
Axiomatizing Subtyped Delimited Continuations
Marek Materzok

University of Wrocław
Wrocław, Poland
marek.materzok@cs.uni.wroc.pl

Abstract
We present direct equational axiomatizations of the call-by-value lambda calculus with the control
operators shift0 and reset0 that generalize Danvy and Filinski’s shift and reset in that they allow
for abstracting control beyond the top-most delimited continuation. We address an untyped
version of the calculus as well as a typed version with effect subtyping. For each of the calculi
we present a set of axioms that we prove sound and complete with respect to the corresponding
CPS translation.

1998 ACM Subject Classification D.3.3 Language Constructs and Features

Keywords and phrases Delimited Continuations, Continuation Passing Style, Axiomatization

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.521

1 Introduction

Control operators for delimited continuations allow to alter the control flow of programs by
capturing the current continuation as a first-class value, which can be activated later. The
most well-known are shift/reset, introduced by Danvy and Filinski in [3]. They have many
important applications, including representing monads, partial evaluation, mobile computing,
linguistics and operating systems [8].

The shift0/reset0 control operators were first introduced besides the well-known shift/reset
by Danvy and Filinski in [3]. The operators were recently found to have many desirable
properties [8]. They can, like shift/reset, be described with a CPS translation. They have
an interesting type system, which distinguishes between side-effect free and effectful terms.
They can express the whole CPS hierarchy, in both typed and untyped settings [9]. And
they recently helped to construct a theory of multiple prompts [4].

We are interested in the problem of reasoning directly about code using the shift0/reset0
control operators. Specifically, we look for a set of equational axioms which are sound and
complete with respect to the CPS translation – and thus allow for the same reasoning which
is possible on the CPS code. Previously, Sabry and Felleisen have given such axioms for
call-by-value lambda calculus with call/cc [10][12]. Kameyama and Hasegawa solved the
problem for shift/reset control operators [6]. Axioms for the CPS Hierarchy were given by
Kameyama [5].

In this paper, we present the axiomatization for shift0/reset0 control operators, and prove
soundness and completeness with respect to the CPS translation. We do this both in the
untyped setting and in the typed setting with effect subtyping, where we use a type-directed
selective CPS translation which takes subtyping into account. The proof method is a variation
of the one presented by Sabry in [11]. Crucial for the proof is the $ control operator, which
was described and formalized in [9].

The paper is organized as follows. We introduce the λS0 and λ$ languages and their CPS
translations in Section 2. Our untyped axiomatizations for the two languages are given in

© Marek Materzok;
licensed under Creative Commons License BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 521–539

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.521
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

522 Axiomatizing Subtyped Delimited Continuations

CJxK = λk. k x

CJλx. eK = λk. k (λx. CJeK)
CJe1 e2K = λk. CJe1K (λf. CJe2K (λx. f x k))
CJS0k. eK = λk. CJeK
CJ〈e〉K = CJeK (λx. λk. k x) for λS0

CJe1 $ e2K = λk. CJe1K (λf. CJe2K f k) for λ$

Figure 1 CPS translations for λS0 and λ$.

Section 3. We describe the typed variants of the two languages, λ≤S0
and λ≤$, in Section 4.

We present the typed axiomatizations in Section 5. In Section 6 we discuss the axioms and
relate them to axioms for different systems of delimited continuations. Finally, we conclude
in Section 7.

2 The languages λS0 and λ$

Before we present the main results of the paper, we need to introduce and formally describe
the languages used.

2.1 The language λS0 (shift0/reset0)
First, we define syntactic categories for expressions, values and evaluation contexts in the
language λS0 :

e ::= v | S0x. e | e e | 〈e〉 v ::= x |λx. e E ::= • |E e | v E

The evaluation contexts are represented inside-out, which is formalized by the following
definition of plugging a term inside a context:

•[e] = e (E e2)[e] = E[e e2] (v E)[e] = E[v e]

The shift0 operator S0x. · captures the surrounding context up to (and including) the
nearest dynamically surrounding delimiter 〈·〉, which is then removed. The delimiter can
also be removed when the enclosed expression is a value. This is displayed by the following
reduction rules:

〈E[S0x. e]〉 → e[λx. 〈E[x]〉/x] 〈v〉 → v

The language has also the standard beta and eta reductions. We will not concern ourselves
more about the reduction rules, because the subject of this paper is the CPS semantics.

The CPS translation for the language λS0 is shown in Figure 1. (Please ignore for the
moment the line marked “for λ$”.) This is the untyped CPS translation first defined in [8]
and proven correct with respect to the reduction rules.

The idea behind the translation is that the successive lambda abstractions (introduced
by the translation of shift0) bind continuations delimited by successive reset0’s. It can be
thought of as an infinitely-iterated (on the final answer position, like in the CPS Hierarchy)
CPS translation, but eta reduced. In other words, we have potentially infinite number of
continuation „levels”, and shift0/reset0 operators allow us to change the current level.

M. Materzok 523

2.2 The language λ$ (shift0/$)
The language λ$ was first defined in [9]. It is a generalization of λS0 , a variant of which was
explored by Kiselyov and Shan in [7]. The language plays a vital role in proving completeness
of the axioms for λS0 , and it is very interesting on its own. We describe it in this subsection.

As with λS0 , we begin with introducing syntactic categories for expressions, values and
evaluation contexts:

e ::= v | S0x. e | e e | e $ e v ::= x |λx. e E ::= • |E e | v E |E $ e

We see that the reset0 operator 〈·〉 from λS0 was replaced by the (right-associative) binary
operator $. It is a generalization of reset0: while the expression 〈e〉 means “evaluate e inside
a new, empty context”, e1 $ e2 means “evaluate e2 inside a context terminated with e1”. We
can express reset0 using $ by writing (λx. x) $ e instead of 〈e〉.

The $ operator allows to easily restore captured contexts: the expression S0k. k $ e (where
k 6∈ V(e)) means the same as e. (We will make this statement formal in the following section.)

We define plugging terms inside evaluation contexts as follows:

•[e] = e (v E)[e] = E[v e]
(E e2)[e] = E[e e2] (E $ e2)[e] = E[e $ e2]

We have the following reduction rules for shift0/$, which generalize the reduction rules
for shift0/reset0:

v $E[S0x. e] → e[λx. v $E[x]/x] v1 $ v2 → v1 v2

Again, as with λS0 , we give the meaning of λ$ terms with a CPS translation. It is shown in
Figure 1.

The translation differs from the one for λS0 (shown in the same figure) only on the rule
for the delimiter: while in the translation for reset0 the translated subexpression has the
(CPS-translated) identity function applied to it, in the translation for $ the translated left
subexpression is evaluated and applied to the translated right subexpression.

3 Untyped axiomatization

In this section we present sound and complete (with respect to the untyped translations of
Figure 1) equational axiomatizations of λS0 and λ$.

3.1 The axioms for λS0

The axioms for λS0 are presented in Figure 2. The first two (βv and ηv) are the standard beta-
value conversions. The third (βΩ) is a beta-conversion restricted to evaluation contexts. The
fourth and fifth (〈S0〉 and 〈v〉) are equational versions of the reductions from the reduction
semantics. These five axioms are standard and expected, the last two are interesting.

The axiom η〈·〉 says that it is always possible to capture a continuation and restore
it without changing the meaning of the expression. The axiom implies the existence of a
potentially infinite tower of reset0’s outside any expression. This is expected – the untyped
CPS translation of Figure 1 is related to infinitely-iterated standard CPS translation, as
discussed before in Section 2.1. The axiom is similar to Kameyama and Hasegawa’s S-elim;
we discuss the connection in Section 6.1.

The last axiom, 〈λ〉, asserts that in expressions of the form 〈(λx. e1) e2〉 we know that the
topmost continuation for e1 must be empty, and we can always throw it away and replace it
with a new empty continuation.

CSL’13

524 Axiomatizing Subtyped Delimited Continuations

(λx. e) v = e[v/x] (βv)
λx. v x = v x 6∈ V(v) (ηv)

(λx.E[x]) e = E[e] x 6∈ V(E) (βΩ)
〈E[S0x. e]〉 = e[λx. 〈E[x]〉/x] x 6∈ V(E) (〈S0〉)

〈v〉 = v (〈v〉)
S0k. 〈(λx.S0z. k x) e〉 = e k 6∈ V(e) (η〈·〉)
〈(λx.S0k. 〈e1〉) e2〉 = 〈(λx. e1) e2〉 k 6∈ V(e1) (〈λ〉)

Figure 2 Axioms for λS0 .

(λx. e) v = e[v/x] (βv) S0x. x $ e = e x 6∈ V(e) (η$)
λx. v x = v x 6∈ V(v) (ηv) v1 $ v2 = v1 v2 ($v)

v $S0x. e = e[v/x] (β$) v $E[e] = (λx. v $E[x]) $ e ($E)

Figure 3 Axioms for λ$.

3.2 The axioms for λ$

We present the axioms for λ$ in Figure 3. They are conceptually very different than the
axioms for λS0 , which may be surprising. But they are very regular and reveal the conceptual
elegance of the λ$ language.

The first two axioms (βv and ηv) are, as before, the standard beta-value conversions. The
third one, β$, says that when we capture an empty context terminated with v, we get v back.
The fourth, η$, means that we can always capture the top context, and then put it back as
the terminating value on the delimiter. The two axioms can be thought of as beta and eta
conversion axioms for shift0 and $ operators.

The fifth axiom, $v, says that if the inside of the context is a value, we can just apply it
to the terminating value on the delimiter. This is an equational version of the reduction rule
v1 $ v2 → v1 v2.

The last axiom, $E , says that we can move a suffix of the evaluation context delimited
with $ to the terminating value.

Please take notice that there is no axiom corresponding directly to the reduction rule
v $E[S0x. e]→ e[λx. v $E[x]/x]. But the corresponding equation is still valid:

λ$ ` v $E[S0x. e] = (λx. v $E[x]) $S0x. e = e[λx. v $E[x]/x]

The βΩ axiom also turned out to be redundant.

3.3 Reducing λS0 to λ$

In this subsection we show that the axioms for λS0 are sound and complete if and only if the
axioms for λ$ are sound and complete. To achieve this, let us define a pair of translations –
DJ·K from λS0 to λ$, and D−1J·K in the other direction:

DJ〈e〉K = (λx. x) $DJeK
D−1Je1 $ e2K = (λf. 〈(λx.S0z. f x)D−1Je2K〉)D−1Je1K

The remainder of the translations is defined homomorphically.
The translations have the following properties (λ consists of full β and η axioms):

M. Materzok 525

GJxK = S0k. k x PJxK = x

GJλx. eK = S0k. k (λx.GJeK) PJλx. eK = λx.PJeK
GJe1 e2K = S0k. (λf. (λx. k $ f x) $GJe2K) $GJe1K PJv1 v2K = PJv1KPJv2K
GJS0k. eK = S0k.GJeK PJS0x. eK = λx.PJeK
GJe1 $ e2K = S0k. (λf. k $ f $GJe2K) $GJe1K PJv $ eK = PJeKPJvK

Figure 4 CGS translation of λ$ to λG
$; translation of λG

$ to λ.

I Property 1. We have the following:
1. For every λS0 term e we have λS0 ` D−1JDJeKK = e.
2. For every λ$ term e we have λ$ ` DJD−1JeKK = e.
3. For every λS0 term e we have λ ` CJeK = CJDJeKK.
4. For every λ$ term e we have λ ` CJeK = CJD−1JeKK.
5. λS0 ` e1 = e2 implies λ$ ` DJe1K = DJe2K.
6. λ$ ` e1 = e2 implies λS0 ` D−1Je1K = D−1Je2K.

I Theorem 2. The axioms for λS0 are sound iff the axioms for λ$ are sound.

Proof. Suppose that the axioms for λS0 are sound. Assume λ$ ` e1 = e2. By Property 1.6
we have λS0 ` D−1Je1K = D−1Je2K. Using the assumed soundness of λS0 axioms gives
λ ` CJD−1Je1KK = CJD−1Je2KK. From Property 1.4 we get λ ` CJe1K = CJe2K. The other
direction is analogous. J

I Theorem 3. The axioms for λS0 are complete iff the axioms for λS0 are complete.

Proof. Suppose that the axioms for λS0 are complete. Assume λ ` CJe1K = CJe2K. From
Property 1.4 we get λ ` CJD−1Je1KK = CJD−1Je2KK. Using the assumed completeness of λS0

axioms we get λS0 ` D−1Je1K = D−1Je2K. By Property 1.6 we have λ$ ` DJD−1Je1KK =
DJD−1Je2KK. From Property 1.2 follows the thesis. The other direction is analogous. J

3.4 CGS translation
Following the approach of Sabry [11], we show soundness and completeness of λ$ axioms in
two steps. We introduce a translation from λ$ targeting a certain syntactical subset of λ$,
which we call λG$. We first prove soundness and completeness of λ$ with respect to λG$, and
then of λG$ with respect to λ.

The language λG$ is defined as follows:

e ::= S0x. e | v v | v $ e v ::= x |λx. e

In other words, we only allow applications with values on both sides and $ with a value on
the left side. Please also notice that the syntactic categories of expressions and values are
separate in λG$.

The translation is described in Figure 4. It is very similar to the CPS translation shown
in Figure 1. The difference is that in the translation introduced in this section we use shift0
and $ instead of function abstraction and application for passing the continuation. We call
this translation continuation-grabbing style (CGS) translation, because (as in the Sabry’s
translation) the terms actively „grab” their surrounding continuation, instead of passively
waiting for it using a lambda abstraction, as is the case in the CPS translation.

CSL’13

526 Axiomatizing Subtyped Delimited Continuations

The translation has an important property that by replacing shift0 by λ and $ by function
application in target terms (Figure 4), we obtain the CPS translation from Figure 1:
I Property 4 (CPS-translation). CJeK = PJGJeKK

CGS terms are closed on β, η, β$ and η$ reductions. The equalities generated by these
four reductions, restricted so that one cannot obtain non-CGS terms by expansion, form an
axiomatization of λG$.

We can easily prove soundness of λ$ axioms with respect to λG$:

I Lemma 5. If λ$ ` e1 = e2, then λG
$ ` GJe1K = GJe2K.

In order to prove completeness, we need another important property of the CGS translation
– that the target terms are equal in λ$ to the source terms:

I Lemma 6. For every λ$ term e we have λ$ ` e = GJeK.

We also make the observation that every pair of λG$ terms equal in λG$ is also equal in λ$:

I Lemma 7. If λG
$ ` e1 = e2, then λ$ ` e1 = e2.

We can now easily prove completeness of λ$ axioms with respect to λG$:

I Lemma 8. If λG
$ ` GJe1K = GJe2K, then λ$ ` e1 = e2.

Proof. Assume that λG$ ` GJe1K = GJe2K. By Lemma 7 we have λ$ ` GJe1K = GJe2K. The
thesis follows from Lemma 6. J

3.5 From λG
$ to λ

Soundness of λG$ axioms with respect to λ is trivial:

I Lemma 9. If λG
$ ` e1 = e2, then λ ` PJe1K = PJe2K.

We still need to prove completeness of λG$ axioms with respect to λ. This seems to be
an easy task, but there is one important complication. Take a look at the translation in
Figure 4. The translation replaces the $ operator with function applications and the shift0
operator with lambda abstractions. This causes new redexes to appear in the image of PJ·K;
for example,

λ ` PJλx. x $ eK = λx.PJeKx = PJeK

But the λG$ terms λx. x $ e and e are in separate syntactical categories – the one is a value,
the other is an expression, and in λG$ values are not expressions.

We introduce an intermediate language, λI$, defined as follows:

e ::= S0x. e | v v | v $ e | iv[v] v ::= x |λx. e | ie[e]

The language is a syntactic extension of λG$, which additionally allows using an expression as
a value (and vice versa) with an explicit injection. Then we define two translations – PIJ·K
from λI$ to λ, and IJ·K from λI$ to λG$:

PIJiv[v]K = PIJvK IJiv[v]K = S0k. IJvK k
PIJie[e]K = PIJeK IJie[e]K = λx. x $ IJeK

The translation PIJ·K is based on PJ·K, but ignores the explicit injections. The other
translation, IJ·K, leaves most of the term unchanged (the cases not mentioned are defined
homomorphically), but expands the injections so that the result is a valid λG$ term. The
expansions have the property that their translations to λ can be eta-reduced. Thus we have
the following:

M. Materzok 527

τ ≤ τ ′ σ ≤ σ′

τ σ ≤ τ ′ σ′ α ≤ α
τ ′1 ≤ τ1 τ2 σ ≤ τ ′2 σ′

τ1
σ−→ τ2 ≤ τ ′1 σ′−→ τ ′2

ε ≤ ε
τ1 σ1 ≤ τ2 σ2

ε ≤ [τ1 σ1] τ2 σ2

τ ′1 σ
′
1 ≤ τ1 σ1 τ2 σ2 ≤ τ ′2 σ′2

[τ1 σ1] τ2 σ2 ≤ [τ ′1 σ′1] τ ′2 σ′2

Γ, x : τ1 ` x : τ1
var

Γ ` e : τ σ τ σ ≤ τ ′ σ′

Γ ` e : τ ′ σ′
sub

Γ, x : τ1 ` e : τ2 σ
Γ ` λx : τ1. e : τ1 σ−→ τ2

abs

Γ, x : τ1 σ−→ τ2 ` e : τ3 σ′

Γ ` S0x : τ1 σ−→ τ2. e : τ1 [τ2 σ] τ3 σ′
sft

Γ ` e1 : τ1 σ−→ τ2 Γ ` e2 : τ1
Γ ` e1 e2 : τ2 σ

papp

Γ ` e1 : τ1
[τ′4 σ

′
4] τ′3 σ

′
3−−−−−−−→ τ2 [τ ′2 σ′2] τ ′1 σ′1 Γ ` e2 : τ1 [τ ′3 σ′3] τ ′2 σ′2
Γ ` e1 e2 : τ2 [τ ′4 σ′4] τ ′1 σ′1

app

Rule for λS0 : Γ ` e : τ ′ [τ ′] τ σ
Γ ` 〈e〉 : τ σ

rst

Rules for λ$: Γ ` e1 : τ1 σ−→ τ2 Γ ` e2 : τ1 [τ2 σ] τ3 σ′

Γ ` e1 $ e2 : τ3 σ′
pdol

Γ ` e1 : τ1 σ−→ τ2 [τ ′2 σ′2] τ ′1 σ′1 Γ ` e2 : τ1 [τ2 σ] τ3 [τ ′3 σ′3] τ ′2 σ′2
Γ ` e1 $ e2 : τ3 [τ ′3 σ′3] τ ′1 σ′1

dol

Figure 5 The type systems λ≤S0
and λ≤$ (with subtyping).

I Property 10. For any λI$ term e we have λ ` PIJeK = PJIJeKK.
I Property 11. For any λG$ term e we have PIJeK = PJeK and IJeK = e.
The equational theory for λI$ consists of βv, ηv, β$, η$ and the following two equalities:

iv[v] = S0x. v x (iv) ie[e] = λx. x $ e (ie)

The following lemma is trivial:

I Lemma 12. For every two λI
$ terms e1 and e2, if λI

$ ` e1 = e2, then λG
$ ` IJe1K = IJe2K.

Thanks to the injections, we can prove the completeness lemma for λI$:

I Lemma 13. For every two λI
$ expressions e1 and e2, if λ ` PIJe1K = PIJe2K, then

λI
$ ` e1 = e2. The same holds for values.

We can use it to prove completeness for λG$:

I Lemma 14. For every two λG
$ terms e1 and e2, if λ ` PJe1K = PJe2K, then λG

$ ` e1 = e2.

Proof. Suppose that λ ` PJe1K = PJe2K. By Property 11, we have λ ` PIJe1K = PIJe2K.
Using Lemma 13 we get λI$ ` e1 = e2, Lemma 12 gives us λG$ ` IJe1K = IJe2K. By
Property 11, we have λG$ ` e1 = e2. J

We can now finally prove soundness and completeness of the λ$ axioms:

I Theorem 15 (Soundness). If λ$ ` e1 = e2, then λ ` CJe1K = CJe2K.

I Theorem 16 (Completeness). If λ ` CJe1K = CJe2K, then λ$ ` e1 = e2.

CSL’13

528 Axiomatizing Subtyped Delimited Continuations

CJeKsub(τ σ≤τ ′ σ′,D) = CJτ σ ≤ τ ′ σ′K[CJeKD]
CJxKvar = x

CJλx. eKabs(D) = λx. CJeKD
CJe1 e2Kpapp(D1,D2) = CJe1KD1 CJe2KD2

CJe1 e2Kapp(D1,D2) = λk. CJe1KD1 (λf. CJe2KD2 (λx. f x k))
CJS0x. eKsft(D) = λx. CJeKD

CJe1 $ e2Kpdol(D1,D2) = CJe2KD2 CJe1KD1 for λ≤$
CJe1 $ e2Kdol(D1,D2) = λk. CJe1KD1 (λf. CJe2KD2 f k) for λ≤$

CJ〈e〉Krst(D) = CJeKD (λx. x) for λ≤S0

CJα ≤ αK[e] = e

CJτ ′1
σ1−→ τ1 ≤ τ ′2

σ2−→ τ2K[e] = λx. CJτ1 σ1 ≤ τ2 σ2K[e CJτ ′2 ≤ τ ′1K[x]]
CJτ1 ε ≤ τ2 εK[e] = CJτ1 ≤ τ2K[e]

CJτ ε ≤ τ ′ [τ1 σ1] τ2 σ2K[e] = λk. CJτ1 σ1 ≤ τ2 σ2K[k CJτ ≤ τ ′K[e]]
CJτ [τ1 σ1] τ2 σ2 ≤ τ ′ [τ ′1 σ′1] τ ′2 σ′2K[e] = λk. CJτ ′1 σ′1 ≤ τ ′2 σ′2K[e

(λx. CJτ ′1 σ′1 ≤ τ1 σ1K[k CJτ ≤ τ ′K[x]])]

Figure 6 Type-directed selective CPS translations for λ≤S0
to λ≤$.

4 Typed languages λ≤S0 and λ≤$

We now take a break from equational axiomatizations and describe typed versions of λS0 and
λ$, called λ≤S0

and λ≤$. We present sound and complete axiomatizations for these languages
in the next section.

In this work we use explicit type annotations on bound variables. This style of presentation
of typed languages is called „de Bruijn style” by Barendregt [1]. Thus the syntax of the
λ≤S0

and λ≤$ languages is the same as for λS0 and λ$, with the following changes (τ is the
syntactic category of types):

e ::= v | S0x : τ. e | . . . v ::= x |λx : τ. e

We often omit the type annotations for clarity, but they are still implicitly present.

4.1 Type systems
The description is shortened because of space limitations; for more details, see [8] and [9].
First let us define syntactic categories of types and effect annotations:

τ ::= α | τ σ−→ τ σ ::= ε | [τ σ] τ σ

An effect annotation can only be given meaning together with the type it annotates. The
typing judgment Γ ` e : τ ′1 [τ1 σ1] . . . τ ′n [τn σn] τ ε means “the expression e, when evaluated
inside contexts of types τ ′1

σ1−→ τ1, . . . , τ
′
n

σn−→ τn, gives an answer of type τ . In particular, the
judgment Γ ` e : τ ε means “the expression e has no control effects and, when evaluated,
yields a value of type τ”. We will often omit ε where it leads to no confusion.

The type systems are shown in Figure 5. The type system for λ≤$ is the one presented
in [9]. The type system for λ≤S0

differs slightly only in the rule papp from the one from [8].
The modification does not change the expressiveness of the type system, but helps with the
proofs.

M. Materzok 529

(λx. e) p = e[p/x] (βp)
λx. p x = p x 6∈ V(p) (ηp)

(λx.E[x]) e = E[e] x 6∈ V(E) (βΩ)
〈E[S0x. e]〉 = e[λx. 〈E[x]〉/x] x 6∈ V(E) (〈S0〉)

〈p〉 = p (〈p〉)
S0k. 〈(λx.S0z. k x) e〉 = e k 6∈ V(e) (η〈·〉)
〈(λx.S0k. 〈e1〉) e2〉 = 〈(λx. e1) e2〉 k 6∈ V(e1) (〈λ〉)

Figure 7 Axioms for λ≤S0
.

(λx. e) p = e[p/x] (βp) S0x. x $ e = e x 6∈ V(e) (η$)
λx. p x = p x 6∈ V(p) (ηp) p1 $ p2 = p1 p2 ($p)

p $S0x. e = e[p/x] (βp$) p $E[e] = (λx. p $E[x]) $ e ($E)

Figure 8 Axioms for λ≤$.

The type systems include three subtyping relations, defined on types, effect annotations
and annotated types, which are also defined in Figure 5. The subtyping relations are partial
orders: they are reflexive, weakly antisymmetric and transitive. We also have the following:

I Property 17. Every derivable subtyping judgment has only one derivation.

The property allows us to identify a subtyping judgment with its only derivation, which is
important for our proofs.

4.2 Selective CPS translations
For the typed languages λ≤S0

and λ≤$ we can define different translations than these defined
in Figure 1. The type information can be used to preserve pure (or control effect free) code
without changes and CPS-translate only the impure parts. The translations are shown in
Figure 6. The translation for λ≤S0

is the one from [8]; the one for λ≤$ is derived from it.
These translations preserve types in the following sense. Let us define translations from

λ≤S0
types and typed annotations to simple types of λ→:

CJαK = α CJτ εK = CJτK
CJτ ′ σ−→ τK = CJτ ′K−→CJτ σK CJτ [τ1 σ1] τ2 σ2K = (CJτK−→CJτ1 σ1K)−→CJτ2 σ2K

We have the following:

I Property 18 (Type preservation). If D is a derivation of Γ ` e : τ σ in λ≤S0
, then CJΓK `

CJeKD : CJτ σK in λ→. This also holds for λ≤$.

5 Typed axiomatization

In this section we present sound and complete (with respect to the type-directed selective
translation of Figure 6) equational axiomatizations of λ≤S0

and λ≤$. The development mostly
follows the untyped one, but there are a few surprises, starting with the axioms themselves.

CSL’13

530 Axiomatizing Subtyped Delimited Continuations

5.1 The typed axioms for λ≤S0 and λ≤$

We present the axioms in Figure 7 and Figure 8. We use the letter p to denote pure expressions
(the ones which can be typed with the empty effect annotation ε). The axioms seem similar
to the untyped ones, but several things need to be noted.

First, because the axioms themselves are typed, they can only be used when the types
match. For example, the typed η$ axiom cannot be typed pure, so it is only applicable on
terms with an impure type. (Therefore the implicit infinite tower of resets, which is present
in the untyped languages, disappears in typed ones.)

Second, the dependence on types makes it important to mention the typing context,
which gives types to variables. Because the subtyping rule allows the same term to have
different types, the concrete type which we consider needs also to be mentioned. Thus we
use the notation λ≤S0

; Γ ` e1 = e2 : τ σ when talking about equality modulo the axioms.
Third, in the typed axioms the syntactical value restriction present in the untyped axioms

βv, ηv, β$, 〈v〉 and $v is replaced by type-dependent purity restriction. This change is caused
by the fact that the CPS translations considered are selective – they leave the pure terms
unchanged. The typed axioms are more general, because every value has a pure typing.

Finally, we point out that the axioms give a call-by-name interpretation to pure sub-
programs. This is not problematic because the language considered is terminating and has
no side effects other than capturing of delimited contexts by shift0.

5.2 Reducing λ≤S0 to λ≤$

Similar to the untyped case, the axioms for λ≤S0
and λ≤$ are related by the following theorem.

We omit the proof because of space limitations.

I Theorem 19. The axioms for λ≤S0
are sound (complete) iff the axioms for λ≤$ are sound

(complete).

5.3 Typed CGS translation
Analogously to the untyped case, we present a translation from λ≤$ which targets a certain
subset of it, called λ→$. Differently to the untyped case, we will define this subset not by
restricting syntax, but by using a simpler type system, which consists of rules var, abs, sft,
papp and pdol (Figure 5).

It is worth notice that the restrictions imposed by the restricted type system for λ→$ are
analogous to the syntactic restrictions on λG$: the restriction of being a value in the untyped
case corresponds to the restriction of having a pure typing in the typed case. Another
interesting point is that there is no subtyping in the type system. The rules for impure
application and impure $ are also gone, and with good reason: without subtyping, these
rules fail subject reduction.

The axioms βp, ηp, βp$ and η$ form an axiomatization of λ→$. Take notice that the type
system of λ→$ makes the full beta reduction valid, because it forces the type of the function
argument to be pure. Therefore, as in the untyped case, the typed CGS language is evaluation
order independent.

We present the typed CGS translation in Figure 9. The translation is derived from the
typed CPS translation in Figure 6 using the same principles as with the untyped one. As
before, replacing the occurrences of shift0 with lambda abstractions and occurrences of $ with
function applications (as in Figure 4, but extended to work on terms with type annotations).
in the result terms of GJ·K· gives us the CPS translation:

M. Materzok 531

GJeKsub(τ σ≤τ ′ σ′,D) = GJτ σ ≤ τ ′ σ′K[GJeKD]
GJxKvar = x

GJλx. eKabs(D) = λx.GJeKD
GJe1 e2Kpapp(D1,D2) = GJe1KD1 GJe2KD2

GJe1 e2Kapp(D1,D2) = S0k. (λf. (λx. k $ f x) $GJe2KD2) $GJe1KD1

GJS0x. eKsft(D) = S0x.GJeKD
GJe1 $ e2Kpdol(D1,D2) = GJe1KD1 $GJe2KD2

GJe1 $ e2Kdol(D1,D2) = S0k. (λf. k $ f $GJe2KD2) $GJe1KD1

GJα ≤ αK[e] = e

GJτ ′1
σ1−→ τ1 ≤ τ ′2

σ2−→ τ2K[e] = λx.GJτ1 σ1 ≤ τ2 σ2K[eGJτ ′2 ≤ τ ′1K[x]]
GJτ1 ε ≤ τ2 εK[e] = GJτ1 ≤ τ2K[e]

GJτ ε ≤ τ ′ [τ1 σ1] τ2 σ2K[e] = S0k.GJτ1 σ1 ≤ τ2 σ2K[k GJτ ≤ τ ′K[e]]
GJτ [τ1 σ1] τ2 σ2 ≤ τ ′ [τ ′1 σ′1] τ ′2 σ′2K[e] = S0k.GJτ ′1 σ′1 ≤ τ ′2 σ′2K[

(λx.GJτ ′1 σ′1 ≤ τ1 σ1K[k GJτ ≤ τ ′K[x]]) $ e]

Figure 9 Type-directed selective CGS translation of λ≤$ to λ→$.

I Property 20 (CPS translation). CJeKD = PJGJeKDK

In contrast to the untyped case, the soundness of λ≤$ axioms is not trivial. The reason is
that the typed CGS (and CPS) translation depends on the typing derivation. It is easy to
show that every axiom is sound in some particular derivation, but we need to have them
sound in any derivation to have soundness. Therefore, we need coherence – the property
that, no matter the derivation, the terms resulting from the translation are equal.

I Theorem 21 (Coherence). For every two derivations D1, D2 of the same typing judgment
Γ ` e : τ σ λ≤$ we have λ→$; Γ ` GJeKD1 = GJeKD2 .

Proof. In the appendix. J

We can now prove soundness for λ≤$ with respect to the typed CGS translation:

I Lemma 22. Suppose that for some two λ≤$ terms e1 and e2 we have λ≤$; Γ ` e1 = e2 : τ σ.
Then for every two derivations D1 and D2 for Γ ` e1 : τ σ and Γ ` e2 : τ σ we have
λ→$; Γ ` GJe1KD1 = GJe2KD2 .

As in the untyped case, we can prove that the target terms of the typed CGS translation
are equal in λ≤$ to the source terms:

I Lemma 23. For every derivation D of Γ ` e : τ σ we have λ→$; Γ ` e = GJeKD.

Every equality in λ→$ is also valid in λ≤$:

I Lemma 24. If λ→$; Γ ` e1 = e2 and Γ ` e1 : τ σ, then λ≤$; Γ ` e1 = e2 : τ σ.

We can now prove completeness of λ≤$ axioms with respect to λ→$:

I Lemma 25. If D1 and D2 are derivations of Γ ` e1 : τ σ and Γ ` e2 : τ σ, and
λ→$; Γ ` GJe1KD1 = GJe2KD2 , then λ

≤
$; Γ ` e1 = e2 : τ σ.

CSL’13

532 Axiomatizing Subtyped Delimited Continuations

lnf$(Γ, x : τ1) e : τ2 σ
lnf$(Γ) λx : τ1. e : τ1 σ−→ τ2

lnf$(Γ, x : τ1 σ−→ τ2) e : τ σ′

lnf$(Γ) S0x : τ1 σ−→ τ2. e : τ1 [τ2 σ] τ σ′
lnf$↓(Γ) e : α
lnf$(Γ) e : α

lnf$↓(Γ, x : τ) x : τ
lnf$↓(Γ) e1 : τ1 σ−→ τ2 lnf$(Γ) e2 : τ1

lnf$↓(Γ) e1 e2 : τ2 σ

lnf$(Γ) e1 : τ1 σ−→ τ2 lnf$↓(Γ) e2 : τ1 [τ2 σ] τ σ′

lnf$↓(Γ) e1 $ e2 : τ σ′

Figure 10 $-beta eta long form.

5.4 From λ→$ to λ→

We can easily prove soundness of the typed CGS axioms with respect to λ→:

I Lemma 26. For any two λ→$ terms e1, e2 and any typing environment Γ such that
λ→$; Γ ` e1 = e2 we have λ→; CJΓK ` PJe1K = PJe2K.

Proving completeness of λ→$ is done differently than in the untyped case. We still get
unwanted redexes when translating with PJ·K. For example, if Γ ` e : τ1 [τ2 σ] τ ′ σ′, then
Γ ` λx. x $ e : (τ1 σ−→ τ2) σ′−→ τ ′ – but their translations are equal in λ→:

λ→; CJΓK ` PJλx. x $ eK = λx.PJeKx = PJeK

The problem exists only for eta reductions and beta expansions: every beta reduction in
the translated term corresponds to a βp or βp$ reduction in the source term, and similarly,
every eta expansion in the translated term corresponds to a ηp or η$ expansion in the source
term.1 We can use beta eta long forms [1] to solve this issue. Let us define lnf(Γ) e : τ to
mean “in the type environment Γ the expression e has type τ and is in beta eta long form”.
We have the following:
I Property 27. If λ→; Γ ` e1 = e2, then there exists a λ→ term e, in beta eta long form, such
that e1 and e2 both reduce to e using only beta reductions and eta expansions.
We can easily prove the following:

I Lemma 28. If λ→$ term e1 is typable in Γ and PJe1K reduces to e in CJΓK using only
beta reductions and eta expansions, then there exists a λ→$ term e2 such that e = PJe2K and
λ→$; Γ ` e1 = e2.

But this lemma alone cannot be used to prove completeness. Applying the lemma to the two
reduction sequences from Property 27 give us two λ→$ terms which translate to the same λ→
term, but we do not know yet if they are equal. Fortunately, we can use the fact that their
translation is in beta eta long form to give a positive answer to this question.

Let us begin with presenting the syntax of the λ→$ analogue of the beta eta long forms,
we call them $-beta eta long forms (Figure 10). We prove that if the translated λ→$ term is
in the beta eta long form, then the original term is in the $-beta eta long form:

I Lemma 29. If lnf(CJΓK) PJeK : CJτ σK, then lnf$(Γ) e : τ σ.

1 Conventionally, we define βp, βp
$, ηp and η$ reductions as left-to-right directed versions of the corres-

ponding equations.

M. Materzok 533

Then we prove that if we have two λ→$ terms in $-beta eta long forms which translate to the
same λ→ term, then they are (syntactically) equal:

I Lemma 30. If lnf$(Γ) e1 : τ σ, lnf$(Γ) e2 : τ σ and PJe1K = PJe2K, then e1 = e2.

Now we can prove completeness of λ→$:

I Lemma 31. If we have λ→; CJΓK ` PJe1K = PJe2K, then λ→$; Γ ` e1 = e2.

Proof. Suppose that λ→; CJΓK ` PJe1K = PJe2K : τ σ. Using Property 27 we get a λ→ term
e in eta long form such that both PJe1K and PJe2K reduce to e using only beta reductions
and eta expansions. Applying Lemma 28 we get λ→$; Γ ` e1 = e′1, λ→$; Γ ` e2 = e′2 and
PJe′1K = PJe′2K = e. By Lemma 29 we get that e′1 and e′2 are in $-beta eta long form.
Lemma 30 gives us e′1 = e′2, which finishes the proof. J

We can now prove soundness and completeness for λ≤$:

I Theorem 32 (Soundness). Suppose that for some two λ≤$ terms e1 and e2 we have
λ≤$; Γ ` e1 = e2 : τ σ. Then for every two derivations D1 and D2 for Γ ` e1 : τ σ and
Γ ` e2 : τ σ we have λ→; CJΓK ` CJe1KD1 = CJe2KD2 .

I Theorem 33 (Completeness). For every two derivations D1, D2 of Γ ` e1τ σ and Γ ` e2τ σ,
if λ→; CJΓK ` CJe1KD1 = CJe2KD2 , then λ

≤
$; Γ ` e1 = e2 : τ σ.

6 Related work

6.1 Kameyama and Hasegawa’s axioms for shift/reset
We can express the shift/reset control operators in λS0 by leaving the occurrences of reset
without changes and replacing the occurrences of the shift operator Sk. e with S0k. 〈e〉. It is
an interesting question if the axioms of Kameyama and Hasegawa [6] can be validated in
this embedding using the axioms for λS0 .

The answer is negative. The axioms reset-lift, S-elim and S-reset cannot be validated.
The reason is that the shift0 operator, in contrast to shift, can reach beyond the nearest
delimiter; the three equations above significantly change the structure of delimiters, which
can be distinguished by repeated uses of shift0.

Our axioms βv, ηv, βΩ and 〈v〉 are identical to corresponding Kameyama and Hasegawa’s
axioms. The axiom 〈S0〉 is taken from the reduction semantics for shift0. The remaining two
axioms η〈·〉 and 〈λ〉 are different, but are related to S-elim and reset-lift.

The Kameyama and Hasegawa’s S-elim axiom Sk. k e = e is unsound in λS0 . To see why,
take a look at the λS0 term 〈f 〈g e〉〉. If we apply the S-elim-derived equality S0k. 〈k e〉 = e

right-to-left on g, we get:

〈f 〈(S0k. 〈k g〉) e〉〉 → 〈f 〈(λx. 〈x e〉) g〉〉 → 〈f 〈〈g e〉〉〉

We see that one of the reset0’s got duplicated. The reset0 operator is not idempotent, so the
equation must be unsound. To fix the equation, we need to ensure the superfluous reset0
gets removed in the course of evaluation. This way we obtain the axiom η〈·〉. Let us check
this using our previous example:

〈f 〈(S0k. 〈(λx.S0z. k x) g〉) e〉〉 → 〈f 〈(λx.S0z. (λy. 〈y e〉)x) g〉〉
→ 〈f 〈S0z. (λy. 〈y e〉) g〉〉 → 〈f ((λy. 〈y e〉) g)〉 → 〈f 〈g e〉〉

CSL’13

534 Axiomatizing Subtyped Delimited Continuations

The Kameyama and Hasegawa’s reset-lift axiom 〈(λx. e1) 〈e2〉〉 = (λx. 〈e1〉) 〈e2〉 is invalid
in λS0 . Notice that the main fact stated by the axiom is that the subexpression e1 is always
evaluated in an empty context. The same fact is the basis for the 〈λ〉 axiom.

6.2 Kameyama and Hasegawa’s axioms in the typed setting
It is shown in [8] that the typed shift/reset [2] can be embedded in λ≤S0

so that the type-
directed CPS translation for this embedding gives terms which are beta eta equal to the
standard CPS translation for shift/reset. This means that the axioms of Kameyama and
Hasegawa are validated for this embedding by the axioms for λ≤S0

.
How is this possible, even though the embedding is the same on the term level as the

untyped embedding? The answer, of course, lies in the types. Consider, for example, the
Kameyama and Hasegawa’s reset-lift axiom (〈(λx. e1) 〈e2〉〉 = (λx. 〈e1〉) 〈e2〉). In the untyped
setting, this is obviously invalid – the left hand side and the right hand side have obviously
different structure of delimiters, which can be distinguished by two shift0’s. But in the
typed setting, we know that the types in the derivations generated by the embedding are
shallow: the typing annotations are only of the form ε or [τ1] τ2. This means that any term
in the target of the embedding which has the form 〈e〉 has a pure typing. So the following is
derivable (we use the βp axiom):

λ≤S0
; Γ ` 〈(λx. e1) 〈e2〉〉 = 〈e1[〈e2〉/x]〉 = (λx. 〈e1〉) 〈e2〉

Let us see another example – the S-elim axiom (Sk. k e = e). It is embedded into λ≤S0
in the

form S0k. 〈k e〉 = e. We have the following:

λ≤S0
; Γ ` S0k. 〈k e〉 = S0k. 〈(λx. k x) e〉 = S0k. 〈(λx.S0z. 〈k x〉) e〉

= S0k. 〈(λx.S0z. k x) e〉 = e

We used, in sequence, the axioms ηp, 〈λ〉, 〈p〉 and η〈·〉. Notice that the use of the axiom
〈p〉 was correct only because the return type of k was pure. So the equality is not valid in
general, but it is valid in the image of the embedding of typed shift/reset.

The conclusion is as follows: the type system of λ≤S0
tracks how the program accesses the

context stack, and the typed axioms can use the type information to make some reasoning
valid which is not valid in general. The typed axioms of Kameyama and Hasegawa are valid
in λ≤S0

when the type annotations are shallow.

6.3 Connection with the axioms for the CPS Hierarchy
We can embed the CPS Hierarchy λH [3] in the calculus λ$, as shown in [9]. A natural
question is whether Kameyama’s axioms for the CPS Hierarchy [5] are validated by the
axioms for λ$. The answer is yes. Let CHJ·K be the CPS translation for the CPS Hierarchy
and HJ·K be the embedding of λH inside λ$. In [9] it is proven that λ ` CHJeK = CJHJeKK.
So the following sequence of equivalences is true:

λH ` e1 = e2 ⇔ λ ` CHJe1K = CHJe2K⇔ λ ` CJHJe1KK = CJHJe2KK⇔ λ$ ` HJe1K = HJe2K

Because Kameyama’s axioms specialized for the first level coincide with the axioms of
Kameyama and Hasegawa for shift/reset, the result may seem paradoxical: we said in
Section 6.1 that these axioms are not valid in shift0/reset0! There is no paradox because
HJ·K gives a different embedding of shift/reset than the one used in Section 6.1:

HJS1x. eK = S0k. 〈e[λx.S0f.S0g. (λy. g $ f y) $ k x/x]〉
HJ〈e〉1K = S0f.S0g. (λx. g $ f x) $ 〈HJeK〉

M. Materzok 535

7 Conclusion

We have presented sound and complete axioms for untyped languages λS0 and λ$ and typed
languages with subtyping λ≤S0

and λ≤$. In future work we will explore polymorphic and
call-by-name variants of the languages considered.

Acknowledgments. Many thanks to Dariusz Biernacki, Maciej Piróg and the anonymous
referees for their valuable comments. This work was funded by Polish NCN grant DEC-
2011/03/B/ST6/00348, and co-funded by the European Social Fund.

References

1 Henk Barendregt. Lambda calculi with types. In Samson Abramsky, Dov M. Gabbay,
and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, Vol. 2, chapter 2,
pages 118–309. Oxford University Press, Oxford, 1992.

2 Olivier Danvy and Andrzej Filinski. A functional abstraction of typed contexts. DIKU Rap-
port 89/12, DIKU, Computer Science Department, University of Copenhagen, Copenhagen,
Denmark, July 1989.

3 Olivier Danvy and Andrzej Filinski. Abstracting control. In Mitchell Wand, editor, Pro-
ceedings of the 1990 ACM Conference on Lisp and Functional Programming, pages 151–160,
Nice, France, June 1990. ACM Press.

4 Paul Downen and Zena M. Ariola. A systematic approach to delimited control with multiple
prompts. In Helmut Seidl, editor, ESOP’12, Lecture Notes in Computer Science, pages 234–
253, Tallinn, Estonia, April 2012. Springer-Verlag.

5 Yukiyoshi Kameyama. Axioms for control operators in the CPS hierarchy. Higher-Order
and Symbolic Computation, 20(4):339–369, 2007. A preliminary version was presented at
the Fourth ACM SIGPLAN Workshop on Continuations (CW’04).

6 Yukiyoshi Kameyama and Masahito Hasegawa. A sound and complete axiomatization of
delimited continuations. In Olin Shivers, editor, ICFP’03, SIGPLAN Notices, Vol. 38,
No. 9, pages 177–188, Uppsala, Sweden, August 2003. ACM Press.

7 Oleg Kiselyov and Chung-chieh Shan. A substructural type system for delimited continu-
ations. In Simona Ronchi Della Rocca, editor, TLCA’07, number 4583 in Lecture Notes in
Computer Science, pages 223–239, Paris, France, June 2007. Springer-Verlag.

8 Marek Materzok and Dariusz Biernacki. Subtyping delimited continuations. In Oliver
Danvy, editor, ICFP’11, pages 81–93, Tokyo, Japan, September 2011. ACM Press.

9 Marek Materzok and Dariusz Biernacki. A dynamic interpretation of the CPS hierarchy.
In Ranjit Jhala and Atsushi Igarashi, editors, APLAS’12, number 7705 in Lecture Notes
in Computer Science, pages 296–311, Kyoto, Japan, December 2012.

10 Amr Sabry. The Formal Relationship between Direct and Continuation-Passing Style Op-
timizing Compilers: A Synthesis of Two Paradigms. PhD thesis, Computer Science De-
partment, Rice University, Houston, Texas, August 1994. Technical report 94-242.

11 Amr Sabry. Note on axiomatizing the semantics of control operators. Technical Report
CIS-TR-96-03, Department of Computer and Information Science, University of Oregon,
1996.

12 Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing
style. Lisp and Symbolic Computation, 6(3/4):289–360, 1993. A preliminary version was
presented at the 1992 ACM Conference on Lisp and Functional Programming (LFP 1992).

CSL’13

536 Axiomatizing Subtyped Delimited Continuations

A Useful lemmas

I Lemma 34 ($Rβ). λ$ ` k $ (λx. e1) e2 = (λx. k $ e1) $ e2

Proof. k $ (λx. e1) e2
$E= (λx. k $ (λx. e1)x) $ e2

βv= (λx. k $ e1) $ e2 J

I Definition 35 (CGS translation of values).

GvJxK = x GvJλx. eK = λx.GJeK

I Lemma 36. GJvK = S0k. k GvJvK

I Lemma 37. λ$ axiom $E is equivalent to the following three equations:

v $ e1 e2 = (λx. v $x e2) $ e1 ($L)
v $ v′ e = (λx. v $ v′ x) $ e ($R)

v $ e1 $ e2 = (λx. v $x $ e2) $ e1 ($$)

Proof. Equations $L, $R and $$ are obviously instances of $E . In the other direction the
proof is by induction on the context E.

E = •

v $ e ηv= (λx. v x) $ e $v= (λx. v $x) $ e

E = E′ e

v $ (E′ e)[e′] def= v $E′[e′ e] ind= (λx. v $E′[x]) $ e′ e $L= (λx. (λx. x $E′[x]) $x e) $ e′
ind= (λx. v $E′[x e]) $ e′ def= (λx. v $ (E′ e)[x]) $ e′

The other two cases are similar. J

B Proof of Property 1

1-4 proven by induction on the expression e. Only the nontrivial cases are shown.

1. For every λS0 term e we have λS0 ` D−1JDJeKK = e.

D−1JDJ〈e〉KK def= D−1J(λx. x) $DJeKK def= (λf. 〈(λx.S0z. f x)D−1JDJeKK〉) (λx. x)
ind= (λf. 〈(λx.S0z. f x) e〉) (λx. x) βv= 〈(λx.S0z. x) e〉 〈v〉= 〈(λx.S0z. 〈x〉) e〉
〈λ〉= 〈(λx. x) e〉 βΩ= 〈e〉

2. For every λ$ term e we have λ$ ` DJD−1JeKK = e.

DJD−1Je1 $ e2KK
def= DJ(λf. 〈(λx.S0z. f x)D−1Je2K〉)D−1Je1KK

def= (λf. (λx. x) $ (λx.S0z. f x)DJD−1Je2KK)DJD−1Je1KK
ind= (λf. (λx. x) $ (λx.S0z. f x) e2) e1
η$= S0k. k $ (λf. (λx. x) $ (λx.S0z. f x) e2) e1

$Rβ= S0k. (λf. k $ (λx. x) $ (λx.S0z. f x) e2) $ e1
$Rβ= S0k. (λf. k $ (λx. (λx. x) $S0z. f x) $ e2) $ e1
β$= S0k. (λf. k $ (λx. f x) $ e2) $ e1
ηv= S0k. (λf. k $ f $ e2) $ e1

$E= S0k. k $ e1 $ e2
η$= e1 $ e2

M. Materzok 537

3. For every λS0 term e we have λ ` CJeK = CJDJeKK.

CJ〈e〉K def= CJeK (λx. λk. k x) η= λk. CJeK (λx. λk. k x) k
β= λk. (λf. CJeK f k) (λx. λk. k x) β= λk. (λk′. k′ (λx. λk. k x)) (λf. CJeK f k)
ind= λk. (λk′. k′ (λx. λk. k x)) (λf. CJDJeKK f k)
def= CJ(λx. x) $DJeKK def= CJDJ〈e〉KK

4. For every λ$ term e we have λ ` CJeK = CJD−1JeKK.

CJe1 $ e2K
def= λk. CJe1K (λf. CJe2K f k)

η= λk. CJe1K (λf. CJe2K (λx. λk. f x k) k)
β= λk. CJe1K (λf. CJe2K (λx. (λz. λk. f x k) (λx. λk. k x)) k)
def= λk. CJe1K (λf. CJe2K (λx. CJS0z. f xK (λx. λk. k x)) k)
β= λk. CJe1K (λf. (λk′. CJe2K (λx. (λx. CJS0z. f xK)x k′))(λx. λk. k x) k)
ind= λk. CJD−1Je1KK (λf. (λk′. CJD−1Je2KK (λx. (λx. CJS0z. f xK)x k′))(λx. λk. k x) k)
def= λk. CJD−1Je1KK (λf. CJ〈(λx.S0z. f x)D−1Je2K〉K k)
β= λk. CJD−1Je1KK (λx. (λf. CJ〈(λx.S0z. f x)D−1Je2K〉K)x k)
def= CJ(λf. 〈(λx.S0z. f x)D−1Je2K〉)D−1Je1KK

def= CJD−1Je1 $ e2KK

5. λS0 ` e1 = e2 implies λ$ ` DJe1K = DJe2K.
(βΩ) (λx.E[x]) e = E[e]

DJ(λx.E[x]) eK def= (λx. (DJEK)[x])DJeK
η$= S0k. k $ (λx. (DJEK)[x])DJeK

$Rβ= S0k. (λx. k $ (DJEK)[x]) $DJeK $E= S0k. k $ (DJEK)[DJxK]
def= S0k. k $DJE[x]K η$= DJE[x]K

(〈S0〉) 〈E[S0x. e]〉 = e[λx. 〈E[x]〉/x]

DJ〈E[S0x. e]〉K
def= (λx. x) $ (DJEK)[S0x.DJeK]

$E= (λx. (λx. x) $ (DJEK)[x]) $S0x.DJeK
β$= DJeK[λx. (λx. x) $ (DJEK)[x]/x] def= DJe[λx. 〈E[x]〉/x]K

(〈v〉) 〈v〉 = v

DJ〈v〉K def= (λx. x) $DJvK $v= (λx. x)DJvK βv= DJvK

(η〈·〉) S0k. 〈(λx.S0z. k x) e〉 = e

DJS0k. 〈(λx.S0z. k x) e〉K def= S0k. (λx. x) $ (λx.S0z. k x)DJeK
$Rβ= S0k. (λx. (λx. x) $S0z. k x) $DJeK
β$= S0k. (λx. k x) $DJeK ηv= S0k. k $DJeK

η$= DJeK

(〈λ〉) 〈(λx.S0k. 〈e1〉) e2〉 = 〈(λx. e1) e2〉

DJ〈(λx.S0k. 〈e1〉) e2〉K
def= (λx. x) $ (λx.S0k. (λx. x) $DJe1K)DJe2K

$Rβ= (λx. (λx. x) $S0k. (λx. x) $DJe1K) $DJe2K
β$= (λx. (λx. x) $DJe1K) $DJe2K

$Rβ= (λx. x) $ (λx.DJe1K)DJe2K
def= DJ〈(λx. e1) e2〉K

CSL’13

538 Axiomatizing Subtyped Delimited Continuations

6. λ$ ` e1 = e2 implies λS0 ` D−1Je1K = D−1Je2K.
(β$) v $S0x. e = e[v/x]

D−1Jv $S0x. eK
def= (λf. 〈(λx.S0z. f x) (S0x.D−1JeK)〉)D−1JvK

βv= 〈(λx.S0z.D−1JvKx) (S0x.D−1JeK)〉
〈S0〉= D−1JeK[λy. 〈(λx.S0z.D−1JvKx) y〉/x]
βv= D−1JeK[λy. 〈S0z.D−1JvK y〉/x] 〈S0〉= D−1JeK[λy.D−1JvK y/x]
ηv= D−1JeK[D−1JvK/x] def= D−1Je[v/x]K

(η$) S0x. x $ e = e

D−1JS0x. x $ eK def= S0x. 〈(λy.S0z. x y)D−1JeK〉
η〈·〉= D−1JeK

($v) v1 $ v2 = v1 v2

D−1Jv1 $ v2K
def= 〈(λx.S0z.D−1Jv1Kx)D−1Jv2K〉

βv= 〈S0z.D−1Jv1KD−1Jv2K〉
〈S0〉= D−1Jv1KD−1Jv2K

def= D−1Jv1 v2K

($E) v $E[e] = (λx. v $E[x]) $ e

D−1Jv $E[e]K def= 〈(λx.S0z.D−1JvKx) ((D−1JEK)[D−1JeK])〉
βΩ= 〈(λx. (λx.S0z.D−1JvKx) ((D−1JEK)[x]))D−1JeK〉
def= 〈(λx. (λx.S0z.D−1JvKx)D−1JE[x]K)D−1JeK〉
〈λ〉= 〈(λx.S0z. 〈(λx.S0z.D−1JvKx)D−1JE[x]K〉)D−1JeK〉
βv= 〈(λx.S0z. (λx. 〈(λx.S0z.D−1JvKx)D−1JE[x]K〉)x)D−1JeK〉
def= D−1J(λx. v $E[x]) $ eK

C Proof of Lemma 6

For every λ$ term e we have λ$ ` e = GJeK.
Proof is by induction on the expression e. Only the nontrivial cases are presented.

e = λx. e′

λx. e′
η$= S0k. k $λx. e′ $v= S0k. k (λx. e′) ind= S0k. k (λx.GJe′K) def= GJλx. e′K

e = e1 e2

e1 e2
η$= S0k. k $ e1 e2

$E= S0k. (λf. k $ f e2) $ e1
$E= S0k. (λf. (λx. k $ f x) $ e2) $ e1

ind= S0k. (λf. (λx. k $ f x) $GJe2K) $GJe1K
def= GJe1 e2K

e = e1 $ e2

e1 $ e2
η$= S0k. k $ e1 $ e2

$E= S0k. (λf. k $ f $ e2) $ e1
ind= S0k. (λf. k $ f $GJe2K) $GJe1K

def= GJe1 $ e2K

M. Materzok 539

ε�≤ [τ σ] τ σ �≤
σ �≤ ~σ
σ �≤ ε ~σ

[τ3 σ3] τ2 σ2 �≤ ~σ τ ′2 σ
′
2 ≤ τ ′2 σ2

[τ3 σ3] τ1 σ1 �≤ [τ ′2 σ′2] τ1 σ1 ~σ

Γ, x : τ B x : τ
var

Γ, x : τ1 B e : τ2 σ
Γ B λx : τ1. e : τ1 σ−→ τ2

abs
Γ, x : τ1 σ−→ τ2 B e : τ3 σ′

Γ B S0x : τ1 σ−→ τ2. e : τ1 [τ2 σ] τ3 σ′
sft

Γ B e1 : τ1 σ3−→ τ2 σ1 Γ B e2 : τ1 σ2 σ �≤ σ1 σ2 σ3

Γ B e1 e2 : τ2 σ
app

Rule for λ≤S0
: Γ B e : τ ′′ [τ ′ σ′] τ σ τ ′′ ≤ τ ′ σ′

Γ B 〈e〉 : τ σ
rst

Rule for λ≤$: Γ B e1 : τ1 σ′−→ τ2 σ1 Γ B e2 : τ1 [τ2 σ′] τ3 σ2 σ �≤ σ1 σ2

Γ B e1 $ e2 : τ3 σ
dol

Figure 11 The type system giving minimal types for λ$ and λ≤$.

D Proof of Theorem 21 (coherence)

The language λ≤$ has minimal types in the following sense:

I Lemma 38 (Minimal types). For every e, Γ, τ , σ such that Γ ` e : τ σ there exist τ ′, σ′
such that Γ ` e : τ ′ σ′ and for every τ ′′, σ′′ such that Γ ` e : τ ′′ σ′′ we have τ ′ σ′ ≤ τ ′′ σ′′.

Proof. The type system in Figure 11 gives the minimal type. This can be proven by induction
on the derivation of Γ ` e : τ σ. J

For every derivation DM of the minimal type judgement of Figure 11 we can find a type
derivation for the same type which corresponds to the derivation DM ; let us call it D(DM).
We can prove the following lemma:

I Lemma 39. For every derivation DM of ΓB e : τ σ and every derivation D of Γ ` e : τ ′ σ′
we have λ→$; Γ ` GJeKD = GJτ σ ≤ τ ′ σ′K[GJeKD(DM)].

Proof. Induction on the derivation D. J

Coherence follows immediately.

E Kameyama and Hasegawa’s axiomatization of shift/reset

The axioms were presented in [6]. Syntax was adapted to the one used in this paper.

(λx. e) v = e[v/x] (βv)
λx. v x = v x 6∈ V(v) (ηv)

(λx.E[x]) e = E[e] x 6∈ V(E) (βΩ)
〈v〉 = v (reset-value)

〈(λx. e1) 〈e2〉〉 = (λx. 〈e1〉) 〈e2〉 (reset-lift)
Sk. k e = e k 6∈ V(e) (S-elim)

〈E[Sk. e]〉 = e[λx. 〈E[x]〉/k] x 6∈ V(E) (reset-S)
Sk. 〈e〉 = Sk. e (S-reset)

CSL’13

	Introduction
	The languages with shift0/reset0 and shift0/$
	The language with shift0/reset0
	The language with shift0/$

	Untyped axiomatization
	The axioms for shift0/reset0
	The axioms for shift0/$
	Reducing shift0/reset0 to shift0/$
	CGS translation
	From CGS language to untyped lambda calculus

	Typed languages with shift0/reset0 and shift0/$
	Type systems
	Selective CPS translations

	Typed axiomatization
	The typed axioms for shift0/reset0 and shift0/$
	Reducing typed shift0/reset0 to typed shift0/$
	Typed CGS translation
	From typed CGS to simply typed lambda calculus

	Related work
	Kameyama and Hasegawa's axioms for shift/reset
	Kameyama and Hasegawa's axioms in the typed setting
	Connection with the axioms for the CPS Hierarchy

	Conclusion
	Useful lemmas
	Proof of Property 1
	Proof of Lemma 6
	Proof of Theorem 21 (coherence)
	Kameyama and Hasegawa's axiomatization of shift/reset

