime number that does not divide |H|. Let k
be the number of free variables of ϕ and for every a ∈ Ak let n(a) be

|{(T,a) | (Isolp,T) |= ϕ(a)}|

Clearly
∑

a∈Ak n(a) = |H|p. Consider the following equivalence relation θ on Ak: two tuples
a,a′ ∈ Ak are θ-related if a′ = h(a) for some bijection h : A → A. Clearly, if a and a′ are
θ-related then n(a) = n(a′).

For every a ∈ Ak we shall denote by aθ the θ-class containing a. Hence |H|p =∑
a∈Ak n(a) =

∑
aθ∈(Ak)θ |aθ| · n(a), where (Ak)θ denotes the set of all θ-classes. Note

that |aθ| = p(p − 1) · · · (p −m + 1), where m is the number of different elements in a. We
are in a position to show that k = 0. If k > 0 then p divides |aθ| for any a and hence p
divides

∑
a∈Ak n(a) = |H|p, but p does not divide |H|, a contradiction. J

Consequently, from now on we can assume that ϕ is a sentence. Let A be a τ -structure
and let T be any A-assignment. It will be convenient to regard, alternatively, T as the
collection of all atomic formulas I(a) that hold in T.

The following lemma is a direct consequence of the fact that every clause of an RHΠ1-
formula has at most one occurrence of an unnegated relation symbol from σ and at most
one occurrence of a negated symbol from σ.

I Lemma 9. Let A be a τ -structure. The set of all A-assignments (seen as a collection of
facts) satisfying ϕ is closed under union and intersection.

I Lemma 10. Let I be any predicate in σ with arity k ≥ 2. Then

ϕ |= ∀x1, . . . , xk, y1, . . . , yk ¬(xi = yi) ∨ ¬I(x1, . . . , xk) ∨ I(y1, . . . , yk)

for some 1 ≤ i ≤ k

Proof. For every L ⊆ {1, . . . , k}, we define µL to be the sentence

∀x1, . . . , xk, y1, . . . , yk (
∨
i∈L
¬(xi = yi)) ∨ ¬I(x1, . . . , xk) ∨ I(y1, . . . , yk).

Observe that µL expresses the fact that I(z1, . . . , zk) only depends on the variables zi, i ∈ L.
It follows easily that µJ ∧ µK |= µL for every J,K,L ⊆ {1, . . . , k} with J ∩ K ⊆ L.

Note that the sentences appearing in the statement of the lemma are precisely the class of
all sentences of the form µL where L is a singleton. Hence, the lemma follows by a direct
application of the above property provided we are able to show the following:

For every different i, j ∈ {1, . . . , k} there exists L with {i, j} 6⊆ L and such that ϕ |= µL.

To simplify the notation we shall prove the claim only for i = k− 1 and j = k. Consider
the structure Isol2n+k−2 with n large enough. Let X be the set containing all atomic
formulas of the form I(1, . . . , k − 2, a, b) where a ∈ {k − 1, . . . , n+ k − 2} and b ∈ {n+ k −
1, . . . , 2n+ k − 2}.

We claim that there exists some atomic formula I(1, . . . , k− 2, a, b) ∈ X such that every
satisfying assignment containing I(1, . . . , k−2, a, b) contains also some other atomic formula
in X. Indeed, otherwise, since the set of satisfying assignments is closed under union, we
could construct for every non-empty subset Y ⊆ X a satisfying assignment containing all
atomic predicates from Y and none of the atomic predicates from Y \X. This would lead
to a contradiction, as the set of satisfying assignments would be at least 2n2 , which grows

CSL’13

158 Descriptive complexity of approximate counting CSPs

asymptotically faster than |H|2n+k−2 (the number of homomorphisms from Isol2n+k−2 to
H).

Thus there exists an atomic formula I(1, . . . , k − 2, a, b) ∈ X such that every satisfying
assignment containing I(1, . . . , k − 2, a, b) contains also some other atomic formula in X.
Consider first the case in which there exists at at least one satisfying assignment containing
I(1, . . . , k − 2, a, b). Then, the smallest, with respect to inclusion, satisfying assignment
containing I(1, . . . , k − 2, a, b) (by Lemma 9 such an assignment exists) also contains some
other atomic predicate I(1, . . . , k − 2, a′, b′) in X. By the monotonicity of ϕ it follows that
ϕ implies

∀v1, . . . , v2n+k−2 ¬I(v1, . . . , vk−2, va, vb) ∨ I(v1, . . . , vk−2, va′ , vb′),

which after renaming variables is equivalent to µL for L = {1, . . . , k − 2, k − 1} or L =
{1, . . . , k − 2, k}. Secondly, assume that there is no satisfying assignment containing
I(1, . . . , k − 2, a, b). Then

ϕ |= ∀v1, . . . , v2n+k−2 ¬I(v1, . . . , vk−2, va, vb).

It follows easily that, in this case, ϕ implies any formula of the form µL. J

Proof of Proposition 7. Let H be a τ -structure and let ϕ be a monotone RHΠ1-formula
with signature τ ∪ σ defining #CSP(H). By Lemma 8, ϕ has no free variables.

Pick any predicate I in σ with arity k ≥ 2. By Lemma 10

ϕ |= ∀x1, . . . , xk, y1, . . . , yk ¬(xi = yi) ∨ ¬I(x1, . . . , xk) ∨ I(y1, . . . , yk)

for some 1 ≤ i ≤ k. Let σ′ be obtained from σ by replacing I by a new unary predicate I ′,
and let ϕ′ be the sentence with signature τ ∪ σ′ obtained from ϕ by replacing every atomic
formula of the form I(z1, . . . , zk) by I ′(zi). It follows easily that ϕ′ has the same number
of satisfying assignments as ϕ and one non-monadic predicate less. Iterating we obtain a
sentence that contains only monadic predicates. J

4 Necessary condition

We start with proving item (2) of Theorem 6. In what follows H is a τ -structure and ϕ

is a monadic monotone RHΠ1-sentence with signature τ ∪ σ defining #CSP(H). It will be
convenient to assume that σ does not contain 0-ary predicate symbols. This can be achieved
by replacing every 0-ary relation symbol I ∈ σ with a new unary relation symbol I ′, adding
to ϕ the clause ¬I ′(x)∨ I ′(y), and replacing every atomic formula of the form R() in ϕ with
R′(x) (x and y are bound variables in ϕ).

Let A be a τ -structure. Since all the predicate symbols in σ are unary one can establish
a bijection from the set of all A-assignments to the set of mappings from A to 2σ. In
particular, we associate with every A-assignment T a mapping h : A→ 2σ where for every
a ∈ A

h(a) = {I ∈ σ | I(a) holds in T}.

We shall use Th to denote the A-assignment associated with a mapping h. Let also Sol(A, ϕ)
is given by

Sol(A, ϕ) = {h : A→ 2σ | (A,Th) |= ϕ}.

A. Bulatov, V. Dalmau, and M. Thurley 159

I Lemma 11. Let A, B be τ -structures and let g be a homomorphism from A to B. For
every f : B → 2σ the following holds:
1. If f ∈ Sol(B, ϕ) then f ◦ g ∈ Sol(A, ϕ).
2. If g(A) = B and | Sol(B, ϕ)| = | Sol(A, ϕ)|, then for any h ∈ Sol(A, ϕ) there is f ∈

Sol(B, ϕ) such that h = f ◦ g.

Proof. (1) Follows directly from the monotonicity of ϕ. (2) Since g(A) = B the set {f ◦
g | f ∈ Sol(B, ϕ)} contains |Sol(B, ϕ)| different mappings and, consequently, Sol(A, ϕ)
cannot contain any other one. J

I Lemma 12. Let A be a τ -structure, let a, a′ ∈ A, and let B be the τ -structure obtained
by adding the fact eq(a, a′) to A. For every f : A→ 2σ the following holds:

f ∈ Sol(B, ϕ) if and only if f ∈ Sol(A, ϕ) and f(a) = f(a′)

Proof. We can assume wlog. that A (and hence B) contains equalities eq(a, a) and eq(a′, a′)
as the addition of eq(a, a) and eq(a′, a′) does not alter hom(A,H) or hom(B,H), and,
consequently, it cannot alter Sol(A, ϕ) or Sol(B, ϕ) either.

(⇒) Assume f ∈ Sol(B, ϕ). It follows directly from Lemma 11(1) that f ∈ Sol(A, ϕ) so
it only remains to show that f(a) = f(a′). Again by Lemma 11(1) it is only necessary to
prove the statement in the case when A does not contain any other fact besides the equalities
eq(a, a) and eq(a′, a′). Indeed, if the claim is true for such structure A′ then the identity
homomorphisms from A′ to A witnesses, with help of Lemma 11(1), that it is also true for
A. Let g : A→ A\{a′} be the mapping that sends a′ to a and acts as the identify otherwise.
Lemma 11(2) implies that f = h ◦ g for some h ∈ Sol(g(B), ϕ) and hence f(a) = f(a′).

(⇐) Let ϕ = ∀yψ(y), let n be the number of variables in y, and let C be the τ -structure
obtained by adding to A the chain of equalities

eq(a, a1), eq(a1, a2), . . . , eq(an, an+1), eq(an+1, a
′),

where a1, . . . , an+1 are new elements not occurring in A. Assume that f ∈ Sol(A, ϕ) and
f(a) = f(a′), and let h : C → 2σ be the extension of f that sets h(ai) = f(a) for every
i = 1, . . . , n+ 1.

We claim that h ∈ Sol(C, ϕ). Let c be any instantiation of y over C. There exists some
element ai that does not appear in c. Let C′ be obtained by removing from C the equalities
involving ai. There is a retraction g from C′ to A that maps aj to a if j ≤ i and to a′
otherwise. By Lemma 11(1) h = f ◦ g belongs to Sol(C′, ϕ) and, hence, (Th,C′) |= ψ(c).
Since ai does not appear in c we have (Th,C) |= ψ(c) as well. Since (Th,C) |= ψ(c) holds
for every instantiation c of y, the claim follows.

Let g be any retraction from C to B with g(ai) ∈ {a, a′} for every i = 1, . . . , n+1. Since
h = f ◦ g it follows from Lemma 11(2) that f ∈ Sol(B, ϕ). J

For every R ∈ τ of arity, say, k, let JR be the τ -structure with universe {1, . . . , k}
containing only fact R(1, . . . , k). Recall the definition of Isoln in the beginning of §3. We
define Jϕ to be the τ -structure with universe Jϕ = {h(1) | h ∈ Sol(Isol1, ϕ)} such that for
every R ∈ τ

RJϕ = {(h(1), . . . , h(k)) | h ∈ Sol(JR, ϕ)}

The next two lemmas follow directly from the definition of Jϕ.

I Lemma 13. Let A be any τ -structure and let f ∈ Sol(A, ϕ). Then f is a homomorphism
from A to Jϕ.

CSL’13

160 Descriptive complexity of approximate counting CSPs

Proof. First, let a ∈ A, and g : Isol1 → A taking 1 to a. By Lemma 11, f ◦g ∈ Sol(Isol1, ϕ),
implying f(a) belongs to the universe of Jϕ. Similarly, let R ∈ τ and let (a1, . . . , ak) ∈ RA.
The mapping i

g7→ ai defines a homomorphism from JR to A. By Lemma 11, f ◦ g ∈
Sol(JR, ϕ), which is equivalent to say that R(f(a1), . . . , f(ak)) holds in Jϕ. J

I Lemma 14. If H contains equality then H and Jϕ are isomorphic.

Proof. LetX and Y be sets, let F be a collection of mappings fromX to Y , and let equiv(X)
be the set of all equivalence relations in X. For every θ ∈ equiv(X) we denote by Fθ the
collection of all f ∈ F such that f(i) = f(j) whenever i and j are θ-related.

Let A be any τ -structure. For every θ ∈ equiv(A) we define Aθ to be the structure that
is obtained by adding to A all facts of the form eq(a, a′) where a and a′ are θ-related. For
every θ ∈ equiv(A) we have

| Sol(A, ϕ)θ| = | Sol(Aθ, ϕ)| = | hom(Aθ,H)| = | hom(A,H)θ|,

where the first equality follows from Lemma 12 and the other equalities follow directly
from the definitions. Consequently, Sol(A, ϕ) and hom(A,H) contain the same number of
injective mappings. This follows from the fact that the number of injective mappings in
Sol(A, ϕ) and the number of injective mappings in hom(A,H) are completely determined
by the values | Sol(A, ϕ)θ|, θ ∈ equiv(A), and | hom(A,H)θ|, θ ∈ equiv(A), respectively,
according to the Möbius inversion formula. By setting A = H we infer that Sol(H, ϕ)
contains an injective mapping h that, by Lemma 13, is an homomorphism from H to Jϕ.
Since |H| = | Jϕ |, homomorphism h must be, in fact, a bijective homomorphism. For every
relation symbol R ∈ τ , we have h(RH) ⊆ RJϕ , because h is a homomorphism. We also
have |RJϕ | = |RH| = |h(RH)| where the first equality follows from the definition of Jϕ and
the second one follows from the fact that h is a bijection. It follows that h(RH) = RJϕ .
Consequently, h is an isomorphism. J

Proof of Theorem 6(2). Let H be a τ -structure that contains equality such that #CSP(H)
is definable in monotone RHΠ1. By Lemma 14 H is isomorphic to Jϕ. Since by Lemma 9
Jϕ has polymorphisms x ∩ y and x ∪ y, the theorem follows. J

Lemma 14 fails if H does not contain equality as the following example shows. Let H
be the digraph with universe {0, 1} containing only edge (0, 1). Consider the monotone
RHΠ1-sentence ϕ with σ = {I}

∀x, y, z (¬E(x, y) ∨ I(x)) ∧ (¬E(x, y) ∨ I(y)) ∧ (¬E(x, y) ∨ ¬E(y, z))

It is not difficult to see that ϕ defines #CSP(H) and that H is not isomorphic to Jϕ. Still,
H is invariant under the meet and join of a distributive lattice, namely, ({0, 1},∨,∧).

5 Sufficient condition

In this section we shall prove item (1) of Theorem 6. Throughout this section τ is a finite
signature and H is a τ -structure with polymorphisms x u y and x t y for some distributive
lattice (H;u,t). Our goal is to show that there exists a monotone (monadic) RHΠ1-sentence
ϕ defining #CSP(H).

It is well known (see, e.g., [22, Theorem 9, Corollary 11, Corollary 14, Ch. II.1]) that,
since (H;u,t) is distributive, there is an isomorphism g from (H;u,t) to a sublattice of the

A. Bulatov, V. Dalmau, and M. Thurley 161

lattice of subsets of some finite set S. It will be convenient to assume wlog. that g(>) = S

and g(⊥) 6= ∅ where > and ⊥ are the top and bottom elements, respectively, of (H;u,t).
Let k be the maximum arity of a relation in τ , and let us define σ to have one monadic

predicate for each symbol in S. To simplify notation we shall use the same symbol to
represent a member of S and its associate predicate in σ. Sentence ϕ is defined to be the
monotone monadic RHΠ1-sentence ∀x ψ(x) with signature τ ∪ σ, where x has size k and
ψ(x) contains all clauses χ(x) with at most one occurrence of an unnegated symbol from
σ and at most one occurrence of a negated symbol from σ such that (H,Tg) |= ∀x χ(x)
(recall the definition of Tg given in the beginning of §4). For every I ∈ σ we shall denote
by TI

g the interpretation of I in Tg, that is, the relation {a ∈ H | I ∈ g(a)}.

I Lemma 15. Let b, b′ ∈ H and let X = TI
g for some I ∈ σ. Then:

1. b t b′ ∈ X ⇔ b ∈ X or b′ ∈ X
2. b u b′ ∈ X ⇔ b ∈ X and b′ ∈ X

Proof. Follows directly from the definitions. J

I Lemma 16. Let A be a τ -structure and let h ∈ Sol(A, ϕ). Then g−1 ◦ h is well defined
and belongs to hom(A,H).

Proof. Let a ∈ A and let Y be a nonempty collection of subsets of H. Y is said to be
consistent with h(a) if for every I ∈ σ the following holds:

I ∈ h(a)⇔ Y ⊆ TI
g for some Y ∈ Y.

We claim that if there is a set Y consistent with h(a) then g−1(h(a)) is well defined and
is equal to tY ∈Y u Y , where uY denotes the meet of all elements from Y . To see this, let
b = tY ∈Y u Y . It follows from the definition of consistency and Lemma 15 that for every
I ∈ σ

I ∈ h(a)⇔ b ∈ TI
g,

which is equivalent to saying that g(b) = h(a).
For every a ∈ A, let Ya be the set {TI

g | I ∈ h(a)}. We have ∅ 6= g(⊥) ⊆ h(a), and hence
Ya is non-empty. We claim that Ya is consistent with h(a). Let I ∈ σ and consider the two
cases:

I ∈ h(a). In this case Ya contains TI
g and we are done.

I 6∈ h(a). Assume, towards a contradiction that TJ
g ⊆ TI

g for some J ∈ h(a). This
implies, by the definition of ϕ, that ϕ contains the clause ¬J(x)∨ I(x), in contradiction
with the fact that I 6∈ h(a) and J ∈ h(a).

Since for every a ∈ A, Ya is a nonempty collection of sets consistent with h(a), it follows
that g−1 ◦ h is well defined. Now, let us prove that g−1 ◦ h ∈ hom(A,H).

Let R ∈ τ and let (a1, . . . , ak) ∈ AR. For every i = 1, . . . , k and every I ∈ h(ai), let Yi,I
be the set of all tuples (b1, . . . , bk) ∈ RH where bi ∈ TI

g. The set Yi,I satisfies the following
two claims:

Claim 1: Yi,I 6= ∅. Otherwise, ∀x (¬R(x1, . . . , xk) ∨ ¬I(xi)) holds in (H,Tg), which
implies that ϕ contains the clause ¬R(x1, . . . , xk) ∨ ¬I(xi), in contradiction with the fact
that (a1, . . . , ak) ∈ AR and I ∈ h(ai).

Claim 2: For every j = 1, . . . , k and every J 6∈ h(aj), set Yi,I contains a tuple with
bj 6∈ TJ

g . Otherwise, ∀x (¬R(x1, . . . , xk) ∨ ¬I(xi) ∨ I(xj)) holds in (H,Tg), which implies
that ϕ contains the clause ¬R(x1, . . . , xk) ∨ ¬I(xi) ∨ J(xj), in contradiction with the fact
that (a1, . . . , ak) ∈ AR, I ∈ h(ai), and J 6∈ h(aj).

CSL’13

162 Descriptive complexity of approximate counting CSPs

Let
c = (c1, . . . , ck) =

⊔
1≤i≤k,I∈h(ai)

uYi,I

Since g(⊥) ⊆ h(ai), Claim 1 above guarantees that the right term is not void. It follows
from Claims 1 and 2 above that for every j = 1, . . . , k the set {projj Yi,I | 1 ≤ i ≤ k, I ∈
h(ai)} (where projj Yi,I denotes the projection of Yi,I to its jth coordinate) is consistent
with h(aj). This implies that cj = (g−1 ◦ h)(aj) for every j = 1, . . . , k. Since c is obtained
by iterative application of t and u to tuples in RH we conclude that c ∈ RH and we are
done. J

Proof of Theorem 6(1). Let A be any τ -structure. It follows from the definition of ϕ that
(H,Tg) |= ϕ or, equivalently, that g ∈ Sol(H, ϕ). Then, by Lemma 11(1) f 7→ g ◦ f defines
a mapping from hom(A,H) and Sol(A, ϕ). This mapping is injective (because so is g) and
exhaustive (by Lemma 16). J

6 Counting problems and linear Datalog

Datalog has a long and successful history as a tool in database theory and the study of the
decision CSP (see [9] and the references therein). In this section we show how Datalog is also
related to counting CSPs, and, more generally, to counting problems. As a byproduct of the
proof of Theorem 6 we obtain a characterization of counting CSPs that can be represented
through certain Datalog programs.

Datalog is a language of logic programs primarily developed in database theory. Let
τ and σ be finite signatures. Symbols from τ are called EDBs (for Extensional DataBase
symbols), and symbols from σ are called IDBs (for Intensional DataBase symbols). Every
Datalog program is a collection of rules of the form

ψ1 : −ψ2, . . . , ψm,

where ψ1, . . . , ψm are atomic formulas using predicates from τ ∪ σ. The left side of the rule
is called the head of the rule, and the predicate symbol occurring in it must be an IDB. The
right hand side is called the body of the rule and might contain both IDBs and EDBs. A rule
is called linear if its body contains at most one occurrence of an IDB. A Datalog program
is said to be linear if all its rules are linear. The linear fragment of Datalog has been used
for decision CSPs (see [2, 11, 12, 13]). In particular, the decision CSPs expressible through
linear Datalog belong to the class NL. Moreover, it is conjectured that the converse is also
true.

A Datalog program P is applied to a τ -structure A using the semantics of fixed points.
Let T be an interpretation of the IDBs on the universe A of A. Then T is said to be a fixed
point of P on A if for every rule the following holds: for every interpretation of the variables
of the rule that makes the body of the rule true given the intepretation of the IDBs (in T)
and of the EDBs (in A), the head of the rule must hold in T. Since the intersection of two
fixed points is again a fixed point, there is always a least fixed point of a Datalog program.
To express a decision CSP in terms of Datalog one should consider programs that contain
a distinguished ‘goal’ IDB (usually null-ary). The corresponding CSP has no solution on
input A if and only if the least fixed point of the program on A contains the goal IDB. The
link to counting CSPs works in a different way. Here we consider not only the least fixed
point, but all fixed points of a Datalog program. For a τ -structure H we say that a Datalog
program P with EDBs from τ defines the problem #CSP(H) if for any τ -structure A the
number of homomorphisms from A to H equals the number of fixed points of P on A.

A. Bulatov, V. Dalmau, and M. Thurley 163

For the purpose of this paper, however, we do not have to define the semantics of Datalog
as above. Instead, we view linear Datalog as a fragment of monotone RHΠ1 and fixed points
as satisfying assignments of the corresponding formulas.

I Lemma 17. Every linear Datalog program is equivalent to a monotone RHΠ1 sentence
in which each clause contains an unnegated predicate symbol from σ (equivalently, an IDB).
Conversely, every monotone RHΠ1 formula of this kind is equivalent to a Datalog program.

Proof. The lemma easily follows from the observation that every rule ψ1 : −ψ2, . . . , ψm of
Datalog is equivalent to the clause ψ1 ∨ ¬ψ2 ∨ · · · ∨ ¬ψm of a monotone RHΠ1 sentence.
Note that the clause contains a positive occurrence (namely the symbol in ψ1) of an IDB.
Conversely, every clause like that with exactly one unnegated predicate from σ can be
translated into a Datalog rule. J

Since Datalog is a proper subset of monotone RHΠ1, it is likely to be less expressive.

I Theorem 18. For every structure B the following holds:
1. If H has polymorphisms x u y and x t y for some distributive lattice (H;u,t) and the

nullary operation > (returning the greatest element of the lattice) then there is a linear
Datalog program that defines #CSP(H)

2. Furthermore, if H contains equality then the converse also holds.

Proof. (1) It has been show in §5 that, under the hypothesis of item (1), #CSP(H) is
definable by a monadic monotone RHΠ1-sentence ϕ. Recall the definitions of ϕ, g, S, σ,
and Tg from §5.

Assume now, additionally, that H is invariant under the nullary operation > returning
the top element of the lattice. Let ψ(x) be any clause in ϕ. We just need to show that
some relation symbol from σ occurs unnegated in ψ(x). We have g(>) = S by assumption
(here and during the rest of the proof we shall slightly abuse the notation by using > to
denote also the element in H that > returns). It follows that > ∈ TI

g for every I ∈ σ.
Also, since H is invariant under > it follows that (>, . . . ,>) ∈ HR for every R ∈ τ . By
definition (H,Tg) |= ∀x χ(x). Hence, if one instantiates all variables in x to > then one
obtains an assigment that falsifies all negated atomic formulas in χ. Consequently, χ(x)
must contain one unnegated atomic formula. Since χ(x) is monotone the predicate symbol
of this unnegated atomic formula must be from σ.

(2) Recall the definition of Jϕ from §4. It has been show in §4 that Jϕ is invariant
under set-theoretic union and intersection and that, under the hypothesis of item (2), H
is isomorphic to Jϕ. Assume now that ϕ is a linear Datalog program. It is only necessary
to show that, additionally, Jϕ is invariant under the nullary operation returning σ (the top
element in the lattice (Jϕ,∩,∪)). Let R be any predicate symbol in τ . Since every clause of
ϕ has an occurrence of an unnegated predicate symbol from σ it follows that the mapping
{1, . . . , k} 7→ σ belongs to Sol(JR, ϕ). Hence, by definition (σ, . . . , σ) ∈ RJϕ . J

References
1 Libor Barto and Marcin Kozik. Constraint satisfaction problems of bounded width. In

FOCS, pages 595–603, 2009.
2 Libor Barto, Marcin Kozik, and Ross Willard. Near unanimity constraints have bounded

pathwidth duality. In LICS, pages 125–134, 2012.
3 Andrei A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-

element set. J. ACM, 53(1):66–120, 2006.
4 Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. In

ICALP (1), pages 646–661, 2008.

CSL’13

164 Descriptive complexity of approximate counting CSPs

5 Andrei A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM
Trans. Comput. Log., 12(4):24, 2011.

6 Andrei A. Bulatov and Víctor Dalmau. Towards a dichotomy theorem for the counting
constraint satisfaction problem. Information and Computation, 205(5):651–678, 2007.

7 Andrei A. Bulatov and Martin Grohe. The complexity of partition functions. Theor.
Comput. Sci., 348(2-3):148–186, 2005.

8 Andrei A. Bulatov, Peter Jeavons, and Andrei A. Krokhin. Classifying the complexity of
constraints using finite algebras. SIAM J. Comput., 34(3):720–742, 2005.

9 Andrei A. Bulatov, Andrei A. Krokhin, and Benoit Larose. Dualities for constraint satis-
faction problems. In Complexity of Constraints, pages 93–124, 2008.

10 Jin-Yi Cai and Xi Chen. Complexity of counting CSP with complex weights. In STOC,
pages 909–920, 2012.

11 Catarina Carvalho, Víctor Dalmau, and Andrei A. Krokhin. CSP duality and trees of
bounded pathwidth. Theor. Comput. Sci., 411(34-36):3188–3208, 2010.

12 Víctor Dalmau. Linear datalog and bounded path duality of relational structures. Logical
Methods in Computer Science, 1(1), 2005.

13 Víctor Dalmau and Andrei A. Krokhin. Majority constraints have bounded pathwidth
duality. Eur. J. Comb., 29(4):821–837, 2008.

14 Martin E. Dyer, Leslie Ann Goldberg, Catherine S. Greenhill, and Mark Jerrum. The
relative complexity of approximate counting problems. Algorithmica, 38(3):471–500, 2003.

15 Martin E. Dyer, Leslie Ann Goldberg, and Mark Jerrum. An approximation trichotomy
for Boolean #CSP. J. Comput. Syst. Sci., 76(3-4):267–277, 2010.

16 Martin E. Dyer, Leslie Ann Goldberg, and Mike Paterson. On counting homomorphisms
to directed acyclic graphs. J. ACM, 54(6), 2007.

17 Martin E. Dyer and David Richerby. On the complexity of #CSP. In STOC, pages 725–734,
2010.

18 Martin E. Dyer and David Richerby. The #CSP dichotomy is decidable. In STACS, pages
261–272, 2011.

19 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through Datalog and group theory. SIAM J. Comput.,
28(1):57–104, 1998.

20 Tomás Feder and Moshe Y. Vardi. Homomorphism closed vs existential positive. In LICS,
pages 311–320, 2003.

21 Leslie Ann Goldberg, Martin Grohe, Mark Jerrum, and Marc Thurley. A complexity
dichotomy for partition functions with mixed signs. In STACS, pages 493–504, 2009.

22 G. Grätzer. General Lattice Theory. Birkhäuser Verlag, Basel, 2003.
23 Pawel M. Idziak, Petar Markovic, Ralph McKenzie, Matthew Valeriote, and Ross Willard.

Tractability and learnability arising from algebras with few subpowers. SIAM J. Comput.,
39(7):3023–3037, 2010.

24 Tomer Kotek and Johann Makowsky. Connection matrices and the definability of graph
parameters. In CSL, pages 411–425, 2009.

25 Benoit Larose, Cynthia Loten, and Claude Tardif. A characterisation of first-order con-
straint satisfaction problems. Logical Methods in Computer Science, 3(4), 2007.

26 Benoit Larose and Pascal Tesson. Universal algebra and hardness results for constraint
satisfaction problems. Theor. Comput. Sci., 410(18):1629–1647, 2009.

27 Sanjeev Saluja, K. V. Subrahmanyam, and Madhukar N. Thakur. Descriptive complexity
of #P functions. J. Comput. Syst. Sci., 50(3):493–505, 1995.

28 L. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on
Computing, 8(3):410–421, 1979.

	Introduction
	Preliminaries
	Basic definitions
	Constraint satisfaction problem
	Counting and approximation
	The class of problems AP-interreducible with #BIS

	Descriptive complexity of (approximate) counting problems

	Reduction to the monadic case
	Necessary condition
	Sufficient condition
	Counting problems and linear Datalog

