
A Fully Abstract Game Semantics for Parallelism
with Non-Blocking Synchronization on Shared
Variables
Susumu Nishimura

Dept. of Mathematics, Graduate School of Science, Kyoto University
Sakyo-ku, Kyoto 606-8502, JAPAN
susumu@math.kyoto-u.ac.jp

Abstract
We present a fully abstract game semantics for an Algol-like parallel language with non-blocking
synchronization primitive. Elaborating on Harmer’s game model for nondeterminism, we develop
a game framework appropriate for modeling parallelism. The game is a sophistication of the wait-
notify game proposed in a previous work, which makes the signals for thread scheduling explicit
with a certain set of extra moves. The extra moves induce a Kleisli category of games, on which
we develop a game semantics of the Algol-like parallel language and establish the full abstraction
result with a significant use of the non-blocking synchronization operation.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages, F.1.1 Models of
Computation, F.1.2 Modes of Computation

Keywords and phrases shared variable parallelism, non-blocking synchronization, full abstrac-
tion, game semantics

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.578

1 Introduction

In shared memory parallel programming, parallel threads competing for shared memory
cells (or shared variables) must be appropriately synchronized to avoid race conditions. A
synchronization method is called non-blocking, if each individual thread spins over a shared
resource until it acquires an exclusive access to it. In contemporary architectures including
multicores, non-blocking synchronization is supported via the read-modify-write operation,
most notably known as compare-and-set (CAS) operation. [12]

This paper concerns with game theoretical analysis of an Algol-like parallel language that
supports non-blocking synchronization on shared variables. Game semantics for PCF and
Idealized Algol have been well investigated and shown fully abstract [13, 3]. However, the
standard methods used in the game modeling do not directly apply to the parallel extension
considered in this paper:

The models for the above deterministic languages solely concern may-convergence, i.e.,
they just observe if a program has the possibility of termination. The parallel programs,
on the other hand, are inherently nondeterministic and thus may-convergence is too
imprecise to give a pleasant discrimination of parallel programs: Even if two programs
are judged equivalent, they can nondeterministically exhibit different convergences.
One might expect that the parallel execution would be modeled by interleaved game plays
of simultaneously running threads, but this fails to properly shuffle variable accesses,
due to the parity restriction originating from the Hyland-Ong game [13], in which the
opponent moves and the player moves must strictly alternate.

© Susumu Nishimura;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 578–596

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.578
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Nishimura 579

In a preliminary work [20], Watanabe and the present author proposed wait-notify games
as a means to remedy the above issues. They developed the wait-notify games based on
Harmer’s game semantics [9, 10], in order to capture the nondeterministic nature of parallel
computation more precisely. Harmer’s games substantially extend Hyland-Ong’s with the
notion of divergence, giving the full abstraction result for a nondeterministic variant of
Algol-like sequential language. It concerns both may-convergence and must-convergence,
i.e., it also discriminates those programs which are obliged to terminate from those which
are not.

The fundamental idea in wait-notify games is to have each game play interspersed by a
suitable number of pairs of extra wait and notify moves, written W and N, respectively. A
wait move W represents a delay imposed by the scheduler of the operating system, each time
a single execution thread attempts to access a shared variable; A subsequent notify move N
represents the resumption of the delayed variable access by the scheduler. However, wait-
notify games are defined only for the type of parallel computation and are not well integrated
with the computational structure of other types, including higher-order ones. The resulting
parallel language thereby supports parallelism only under a fairly limited context: Within
parallel contexts, nothing but shared variables can be parametrized.

The present paper sophisticates the idea in the wait-notify game to give a fully abstract
game semantics for an Algol-like parallel language with non-blocking synchronization, in
which parallelism is allowed under much wider contexts of arbitrary types, though subject
to a few modest syntactic restrictions. We will develop the game model in a Kleisli category
of games, induced from the monadic structure introduced by the wait and notify moves.
This not only enables us to reach to the full abstraction result in a standard way but also
reveals the computational structure hindered behind the parallel computation.

Here we emphasize that we do not intend to model parallel computation as a game
between individual parallel threads. Rather, we model parallel computation as a game
between the collection of simultaneously running threads and the scheduler, which is the
entity invisible in the program text. The extra wait and notify moves enable the game
semantical construction with the scheduler’s interference explicit. The extra moves, on the
other hand, should not be counted when we discuss observational behavior of programs.
Thus we need to introduce a scheduler strategy that ignores these extra moves all together,
later in Section 5.

The development in this paper also gives some indications on the nature of parallel
computing:

As we will discuss later, the game model in this paper has no ability to observe the
termination of the entire collection of threads running in parallel. This implies that no
language whose parallel running threads can join to a single sequential thread would be
fully abstract with respect to the present game model or its modest extension. Due to
this fact, we are driven to design our parallel language so that no parallel threads join:
There is no means to merge the set of parallel threads into a single sequential thread,
even after all the parallel threads have terminated.
In the course of establishing full abstraction, we need to separate out a history-insensitive
part from a given game strategy. This is usually done by the so-called innocent factor-
ization [3], which does not directly apply to our parallel setting, though. The parallel
threads would compete for a shared variable in which the factorized strategy keeps the
history. There we make an indispensable use of the non-blocking synchronization oper-
ation CAS, as a means for mutual exclusion on the shared variable. This indicates that
a language without CAS or its equivalent would be strictly less able to define strategies
than the language with CAS would be.

CSL’13

580 A Fully Abstract Game Semantics for Parallelism with Non-Blocking Synchronization

Related work. The game model in this paper can be seen as a resumption model, which has
been used for denotational modeling of concurrency [17, 19] and later examined for giving
a game semantics for parallelism [1]. The present paper investigates the computational
structure in the resumption-style (wait-notify) game and develops the full abstraction result
for a suitable Algol-like shared variable parallel language.

There have been several approaches to full abstraction for shared variable parallel lan-
guages, e.g., [5] by Brookes and [7, 8] by Ghica, Murawski, et al. These studies concern
blocking synchronization primitives, i.e., some locking mechanisms, while the present paper
concerns non-blocking ones. More significantly, whereas they solely discuss may-convergence,
we discuss may&must-convergence. This enables a more precise analysis of parallel compu-
tation that is inherently nondeterministic, though we need certain quotienting on the game
model.

Unlike in the parallel languages they consider, parallel threads in our language never join
to continue with a sequential computation, as mentioned earlier. This rigid distinction of
sequential and parallel computation in our language might be more suitable for distributed
computing, where a collection of parallel threads execute in concert but their computation
results not necessarily need to coalesce. In a distributed environment, the indefinability
without CAS might seem a reminiscent of the impossibility result for the wait-free distributed
consensus [11], but one should mind their difference. Wait-freeness assumes a fairness in
scheduling, while the present game model does not: A parallel computation in the latter is
judged to diverge as soon as at least one out of the parallel threads does, while the former
is judged irrespective of divergence of a subset of threads.

Outline. The rest of the paper is organized as follows. Section 2 introduces an Algol-
like parallel language and gives its operational semantics. Reviewing Harmer’s games for
nondeterminism in Section 3, we develop in Section 4 a game framework, in which parallel
programs are interpreted in a Kleisli category of wait-notify games. Section 5 defines the
game interpretation for terms and its soundness is shown. In Section 6, we show the full
abstraction, which is derived by combining two factorizations followed by a definability
result. Finally, Section 7 concludes the paper with some topics for future investigations.

2 The IApar Language

Let us define a programming language for shared variable parallelism, called IApar , which is
yet another variant of Idealized Algol [18]. IApar is a strongly typed language, whose types
and syntax are defined as below.

T ::= nat | com | var | par | T→ T

M ::= x | n |M ? M | λxT.M |MM | fixT M | skip | seq M M | if0 M then M else M
| assign M M | deref M | cas M M M | mkvar M M M | newvar v = n in M
| M or M |M1‖ · · · ‖Mζ |M �j M

The types consist of base types and arrow types built from them. Base types are either
nat for natural numbers, com for sequential commands, var for mutable variables, or par
for parallel commands. A type judgment of the form Γ ` M : T assigns the type τ for the
term M , where Γ is a typing context, a finite mapping from identifiers to types. The typing
rules are given in Figure 1 of Appendix A.

The terms consist of PCF terms (natural numbers, λ-terms, and general recursion, where
the binary operator ? on natural numbers at least includes the addition + and the cut-off

S. Nishimura 581

subtraction −, Algol terms (commands for mutable variables and the bad variable con-
structor mkvar), the erratic nondeterminism or [9, 10], and parallel constructs. The parallel
command M1‖ · · · ‖Mζ executes the sequential commandsM1, ..., Mζ simultaneously, where
ζ is the fixed degree of parallelism. The thread extension P �j M (1 ≤ j ≤ ζ) extends the
command execution of the j-th thread in the parallel command P by a sequential command
M . That is, as soon as the execution in the j-th thread as specified in P has terminated,
the same thread continues to execute the sequential command M . The preamble sequenc-
ing seq M P , where P is of type par, executes the sequential command M in advance of
the parallel command P . Within a parallel command, every simultaneously running thread
has parallel access to shared variables, which are ranged over by the identifiers v, v′, ... of
type var. In addition to the primitives assign and deref for atomic read and write on muta-
ble variables, respectively, it also provides compare-and-set (CAS) operation as a means for
non-blocking synchronization on shared variables. A CAS operation cas v m n is an atomic
uninterruptible operation that conditionally updates the value stored in v: If the present
value stored in v is equal to m then it updates the value to n and returns n; otherwise, it
leaves v as it is and returns the stored value.

The formal operational semantics for IApar is given in the style of small-step operational
semantics (Figure 2 of Appendix A). Each 1-step reduction 〈M, s〉 −→ 〈M ′, s′〉 corresponds
to a single atomic sequential execution that may update the store s to s′ as the side effect,
where a store is a finite mapping from mutable variables to natural numbers.

We say the evaluation of a termM may-converges at initial state s, if 〈M, s〉 −→∗ 〈M ′, s′〉
for some state s′ and no reduction rules apply to 〈M ′, s′〉 further, where −→∗ is the reflexive
transitive closure of −→. Also, we say the evaluation of a term M must-converges at initial
state s, if there is no infinite reduction sequence 〈M, s〉 −→ 〈M ′, s′〉 −→ · · · . In particular
when M is a closed term, we write M⇓may for may-convergence and also write M⇓must for
must-convergence.

A contextual preorder on terms is defined by means of both may- and must-convergences.
We define M .may N iff, for any context C[−] of type par, C[M]⇓may implies C[N]⇓may.
Also, M .must N iff, for any context C[−] of type par, C[M]⇓must implies C[N]⇓must.
Overall, we define the approximation of convergence by: M .m&m N iff M .may N and
M .must N .

3 Harmer’s game for nondeterminism

This section reviews Harmer’s game model together with a little sophistication specifically
needed for the development in the present paper. It is intended to make the present paper
self-contained as much as possible, but some details are omitted due to page limitation.
For the full details, see Harmer’s thesis [10]. More general aspects on game semantics for
Algol-like languages can be found in [4].

Arenas. The definition of arenas is standard, except that the arena moves are ordered. An
arena A is a triple ((MA, <A), λA,`A), where MA is a countable set of moves, associated
with a nonreflexive total order <A on them; λA : MA → {O,P} × {Q,A} is a labeling
function that assigns each move m ∈ MA its attributes, either O (opponent) or P (player)
and either Q (question) or A (answer); the enabling relation `A is a binary relation over the
moves satisfying: (e1) (a `A b ∧ a 6= b) =⇒ λOP

A (a) 6= λOP
A (b); (e2) b `A b =⇒ (λA(b) =

(O,Q) ∧ (a 6= b =⇒ a 6 `Ab)); (e3) (a `A b ∧ λQA
A (b) = A) =⇒ λQA

A (a) = Q, where we
write λOP

A (b) (resp., λQA
A (b)) for the opponent/player (resp., question/answer) attribution of

CSL’13

582 A Fully Abstract Game Semantics for Parallelism with Non-Blocking Synchronization

the move b. When a `A b (a 6= b), we say a justifies b. A move a is called an initial move if
a `A a.

The most trivial arena is 1 = (∅, ∅, ∅). The arena C = ((MC, <C), λC,`C) corre-
sponding to type com of commands is specified, as usual, by the data MC = {run, done},
λC(run)=(O,Q), λC(done) = (P,A), `C= {(run, run), (run, done)}, together with the or-
dering run <C done. For the arenas of other base types and type constructors, see Ap-
pendix B.

Here we notice that the arena definition does not preclude the possibility that question
moves are justified by answer moves. We say such a question move justified by an answer
move a a subquestion move (inferior to a). Let us write SubqA(a) = {q | a `A q} for the set
of all subquestions inferior to the answer move a. We call an answer move a a subquestioning
answer iff SubqA(a) 6= ∅. Throughout the paper, we assume that SubqA(a) is a finite set for
each answer move a. In this paper, subquestion moves in lifted arenas will play a significant
role in modeling parallelism (Section 4.1).

Justified strings, legal plays, and strategies. Let us write ε for an empty string of arena
moves and st (occasionally written s · t for clarity) for concatenation of strings of moves s
and t. We write s v t to mean that s is a prefix of t and also write s veven t in particular
when s is an even-length string. Typically, strings of arena moves are ranged over by s, t, u,
etc., while arena moves are ranged over by a, b, p, q, etc.

A justified string in an arena A is a sequence of moves in which every non-initial move
p has a pointer to an earlier occurrence of a justifying move q (i.e., q ` p), written like
· · · q · · · pxx · · · . In particular when p is an answer move (and hence q is a question move),
we say “p answers q.”

We say a justified string s is well-opened, if s has at most a single occurrence of initial
move. We also define the player view of a justified string s, denoted by V(s), by induction
on the length of s as follows: (i) V(sq) = q if q is initial; (ii) V(sqtp) = V(s)qp if p is an
opponent move and q justifies p; (iii) V(sq) = V(s)q if q is a player move.

A justified string s in arena A is called a legal play, if s strictly alternates opponent/player
moves, that is, s = o1p1o2p2 · · · where oi’s are opponents and pi’s are players. We write LA
to denote the set of legal plays in the arena A and also Leven

A (resp., Lodd
A) to denote the set

of even (resp., odd) length legal plays.
In order to appropriately model may&must-convergence in nondeterministic programs,

Harmer defined each game strategy by a pair of execution traces and witnesses of divergence.
A strategy σ is a pair (Tσ, Dσ), where the trace set Tσ is an even-length prefix closed

subset of Leven
A and the divergence set Dσ is a subset of Lodd

A satisfying: (d1) if s ∈ Tσ,
sa ∈ LA, and sa 6∈ dom(σ), then there exists d ∈ Dσ such that d v sa; (d2) if sa ∈ Dσ,
then s ∈ Tσ; If rngσ(sa) is an infinite set, then there exists d ∈ Dσ such that d v sa, where
rngσ(sa) = {sab | sab ∈ Tσ} is the range of moves that follows sa and dom(σ) = {sa |
rngσ(sa) 6= ∅} is the domain of σ.

We say a divergence d ∈ Dσ interesting, if d ∈ dom(σ); otherwise, it is called uninterest-
ing. A strategy σ is called deterministic if rngσ(sa) is a singleton set for every sa ∈ dom(σ);
A strategy σ is called reliable if it is deterministic and further every sa ∈ Dσ is uninteresting.

The composition of two strategies σ : A → B and τ : B → C, written σ; τ : A → C,
is obtained by parallel composition and hiding on the pair of plays taken from each of the
strategies. Given s ∈ LA→B and s′ ∈ LB→C , a parallel composition of s and s′ is a play t of
moves in MA ∪MB ∪MC such that s (resp., s′) is a restriction of t to the moves MA ∪MB

(resp., MB ∪MC). Hiding the moves MB occurring in t, we obtain a composite play.

S. Nishimura 583

The trace part Tσ;τ is the set of composite plays of any s ∈ Tσ and s′ ∈ Tτ . The
divergence Dσ;τ is the set of divergences that is a union of subsets generated by the following
two ways. One subset is obtained by parallel composition and hiding on the pair of a trace
from one strategy and a divergence from the other strategy. The other subset is obtained
from infinite traces generated by a pair of traces taken from both: Let u∞ be an infinite
play of moves in MA ∪MB ∪MC such that only a finite number of moves from MA or MB

are witnessed in u∞. Then the restriction of u∞ to MA ∪MB moves is a divergent play, as
u∞ can be understood as exhibiting an infinite chatter, where two strategies make infinite
(thus diverging) interaction with each other in the arena B.

We say strategy τ is more likely to converge than σ, denoted by σ ≤\ τ , iff Tσ ⊆ Tτ∧∀d′ ∈
Dτ .∃d ∈ Dσ.d v d′ ∧ ∀sab.(sab ∈ Tτ ∧ sab /∈ Tσ =⇒ ∃d ∈ Dσ.d v sab).

For every arena A, there is the least element ⊥A subject to ≤\, specified by (T⊥A , D⊥A) =
({ε}, {q | q: initial}). We will define σ =\ τ iff σ ≤\ τ and τ ≤\ σ.

Strategy subclasses. Throughout the paper, we will only concern the class of single-
threaded strategies [9, 10]. Intuitively, a single-threaded strategy consists of plays that
are closed under arbitrary interleaving of several copies of plays. This intuition is supported
by the fact that single-threaded strategies have a bijective correspondence with the so-called
well-opened ones, representing a single execution of a sequential program.

We say a strategy σ is well-opened iff every play s ∈ Tσ is well-opened and so is every
interesting divergence d ∈ Dσ. The bijective correspondence between single-threaded strate-
gies and well-opened ones, up to =\, is established by a pair of mappings WO (−) and ST (−):
for every single-threaded strategy σ and well-opened strategy υ, we have σ =\ ST (WO (σ))
and WO (ST (υ)) =\ υ, where WO (σ) restricts the plays in σ to those well-opened ones and
ST (υ) interleaves several copies of the well-opened plays in υ.

Due to this bijective correspondence, we may specify a single-threaded strategy σ by
just giving the well-opened plays contained in the trace Tσ and the interesting divergences
in Dσ. Every uninteresting divergence is implicitly identified by (d1), i.e., sa ∈ Lodd

A is
identified as an uninteresting divergence whenever s ∈ Tσ but sa 6∈ dom(σ). Furthermore,
the trace set can be identified by (the prefix closure of) the longest well-opened plays. Also,
we may not even mention divergences, when the strategy has no interesting divergences.
For example, when we say a single-threaded strategy σ : C is specified by the trace set
{run · done} (of the longest well-opened plays), σ is formally a strategy defined by the pair
(Tσ, Dσ) = ({(run·done)k | k ≥ 0}, {(run·done)k·run | k ≥ 1}).

In this paper, we will mostly concern a further limited class of strategies satisfying the
following closure properties, except for the scheduler strategy to be presented in Section 5.

A strategy σ is called player visible, if for every sa ∈ Tσ, the player move a is justified
by a move in V(s); A strategy σ is called player bracketing, if for every sa ∈ Tσ, a is the
answer to the pending question, i.e., the last occurrence of unanswered question in V(s).

Harmer gave a fully abstract semantics for Idealized Algol with erratic nondeterminism
on a cartesian closed category C of games, whose objects are the arenas and morphisms are
the (=\-equivalence classes of) single-threaded strategies. The identity arrow assigned to
an object A in C is the copycat strategy idA : A → A, which is specified by the trace set
TidA = {s ∈ Leven

A1→A0
| ∀t veven s.(t � A1 = t � A0)}.1 Restricting morphisms in C to those

player visible and player bracketing ones, we have a lluf subcategory, denoted by Cvb.

1 We may occasionally put subscripts or primes in order to distinguish different copies of the same arena.

CSL’13

584 A Fully Abstract Game Semantics for Parallelism with Non-Blocking Synchronization

In what follows, by abuse of notation, we denote each morphism in C (and their subcat-
egories as well) by σ, a representative of the equivalence class containing it.

4 The Game for Parallelism

As usual, each IApar term is assigned a game strategy whose arena is determined by the
type of the term. The base types (except for par) and function types are each interpreted
as [[nat]] = N, [[com]] = C, [[var]] = Var, and [[T → T]] = [[T]] ⇒ [[T]]. Each typing context
Γ = x1 : T1, · · ·xk : Tk is interpreted by a product arena, namely, [[Γ]] = [[T1]]× · · · × [[Tk]].

4.1 Interleaving game plays
While a single-threaded strategy just interleaves independent execution of threads, the ex-
ecution of threads in a shared variable parallel program can be affected by the order of
interleaved variable access operations. This possible dependency between threads can be
properly modeled in lifted arenas [16, 10] within a single-threaded strategy.

A lifted arena A⊥ is a triple ((MA⊥ , <A⊥), λA⊥ ,`A⊥), where MA⊥ = {?,
√
} + MA,

λA⊥ = [λ′, λA] with λ′(?) = (O,Q) and λ′(
√

) = (P,A), and p `A⊥ q iff p = q =? ∨
(p = ?∧ q =

√
) ∨ (p =

√
∧ q `A q) ∨ (p `A q ∧ p 6= q). The associated ordering extends

<A with ? <A⊥

√
and also p <A⊥ q for every p ∈ {?,

√
} and q ∈MA.

We interpret par type by [[par]] = (C1 × · · · ×Cζ)⊥. The individual threads in this
arena is ordered by: run1 <[[par]] run2 <[[par]] · · · <[[par]] runζ . An IApar term Γ `
seq M (M1‖ · · · ‖Mζ) : par is interpreted by a strategy whose play has the form ? s

√
t,

where s models the interaction of the command M with Γ and t models the execution of the
subsequent parallel command M1‖ · · · ‖Mζ . whose interleaved parallel execution is modeled
by the subsequent play t. As mentioned in [10], the lifting construction gathers parallel
threads of computation into a single sequence of play, allowing single-threaded strategies to
express history-sensitive execution.

The arenas that interpret par and higher-types involving it, however, still contain some
strategies that are not definable by the terms of IApar : The language IApar is carefully
designed to force affine uses of parallel computational contents. Further, a parallel compu-
tational content cannot be converted to a sequential computational content either; it can
only be either discarded or modified by means of a few parallel constructs.

A suitable (fully abstract) game model for IApar is obtained by further restricting the
class of strategies to subquestion-affine ones, which satisfy the following properties.

(sq1) For every s·?′ ∈ Tσ, if ?′ `A
√′ for some subquestioning answer

√′, then the occurrence
of ?′ is justified by an occurrence of ? in s, where ? is a question move satisfying ? `A

√

for some subquestioning answer
√
.

(sq2) For every s·
√′ ∈ dom(σ) where

√′ is a subquestioning answer, s·
√′ 6∈ Dσ and

rngσ(s·
√′) = {s·

√′·
√
} for some subquestioning answer

√
.

(sq3) For every s·
√′·
√
·t·q ∈ dom(σ) such that

√′ and
√

are subquestioning answers and q ∈
SubqA(

√
), it holds that s·

√′·
√
·t·q 6∈ Dσ and rngσ(s·

√′·
√
·t·q) = {s·

√′·
√
·t·q·ρ(q)},

where ρ(q) is justified by
√′ and ρ : SubqA(

√
) 7→ SubqA(

√′) is the bijection that
preserves the order <A.

(sq4) For every u·b·
√
·s·q·t ∈ Tσ where q is a subquestion move justified by

√
which is further

justified by an initial move, if u·b·
√
·s·q·t·q ∈ Lodd

A in which the both occurrences of q
are justified by

√
and also b is not a subquestioning move, then u·b·

√
·s·q·t·q 6∈ dom(σ).

S. Nishimura 585

To see how these conditions compel the affine use of parallel computation, let σ ∈ [[T]]
be a subquestion-affine strategy for some type T. The condition (sq4) applies to the case
where T has the form · · · → par, with q being any runj ∈ [[par]] (1 ≤ j ≤ ζ), prohibiting
any duplicated occurrences of the same move runj . This compels each thread of a parallel
command to execute once and only once.

The conditions (sq1)–(sq3) apply to the case where T contains a positive occurrence
of par and a negative occurrence of par′ in the form (T′ → par′) → · · · → par. Any
occurrence of ?′ ∈ M[[par′]] in a trace of σ must be justified ? ∈ M[[par]] [(sq1)]; Any
occurrence of

√′ ∈ M[[par′]] in σ must be immediately followed by
√
∈ M[[par′]] with-

out diverging [(sq2)]; Any occurrence of runj ∈ M[[par]] in σ must be immediately fol-
lowed by run′j ∈ M[[par′]] without diverging, unless the subquestioning move

√
that jus-

tifies runj is ever preceded by
√′ [(sq3)]. Thus a typical trace of σ has the form like:

?·s·?′· · ·
√′·
√
·run1·run′1 · · · run2·run′2 · · · done′1·t1·done1 · · · done′2·t2·done2 · · · run1·run′1 · · · .

It is intended that the corresponding function makes just a single copy of computation
of the argument type par′, possibly augmenting it by preamble sequencing and thread ex-
tension (as denoted by subsequences s and ti’s in the trace above, respectively). Notice
that, as opposed to the case of (sq4) that does not copy parallel computation, the trace can
contain duplicated occurrences of the same move runj , each immediately followed by run′j .
These duplicates are not harmful, since they are superficial in a sense that solely the earliest
one of the duplicates can come into play, eventually when the strategy is combined with
some strategy in [[T′ → par′]].

In what follows, we will develop a game semantical framework on a category G of games,
a lluf subcategory of Cvb, whose morphisms of player visible and player bracketing strategies
are further restricted to subquestion-affine ones. The category C and their subcategories
Cvb and G are cartesian closed. For any objects A and B, A⇒ B is the exponential object
with its associated evaluation map evA,B : (A ⇒ B) × A → B being a copycat strategy
between the copies of arenas A and B, respectively. The currying isomorphism is written
ΛA,B(f) : C → (A⇒ B) for every f : C ×A→ B.

4.2 Wait-notify games for shared variable access

We model interleaved access to shared variables in wait-notify games [20], as we discussed
earlier. The arena WN of wait and notify moves is defined as below.

WN = ((MWN, <WN), λWN,`WN) is the arena of wait-notify signals, where MWN =
{W, N}, λWN(W) = (O,Q), λWN(N) = (P,A), `WN= {(W, W), (W, N)}, and and W <WN N.

Let F : G → G be the functor WN⇒ (−) and (F, η, µ, t) be the canonical commutative
strong monad, where each natural transformation is given the following game interpretation:

The unit ηA : A → WN ⇒ A is a trivial copycat between the two copies of arena A,
with no witnesses of WN moves.
The multiplication µA : WN1 ⇒ (WN2 ⇒ A) → WN0 ⇒ A is a copycat in which
(i) each opponent move of an arena A is immediately copied by the same move of the
other A arena; (ii) each opponent W move of WN1 or WN2 is copied by a W move of
WN0; (iii) each opponent N move of WN0 is copied by a N move of WN1 (resp., WN2)
when the opponent N move is justified by a W move that copies a move of WN1 (resp.,
WN2).
The tensorial strength tA,B : A× (WN⇒ B)→WN⇒ (A× B) is the trivial copycat
between the arenas A× (WN⇒ B) and WN⇒ (A×B).

CSL’13

586 A Fully Abstract Game Semantics for Parallelism with Non-Blocking Synchronization

The monadic structure in G, in the usual way, gives rise to the Kleisli category GF , whose
objects are the same as G and the homset GF (A,B) is G(A,FB). We write f : A →→→ B to
mean f is in GF (A,B).2 The composition of two Kleisli arrows f : A →→→ B, g : B →→→ C,
written f ; g, is the morphism f ; g∗ : A → FC (in G), where g∗ : FB → FC is the Kleisli
extension of g. For each object A, GF has the identity arrow idA : A →→→ A = ηA and the
terminal arrow !!!A : A →→→ 1 = ΛWN(!A×WN).

The category GF is also cartesian closed. For objects A and B, the exponential object
is A ⇒ B (the same as that of G) and the evaluation map is given by evA,B : (A ⇒
B)× A →→→ B = evA,B ; ηB . For each f : C × A →→→ B, the currying isomorphism is given by
ΛA(f) : C →→→ (A ⇒ B) = ΛA(f); δ−1

A,B , where δA,B : F (A ⇒ B) → A ⇒ FB is the trivial
copycat strategy between the arenas WN⇒ (A⇒ B) and A⇒ (WN⇒ B). Given Kleisli
arrows f1 : A →→→ B1, ..., fk : A →→→ Bk, we write, as usual, 〈〈〈f1, . . . , fk〉〉〉 : A →→→ B1 × · · · ×Bk
for pairing operations and πi : B1 × · · · × Bk → Bi (1 ≤ i ≤ k) for projections. πi may be
instead written as πBi when there arises no confusion.

The categories G and GF inherit some significant properties [10] from C: They are CPO-
enriched, where the underlying CPO is an algebraic CPO with the least element ⊥A for
every arena A, w.r.t. the ordering ≤\. Furthermore, a strategy σ is a compact element in
the CPO iff TWO(σ) is a finite set.

5 The Game Model and the Soundness

The game model is given in a quite standard way except that each IApar term Γ ` M : T
is interpreted by a Kleisli arrow in GF , denoted by [[Γ ` M : T]] : [[Γ]] →→→ [[T]], as given in
Fig. 3 of Appendix B. (We may instead write [[Γ ` M]] or [[M]], unless ambiguity arises.)
We notice that the strategy given to every term is player visible, player bracketing, and
subquestion-affine.

The W and N moves in the Kleisli arrows model the wait and notify events that come into
play when accessing shared variables: Each time a program tries to access a shared variable,
it is forced to yield its execution to another running thread and wait until it is notified
to resume execution after an arbitrary amount of delays. Thus the terms assign, deref,
and cas are modeled by strategies whose every interaction with the Var arena is preceded
by a sequence of moves W·N, which are kept throughout a series of Kleisli compositions.
Let us consider, for instance, a term v : var ` seq M1 M2 where M1 = assign v 1 and
M2 = assign v 2. The term seq M1 M2 is interpreted by the strategy 〈〈〈[[M1]], [[M2]]〉〉〉; seqcom =
〈〈〈[[M1]], [[M2]]〉〉〉; seq∗com, where the Kleisli extension seq∗com : F ′(com1×com2)→ Fcom has a trace
run·run1·W′·W·N·N′·done1·run2·W′·W·N·N′·done2·done that augments the trace in seqcom : com1×
com2 → Fcom with extra WN moves that copies each WN move associated to com1 or com2
to a WN move associated to com. When this is composed with the strategies [[Mi]] : var→
F ′comi (i = 1, 2) of subterms, each of which is specified by a trace run·W′·N′·wri·ok·done,
the extra moves W′ and N′ in both strategies are synchronized and hidden but the copies of
them are kept intact in the composed trace as: run·W·N·wr1·ok·W·N·wr2·ok·done.

Several term constructors would worth further explanation. Thread extension P �j

M makes use of the strategy contj : (C′1 × · · · ×C′ζ)⊥ × C →→→ (C1 × · · · ×Cζ)⊥, which
combines the strategy of the parallel command P with that of the sequential command
M at the end of the j-th thread’s execution. The interpretation of the parallel command
M1‖ · · · ‖Mζ is given for its equivalent: (skip ‖ · · · ‖ skip)�1 M1 �2 M2 · · · �ζ Mζ . The

2 Notice the uses of heavier symbols in the Kleisli category.

S. Nishimura 587

trivial parallel command skip ‖ · · · ‖ skip is interpreted by a strategy (the strategy pskip
in Appendix B) whose well-opened trace set consist of the ζ copies of the neutral command
skip in the arena [[par]].

Since every IApar term is interpreted by a Kleisli arrow in our game model, two terms
that are comparable in an operational sense are not necessarily so by their corresponding
strategies, due to the excess W and N moves. These excessive moves are necessary for modeling
interleaved parallel execution but should be ignored when we discuss the observable behavior
of programs.

Specifically for this purpose, we introduce a scheduler strategy sched : F (C1 × · · · ×Cζ)⊥
→ C in C, which is identified by the set of (well-opened longest) traces {run·?·(W·N)k·

√
·s·

done | k ≥ 0, s ∈ CPP}, where CPP is the set of complete parallel plays: we say a legal
play s ∈ F (C1 × · · · × Cζ) is a complete parallel play if s arbitrarily interleaves the plays
runj ·(W·N)kj ·donej (1 ≤ j ≤ ζ, kj ≥ 0) and both runj and donej have exactly a single
occurrence in s for each j. We remark that the strategy sched in C but not in G or Cvb,
because it is neither player visible nor player bracketing. For example, sched has a trace

run ?
�� √

run1
��

W
��

run2
}}

W
zz

N
yy

done1
yy

N
yy

done2
yy

· · · , where the second N is not justified
by a move in its player view run·?·

√
·run1·done1·N and also the first N does not answer to

the last unanswered question in its player view, i.e., the second W. This indicates that the
scheduler strategy is not definable in IApar without using higher-order references and control
primitives [2, 14, 15].

In what follows, the soundness property is discussed up to the so-called intrinsic quotient,
a game model quotiented by contexts [3, 16, 10]. In most game models, the intrinsic quotient
is only needed for establishing the full abstraction result, but the present paper needs it for
establishing the soundness result as well, because of the above mentioned issue.

Using the scheduler strategy, we define the intrinsic quotient as follows: Given morphisms
f, g : A →→→ B in GF , we define f 4 g iff (‘f ’;h); sched ≤\ (‘g’;h); sched for every h : (A ⇒
B) →→→ Cζ

⊥, where ‘f ’ : 1 →→→ A ⇒ B is the name of f , namely, ‘f ’ = ΛA(πA; f). We write
f ' g to mean f 4 g and g 4 f . Let us write GF /' for the quotient category. GF /' is
cartesian closed and is also rational, which is a sufficient condition for modeling recursions
in Algol-like languages [16, 10]. We write E [[M]] = [[[M]]]', the extensional interpretation of
the term M in GF /'.

The soundness property follows from the consistency and adequacy.

I Proposition 1 (consistency). Suppose M is a closed term of type par. If M⇓may, then
run·done ∈ T[[M]];sched ; If M⇓must, then run 6∈ D[[M]];sched .

I Proposition 2 (adequacy). Suppose M is a closed term of type par. If run·done ∈
T[[M]];sched , then M⇓may; If run 6∈ D[[M]];sched , then M⇓must.

I Theorem 3 (soundness). If M and N are closed terms of type T and E [[M]] . E [[N]], then
M .m&m N .

6 Definability and Full Abstraction

As Harmer did for his nondeterministic Algol-like language [10], we can also show the full
abstraction result for our parallel language IApar by combining two factorizations and a
definability result. However, we need to make his techniques more precise, due to extra
intricacies involved in parallelism, most notably race conditions on shared variables.

CSL’13

588 A Fully Abstract Game Semantics for Parallelism with Non-Blocking Synchronization

6.1 Reliable factorization
We first factor out possible nondeterminism as the oracle strategy oracle : 1 →→→ N′⇒N,
whose (longest well-opened) traces are {qq′0n | n ≥ 0}∪{q(q′m)n+1n | m > 0∧0 ≤ n ≤ m}
and the (sole) well-opened interesting divergence is qq′0. Given a constant 0, the oracle
strategy nondeterministically diverges or converges to produce an arbitrary number; Given
a positive constant m, it never diverges but reliably returns a number not greater than
m. The strategy oracle is definable by the term λxnat.if0 x then 0 else 0′x, where 0 =
fixnat(λx.0 or (x+ 1)) and 0′ = fixnat→nat(λf.λx.if0 x then 0 else (0 or f(x− 1) + 1)).

Assuming a fixed coding function codeA that assigns a unique natural number to each
distinct legal play in arena A, we separate out the reliable part of a strategy σ as follows.

I Proposition 4. If σ : 1 →→→ A is a compact strategy in GF , then there exists a compact,
reliable strategy det(σ) : (N′ ⇒ N) →→→ A such that σ =\ oracle; det(σ).

Proof. The proof basically follows that of Proposition 4.6.2 in [10], but we must be careful
that our oracle strategy is different from the one employed in Harmer’s original proof, in
that Harmer’s oracle strategy makes use of local variables whereas ours doesn’t. The effect is
that ours makes duplicated copies of the argument, witnessed as the subsequence (q′m)n+1

in the trace. This does not matter for factorization, though. Wherever Harmer factors out
a finitely branching nondeterminism at sa ∈ dom(σ) by a trace · · · a·q·q′m·j·b in det(σ), we
do it by a bit longer trace · · · a·q·(q′·m)j+1·j·b. Factorization at diverging points is similarly
done.

Further, in order to have the factorization process closed under the subquestion-affine
property, we have to make Harmer’s factorization more precise so that any oracle moves are
not inserted where the subsequent player move is uniquely determined. J

Our preference to the oracle that is definable without local variables is due to the extra
WN moves to be introduced otherwise. Harmer’s oracle strategy would also work in our
game model modulo '. We will deal with '-quotients in the next step, where we can work
with reliable strategies, without being bothered with divergence or nondeterminism.

6.2 Innocent factorization
The second step toward full abstraction is innocent factorization [3], which separates an
innocent (history-free, in other words) strategy from history-sensitive one. A strategy σ

is called innocent if σ is reliable and player visible and for every sab ∈ Tσ and t ∈ Lodd
σ

such that V(sa) = V(t), tb ∈ Tσ and V(sa)b = V(t)b, where b is justified by the matching
move in the player view. An innocent strategy σ is uniquely identified by its view function,
fun(σ) = {V(s) | s ∈ Tσ}.

The idea in innocent factorization of a strategy is to determine its behavior up to, instead
of the trace that it has played so far, a record of execution history kept in a variable. The
standard innocent factorization procedure builds an innocent strategy, whose view function
contains a player view of the form s′·a·rd·codeA(s)·wrcodeA(s·a·b)·ok·b, for every sab ∈ Tσ
and the player view s′ of the factorization of s. This construction violates, however, the
subquestion-affine conditions (sq2) and (sq3). Thus we need a factorization procedure with
improved precision.

Let σ be a reliable and player visible strategy. A player view V(sab) at an opponent
move a of σ is called locally innocent, if it holds that V(sab) = V(s′ab′) for every s′ab′ ∈ Tσ
satisfying V(sa) = V(s′a). Wherever a player view at an opponent move is locally innocent,

S. Nishimura 589

as the next player move that follows is uniquely determined by the player view, we can skip
and postpone the history update until we reach a point that is not locally innocent.

More fundamentally, we need another change in the factorization procedure, in or-
der to avoid possible race conditions caused by parallel accesses to the shared variable.
Suppose we have a strategy in arena F [[par]] that has a factorized view function contain-
ing plays like ?·

√
·runj ·sj ·donej (1 ≤ j ≤ ζ), where each sj contains successive moves

aj ·W·N·rd·mj ·W·N·wrnj ·ok·pj . (Remember that every move representing a variable access op-
eration is preceded by W·N in our game modeling.) Then the factorized strategy, which
arbitrarily interleaves the plays in the view function, contains a play that competes for the
shared variable, e.g., ?·

√
· · · a1·W·N·rd·m1·W·a2·W·N·rd·m2·W·N·wrn1 ·ok ·p1·N·wrn2 ·ok·p2. At

the end of the play, thread 1 has already reached its player move p1 but it is not recorded
in the storage, overwritten by the subsequent moves of thread 2.

Here we achieve innocent factorization by a thread-safe programming on game plays. We
make use of the atomic read-modify-write ability provided by the CAS operation in order
to avoid race conditions, making each history update inseparable from the completion of a
single computation step. To do this, we may just spin over the variable storing the history,
repeatedly trying to atomically update the variable by CAS until successful. However,
the spin lock mechanism is too naïve as a means for factorization, as it may introduce an
undesired divergence when the update fails forever. Instead, we repeatedly try to update,
but bounded by a sufficiently large number of times. Such a bound exists, if we assume a
compact strategy, i.e., a strategy whose well-opened traces are finite, because there can be
at most a bounded number of successful writes throughout the entire traces, meaning that
each repeated execution of update by CAS is guaranteed to succeed within the bound.

To sum up, given a compact, player visible, and reliable strategy σ on an arena A→ FB

and also a positive number d, we construct an innocent strategy innd(σ), identified by the
view function fun(innd(σ)) that contains the following player views for every s·a·b ∈ Tσ:

When the player view V(sa) is locally innocent, we just add player views of the form
s′·a·b to the view function, where s′ is a factorization obtained from s;
Otherwise, for any partial function ν on natural numbers such that ν(n) = m iff n =
code(s′), m = code(s′ab) for some s′ab ∈ Tσ satisfying V(s′a) = V(sa), where s′ is a fac-
torization obtained from s. Then, we add (every even-length prefixes of) player views of
the following form s′·a·(W·N)d·rd·code(s)·uc0,c1 ·uc1,c2 · · ·uci,ci+1 · · ·uck,ν(ck)·(W·N)d·b,
where um,m′ is a sequence of moves (W·N)d·casm,ν(m)·m′, c0 = code(s), and for every
i (1 ≤ i ≤ k), ci 6= ν(ci−1) and there exists ta′b′ ∈ TWO(σ) satisfying code(t) = ci−1 and
code(ta′b′) = ci. k is bounded by a number determined by each given strategy, i.e., the
length of the longest well-opened trace.

We call the strategy innd(σ) a d-delayed innocent strategy, as every sa ∈ dom(σ) must
be followed by at least d successive sequences of W·N moves, unless the player view V(sa)
uniquely determines the next player move. Formally, an innocent strategy σ is called d-
delayed iff for every trace sab ∈ Tσ, either b is W, the player view V(sa) is locally innocent,
or V(sab) = t·(W·N)d·b for some t. The extra d-delays, not just a single delay, are needed for
obtaining the definability result (Section 6.3).

I Proposition 5. Let f : 1 →→→ A be a compact reliable strategy in GF . Then, for every
d ≥ 1, there is a compact d-delayed innocent strategy innd(f) : Var →→→ A in GF such that
(cellcode(ε); ηVar); innd(f) ' f .

We notice that factorization is modulo ', which ignores the extra WN moves introduced
during the factorization procedure.

CSL’13

590 A Fully Abstract Game Semantics for Parallelism with Non-Blocking Synchronization

6.3 Definability
The last step toward the full abstraction is the definability: We are obliged to show that
every strategy in a suitable strategy subclass is definable by an IApar term.

In the construction of IApar terms below, we need a general conditional expression case`,T :
nat × T` → T, where ` ≥ 0 and T is either nat, com, or par. This conditional expression
is an operationally conservative extension to the language, as it is defined by the following
IApar term:

λxx1 · · ·x`.
(
newvar v = 0 in

seq (assign v x) (if0 (deref v) then x1 else
(if0 (deref v)− 1 then x2 else · · · (if0 (deref v)− ` then x` else Ω) · · ·))

)
where Ω is the divergence at type T.

Due to the variable access operations being involved, however, the game interpretation
of case`,T contains extra WN moves in its traces: Given a natural number m less than ` as
its first argument, casek,T has m+ 1 accesses to the local variable v, leaving (W·N)m+1 in its
trace as the footprint. The extra WN moves are canceled by the aforementioned d-delayed
innocent strategy innd(σ), where d is a number larger than the maximum number of possible
opponent moves that immediately follow the same player view, i.e., max{#{ta′b′ | ta′b′ ∈
fun(σ)} | tab ∈ fun(σ)}.

In case some trace in the innocent strategy contains excess W·N sequences than those to
be canceled out, we let the term newvar v = 0 in assign v 0, denoted by touch hereafter,
cancel out the remaining ones. The term touch has the trace run·W·N·done, which witnesses
a single W·N sequence as the footprint of a single access to the local variable v. Further, for

brevity, we will write touchk for the command
k times︷ ︸︸ ︷

seq touch (seq touch · · · (seq touch skip) · · ·).
Let us show that any compact, d-delayed innocent, player bracketing strategy σ : [[T1]]×

· · ·× [[Tn]] →→→ [[T]], where d is a sufficiently large number as analyzed above, is definable by an
IApar term of the form x1 : T1, · · · , xn : Tn `M : T. We construct such a term by induction
on the size of view function fun(σ), where the base case is fun(σ) = {ε} that is trivially
definable by Ω. Below we will mostly concern par types and the extra WN moves. (We
will omit some details not concerning these extra complications. See [10] for the missing
details.)

We may assume that T is a base type. If otherwise, say, T = T′1 → · · · → T′m → T′ with T′

being a base type, we instead work on the isomorphic strategy on [[T1]]× · · · × [[Tn]]× [[T′1]]×
· · · × [[T′m]] →→→ [[T′]].

Here we consider solely the case T = par. The remaining cases T = nat, T = com, and
T = var are shown in almost the same way, except that, when T = var, we need to construct
a bad variable mkvar M N L with L being the term that simulates a CAS-like operation.

Suppose that ?·(W·N)d·qj ∈ fun(σ), where qj is a move from the arena N in particular
when Tj has the form T′1 → · · · → T′m → nat, with d being the sufficiently large num-
ber. We derive a class of substrategies from σ that separate out the threads of play in
[[Tj]] induced by the move qj , as follows. Let σi : [[T1]] × · · · × [[Tn]] →→→ [[par]] (i ≥ 0)
and σ′h : [[T1]] × · · · × [[Tn]] →→→ [[T′h]] (1 ≤ h ≤ m) be substrategies identified by view func-
tions fun(σi) = {?·s | ?·(W·N)d·qj ·i·s ∈ fun(σ)} and fun(〈〈〈σ′1, · · · , σ′m〉〉〉) = {s | ?·(W·N)d·qj ·s ∈
fun(σ), s contains no answer to qj}, respectively. By the compactness, there exists a nat-
ural number ` such that fun(σi) = {ε} for every i ≥ `. Since each substrategy is again a
compact, d-delayed innocent, player bracketing strategy that is strictly smaller than fun(σ),

S. Nishimura 591

by induction hypothesis, we have terms Mi and M ′h defining σi and σ′h, respectively, for
each i and h. Then the strategy σ is definable by the term:

case`,par (xjM ′1 · · ·M ′m) (seq touchd−1 M0) (seq touchd−2 M1) · · · (seq touchd−` M`−1).

The case the right-most base type in Tj being com or par is similarly defined by using seq
in place of case; The case for var is also similar, except that we need to additionally deal
with CAS operations.

When ?·W·N·p ∈ fun(σ) with p not being a move from [[Tj]]’s, the strategy σ is simply
definable by the term seq touch M , whereM is the defining term of the substrategy σ′ spec-
ified by fun(σi) = {?·p·s | ?·W·N·p·s ∈ fun(σ)}. When ?·

√
∈ fun(σ), we define substrategies

σj : [[T1]]× · · · × [[Tn]] →→→ Cj (1 ≤ j ≤ ζ) by view functions fun(σj) = {runj ·t | ?·
√
·runj ·t ∈

fun(σ)}. By induction hypothesis, we have a term Mi that defines σi for each i. Then the
strategy σ is definable by the term M1‖ · · · ‖Mζ .

The remaining case is that there exists ?·?′·
√′·
√
∈ fun(σ) where

√′ is a subquestioning
answer, which is derived from the par′ type in Tj of the form T′1 → · · · → T′m → par′.
Likewise above, we derive substrategies from σ. Let σi : [[T1]]× · · · × [[Tn]] →→→ C (1 ≤ i ≤ ζ)
and σ′h : [[T1]]× · · · × [[Tn]] →→→ [[T′h]] (1 ≤ h ≤ m) be substrategies identified by view functions
fun(σi) = {runi·s′ | ?·?′·

√′·
√
·runi·run′i·done′i·s′ ∈ fun(σ)} and fun(〈〈〈σ′1, · · · , σ′m〉〉〉) = {s′ |

?·?′·
√′·
√
·runj ·run′j ·s′ ∈ fun(σ), s′ contains no answer to run′j}, respectively. Again, by in-

duction hypothesis, we have terms Mi, and M ′j defining σi, and σ′j , respectively, for each i
and j. Then σ is definable by the term (xjM ′1 · · ·M ′m)�1 M1�2 M2 · · · �ζ Mζ .

I Theorem 6 (definability). Let σ : [[Γ]] →→→ [[T]] be a compact and player bracketing strategy in
GF (henceforth, it is also a player visible, subquestion-affine strategy.) Then, σ is definable
in IApar .

I Theorem 7 (Full abstraction). Suppose M and N are closed terms of type T. Then,
E [[M]] . E [[N]] iff M .m&m N .

7 Conclusion and Future Work

We have developed a full abstract game semantics for an Algol-like parallel language with a
non-blocking synchronization primitive CAS. Elaborating on the wait-notify game [20] in the
framework of Harmer’s game model for nondeterminism [10], we exploited the computational
structure of the Kleisli category induced by the extra W and N moves and thereby established
the full abstraction, in which we made a significant use of CAS operations.

Based on the full abstraction result, it would be beneficial to find a subset language
whose observational equality is decidable, as it would provide a mechanized method for
equivalence checking, as done in [6]. Further, though the present paper is limited to an
unfair thread scheduling policy specified by the particular strategy sched , more flexible
variants of scheduling policy (say, the Round-robin scheduling) would worth investigating.
This requires a game model for fair nondeterminism, which would provide a deeper insight
on parallel computation.

Acknowledgment. I would like to thank Shin-ya Katsumata for his valuable comments
and suggestions on an early draft of the paper. I am also grateful for reviewers for their
helpful comments. This work was supported by KAKENHI 24500014.

CSL’13

592 A Fully Abstract Game Semantics for Parallelism with Non-Blocking Synchronization

References

1 Samson Abramsky. Game semantics of idealized parallel Algol. Lecture given at the Newton
Institute, 1995.

2 Samson Abramsky, Kohei Honda, and Guy McCusker. A fully abstract game semantics for
general references. In 13th Annual IEEE Symposium on Logic in Computer Science, pages
334–344, 1998.

3 Samson Abramsky and Guy McCusker. Linearity, sharing and state: A fully abstract game
semantics for idealized Algol with active expressions. In P. W. O’Hearn and R. D. Tennent,
editors, Algol-like Languages, volume 2 of Progress in Theoretical Computer Science, pages
297–329. Birkhäuser, 1997.

4 Samson Abramsky and Guy McCusker. Game semantics. In H. Schwichtenberg and
U. Berger, editors, Computational Logic: Proceedings of the 1997 Marktoberdorf Summer
School, pages 1–56. Springer-Verlag, 1999.

5 Stephen Brookes. Full abstraction for a shared variable parallel language. In Proceedings
of 8th Annual IEEE Symposium on Logic in Computer Science, pages 98–109, 1993.

6 Dan R. Ghica and Guy McCusker. The regular-language semantics of second-order idealized
ALGOL. Theoretical Computer Science, 309(1–3):469–502, 2003.

7 Dan R. Ghica and Andrzej S. Murawski. Angelic semantics of fine-grained concurrency.
Annals of Pure and Applied Logic, 151(2-3):89–114, 2008.

8 Dan R. Ghica, Andrzej S. Murawski, and C.-H. Luke Ong. Syntactic control of concurrency.
Theoretical Computer Science, 350(2-3):234–251, 2006.

9 Russel Harmer and Guy McCusker. A fully abstract game semantics for finite nondetermin-
ism. In Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science,
pages 422–430, 1999.

10 Russell Harmer. Games and Full Abstraction for Nondeterministic Languages. PhD thesis,
University of London, 1999.

11 Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems, 13(1), 1991.

12 Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kauf-
mann, 2008.

13 J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for PCF: I, II, and III. Information
and Computation, 163(2):285–408, 2000.

14 James Laird. Full abstraction for functional languages with control. In 12th Annual IEEE
Symposium on Logic in Computer Science, pages 58–67, 1997.

15 James Laird. A fully abstract game semantics of local exceptions. In 16th Annual IEEE
Symposium on Logic in Computer Science, pages 105–114, 2001.

16 Guy McCusker. Games and Full Abstraction for a Functional Metalanguage with Recursive
Types. Distinguished Dissertations. Springer, 1998.

17 Gordon D. Plotkin. A powerdomain construction. In SIAM J. Comput., number 5 in 3,
pages 452–487, 1976.

18 John C. Reynolds. The essence of Algol. In Proceedings of the 1981 International Sympo-
sium on Algorithmic Languages, pages 345–372. North-Holland, 1981.

19 David A. Schmidt. Denotational Semantics: A Methodology for Language Development.
1986.

20 Keisuke Watanabe and Susumu Nishimura. May&must-equivalence of shared variable
parallel programs in game semantics. Information Processing Society of Japan Transac-
tions on Programming (PRO), 5(4):17–26, 2012. http://jlc.jst.go.jp/DN/JST.JSTAGE/
ipsjtrans/5.167.

http://jlc.jst.go.jp/DN/JST.JSTAGE/ipsjtrans/5.167
http://jlc.jst.go.jp/DN/JST.JSTAGE/ipsjtrans/5.167

S. Nishimura 593

Γ, x : T ` x : T Γ ` n : nat
Γ `M : nat Γ ` N : nat

Γ `M ? N : nat

Γ, x : T′ `M : T

Γ ` λxT′
.M : T′ → T

Γ `M1 : T′ → T Γ `M2 : T′

Γ `M1M2 : T
Γ `M : T→ T
Γ ` fixT M : T

Γ ` skip : com
Γ `M1 : com Γ `M2 : T T ∈ {nat, com, par}

Γ ` seq M1 M2 : T

Γ `M : nat Γ `M1 : T Γ `M2 : T T ∈ {nat, com, par}
Γ ` if0 M then M1 else M2 : T

Γ `M : var Γ ` N : nat
Γ ` assign M N : com

Γ `M : var
Γ ` deref M : nat

Γ ` L : var Γ `M : nat Γ ` N : nat
Γ ` cas L M N : nat

Γ `M : nat→ com Γ ` N : nat Γ ` L : nat→ nat→ nat
Γ ` mkvar M N L : var

Γ, v : var `M : T T ∈ {com, par}
Γ ` newvar v = n in M : T

Γ `M1 : nat Γ `M2 : nat
Γ `M1 or M2 : nat

Γ `M1 : com · · · Γ `Mζ : com
Γ `M1‖ · · · ‖Mζ : par

Γ ` P : par Γ `M : com
Γ ` P �j M : par

Figure 1 Typing rules.

A Typing Rules and Operational Semantics for IApar

The typing rules of IApar are given in Figure 1.
Let us write 〈s | v 7→ m〉 for a store that updates s to give the natural number m at v.

Let us also write M [N/x] for the term substitution, which replaces every free occurrence of
variable x in M with N , assuming the usual variable convention.

The reduction rules are given in Figure 2, relative to evaluation context. An evaluation
context E is a term with a single hole [] defined by the following grammar:

E ::= [] | E ? M | n ? E | EM | seq E M | if0 E then M else N | E�j M

| M1‖ · · · ‖Mj−1‖E‖Mj+1‖ · · · ‖Mζ .

We write E[M] for the term obtained by filling the hole in E with term M .
Here we notice that there are three term formations whose evaluation can be nonde-

terministic: M1 or M2, the erratic binary choice on natural numbers; M1 ‖ · · · ‖ Mζ ,
the choice of a single command out of ζ simultaneously running sequential commands;
(M1 ‖ · · · ‖ Mζ)�jM , which either extends the j-the thread’s execution by the command
M or executes just one out of ζ parallel threads a single step forward. The last nondeter-
minism, nevertheless, is neutral to the observational property, that is, the different reduced
terms can conflue even after further reductions. Indeed, they will be given the identical
game interpretation.

B Game Interpretation of Terms

The arenas corresponding to common base types found in Algol-like languages are given
below. (For notational convenience, let us we write λA for the labeling function whose

CSL’13

594 A Fully Abstract Game Semantics for Parallelism with Non-Blocking Synchronization

〈E[m ? n], s〉 −→ 〈E[n′], s〉, where n′ = m ? n 〈E[
(
λxT.M

)
N], s〉 −→ 〈E[M [N/x]], s〉

〈E[if0 0 then M else N], s〉 −→ 〈E[M], s〉 〈E[if0 n+ 1 then M else N], s〉 −→ 〈E[N], s〉
〈E[fix M], s〉 −→ 〈E[M(fix M)], s〉 〈E[seq skip M], s〉 −→ 〈E[M], s〉
〈E[assign v n, s〉] −→ 〈E[skip], 〈s | v 7→ n〉〉 〈E[deref v], s〉 −→ 〈E[s(v)], s〉
〈E[cas v m n], s〉 −→ 〈E[n], 〈s | v 7→ n〉〉, where s(v) = m

〈E[cas v m n], s〉 −→ 〈E[s(v)], s〉, where s(v) 6= m

〈E[assign (mkvar M N L) n], s〉 −→ 〈E[Mn], s〉 〈E[deref (mkvar M N L)], s〉 −→ 〈E[N], s〉
〈E[cas (mkvar M N L) m n], s〉 −→ 〈E[Lmn], s〉
〈E[M or N], s〉 −→ 〈E[M], s〉 〈E[M or N], s〉 −→ 〈E[N], s〉
〈E[newvar v = n in skip], s〉 −→ 〈E[skip], s〉
〈E[newvar v = n in (skip‖ · · · ‖skip)], s〉 −→ 〈E[skip‖ · · · ‖skip], s〉

〈M, 〈s | v 7→ n〉〉 −→ 〈M ′, s′〉
〈E[newvar v = n in M], s〉 −→ 〈E[newvar v = s′(v) in M ′], 〈s′ | v 7→ s(v)〉〉

〈E[(newvar v = n in P)�j M], s〉 −→ 〈E[newvar v = n in (P �j M)], s〉
〈E[(M1‖ · · · ‖Mj−1‖Mj‖Mj+1‖ · · · ‖Mζ)�j M], s〉

−→ 〈E[M1‖ · · · ‖Mj−1‖seq Mj M‖Mj+1‖ · · · ‖Mζ], s〉

Figure 2 Reduction rules.

opponent/player attribution is swapped, i.e., λOP
A (b) = O iff λOP

A (b) = P for every move b.)
The arena N = ((MN, <N), λN,`N) of natural numbers, whereMN = {q}∪{n | n ≥ 0},
λN(q) = (O,Q), λN(n) = (P,A) for every n, `N= {(q, q)} ∪ {(q, n) | n ≥ 0}.
The arena C = ((MC, <C), λC,`C) of commands, where MC = {run, done}, λC(run)=
(O,Q), λC(done) = (P,A), `C= {(run, run), (run, done)}.
The arena Var = ((MVar, <Var), λVar,`Var) of mutable variables, where MVar =
{rd, ok} ∪ {n | n ≥ 0} ∪ {wrn | n ≥ 0} ∪ {casm,n | m,n ≥ 0}, λVar(rd) = λVar(wrn) =
λVar(casm,n) = (O,Q) and λVar(ok) = λVar(n) = (P,A) for every m,n ≥ 0, and
`Var= {(rd, rd)}∪{(rd, n) | n ≥ 0}∪{(wrn, wrn), (wrn, ok) | n ≥ 0}∪{(casm,n, casm,n) |
m,n ≥ 0} ∪ {(casm,n, l) | l,m, n ≥ 0}.

We associate an arbitrary (but fixed) ordering to each of the arena moves above, leaving its
explicit definition unspecified.

The compound arenas A×B and A⇒ B are defined as follows. (Below, for any pairs of
functions f : S → U and g : T → U , we write [f, g] : S + T → U for the coproduct function,
where S + T stands for the disjoint sum of S and T .)

A product arena A×B is a triple ((MA×B , <A×B), λA×B ,`A×B), where MA×B = MA+
MB , λA×B = [λA, λB], and n `A×B m iff n `A m ∨ n `B m. The associated order
extends the union of orders <A ∪ <B with additional orderings a <A×B b for every
a ∈MA and b ∈MB .
An arrow arena A ⇒ B is a triple ((MA⇒B , <A⇒B), λA⇒B ,`A⇒B), where MA⇒B =
MA + MB , λA⇒B = [λA, λB], and n `A⇒B m iff n `B m ∨ (n 6= m ∧ n `A m) ∨ (n `B
n ∧m `A m). The associated order <A⇒B is the same as <A×B .

Fig. 3 gives the game interpretation of each IApar term Γ ` M : T, specified as a Kleisli
arrow [[Γ `M : T]] : [[Γ]] →→→ [[T]] in GF .

S. Nishimura 595

[[Γ, x : T ` x : T]] = π[[T]]

[[Γ ` λx :T .M : T′]] = Λ[[T]]([[Γ, x : T `M : T′]])
[[Γ `MN : T]] = 〈〈〈[[Γ `M : T′ → T]], [[Γ ` N : T′]]〉〉〉; ev[[T′]],[[T]]

[[Γ ` fixTM : T]] =
⊔
i

σi, where σ0 = ⊥ and σi+1 = 〈〈〈[[Γ `M : T→ T]], σi〉〉〉; ev[[T]],[[T]].

[[Γ ` n : nat]] = !!![[Γ]]; cnstn
[[Γ `M ?N : nat]] = 〈〈〈[[Γ `M]], [[Γ ` N]]〉〉〉; binop?
[[Γ ` skip : com]] = !!![[Γ]]; skip
[[Γ ` seq M1 M2 : T]] = 〈〈〈[[Γ `M1 : com]], [[Γ `M2 : T]]〉〉〉; seq[[T]]

[[Γ ` if0 M then M1 else M2 : T]] = 〈〈〈[[Γ `M : nat]], [[Γ `M1 : T]], [[Γ `M2 : T]]〉〉〉; cond [[T]]

[[Γ ` assign M N : com]] = 〈〈〈[[Γ `M]], [[Γ ` N]]〉〉〉; asgn
[[Γ ` deref M : nat]] = [[Γ `M]]; deref
[[Γ ` cas L M N : com]] = 〈〈〈[[Γ ` L]], [[Γ `M]], [[Γ ` N]]〉〉〉; cas
[[Γ ` mkvar M N L : var]] = 〈〈〈[[Γ `M]]; acpt, [[Γ ` N]], [[Γ ` L]]; cacpt〉〉〉

[[Γ ` newvar v = n in M : T]] = ST
(
〈id [[Γ]], ![[Γ]]; celln〉; WO ([[Γ, v : var `M : T]])

)
[[Γ `M1 or M2 : nat]] = 〈〈〈[[Γ `M1]], [[Γ `M2]]〉〉〉; choice
[[Γ `M1‖ · · · ‖Mζ : par]] = σζ , where σ0 = !!![[Γ]]; pskip and σi+1 = 〈〈〈σi, [[Γ `Mi+1 : com]]〉〉〉; conti+1.
[[Γ ` P �j M : par]] = 〈〈〈[[Γ ` P : par]], [[Γ `M : com]]〉〉〉; contj

Figure 3 The game interpretation of IApar terms.

The strategies printed in italic fonts in the figure are defined (by their longest well-opened
traces) as below.

cnstn : 1 →→→ N is defined by the trace set {qn}.
binop? : N′ ×N′′ →→→ N is defined by the trace set {qq′m′q′′n′′k | m ? n = k}.
skip : 1 →→→ C is defined by the trace set {run·done}.
seqA : C×A →→→ A is defined by the trace set {q·run·done·t | q·t ∈ TWO(idA)}.
deref : Var →→→ N is defined by the trace set {q·W·N·rd·n·n | n ≥ 0}.
cas : Var × N1 × N2 →→→ N is defined by the trace set {q·q1·m·q2·n·W·N·casm,n·k·k |
m,n, k ≥ 0}.
acpt : (N⇒ C) →→→ Var is defined by the trace set {wrn·run·q·n·done·ok | n ≥ 0}.
cacpt : (N1 ⇒ N2 ⇒ N) →→→ Var is defined by the trace set {casm,n·q·q1·m·q2·n·k·k |
m,n, k ≥ 0}.
choice : N1 ×N2 →→→ N is defined by the trace set {q·qi·n·n | i ∈ {1, 2}, n ≥ 0}.
pskip : 1 →→→ (C1 × · · · ×Cζ)⊥ is defined by the trace set {?

√
·runρ(1)·doneρ(1) · · · runρ(ζ)·

doneρ(ζ) | ρ : {1, . . . , ζ} 7→ {1, . . . , ζ} is a bijection }.
conti : (C′1 × · · · ×C′ζ)⊥ ×C →→→ (C1 × · · · ×Cζ)⊥ is specified by the traces {??′

√′√
s |

s ∈ T〈σ1,··· ,σζ〉}, where the trace of each σj : C′j×C →→→ Cj is defined by {runj ·run′j ·done′j ·
donej} if j 6= i and σi is defined by {runi·run′i·done′i·run·done·donei}.
celln : 1 → Var is the strategy defined by the set of causal traces whose initial value
is n. A trace in Var is called a causal trace, if every wrn move is immediately followed
by a move ok, and each rd or casm,n move is followed by a natural number stored in
the variable just after the corresponding operation is finished. The value stored in the
variable is determined by the last successful write: A successful write by n is identified

CSL’13

596 A Fully Abstract Game Semantics for Parallelism with Non-Blocking Synchronization

by a pair of successive moves, either wrn·ok of a write operation or casm,n·n of a CAS
operation.

The newvar v = n in M construct delimits the scope of variable v local to M and further
forces the causality induced by the order of accesses to v. Unless bound in newvar, v behaves
like a variable allocated in a volatile memory cell. We notice that, since every termM of type
com or par under a scope of a local variable is executed exactly once, it must be interpreted,
as done in [10], by a composition of well-opened strategy in WO ([[M]]) with a cell strategy
in G, written celln : 1→ Var, which comprises of causal traces whose initial value is n.

	Introduction
	The IApar Language
	Harmer's game for nondeterminism
	The Game for Parallelism
	Interleaving game plays
	Wait-notify games for shared variable access

	The Game Model and the Soundness
	Definability and Full Abstraction
	Reliable factorization
	Innocent factorization
	Definability

	Conclusion and Future Work
	Typing Rules and Operational Semantics for IApar
	Game Interpretation of Terms

