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Planar graphs, and more generally graphs embedded on surfaces, arise in applications
such as road map navigation and logistics, computational topology, graph drawing, and
image processing. There has recently been a growing interest in addressing combinatorial
optimization problems using algorithms that exploit embeddings on surfaces to achieve
provably higher-quality output or provably faster running times. New algorithmic techniques
have been discovered that yield dramatic improvements over previously known results. In
addition, results have been generalized to apply to other families of graphs: excluded-minor,
bounded-genus and bounded-treewidth graphs.

This Dagstuhl seminar brought together researchers who have been working in these
areas to present recent research results, consolidate and share understanding of the emerging
basic techniques, and collaborate to move past the current barriers.

Polynomial-time solvable problems. There is a long tradition of finding fast algorithms
for poly-time problems in planar graphs. In 1956, the first paper on maximum st-flow
addressed the case where the network is planar (and s and t are adjacent). In 1976, a
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linear-time algorithm was given for minimum spanning trees in planar graphs. In 1979,
the paper introducing generalized nested dissection gave a fast algorithm for shortest
paths in planar graphs with positive and negative lengths. The past couple of decades has
witnessed the discovery of fast algorithms for a wide range of polynomial-time problems
in planar graphs: variants of max flow, multicommodity flow, variants of shortest paths,
Gomory-Hu cut trees, global min-cut, girth, matching, and min-cost flow. It seems,
however, there is a long way yet to go; for many promising problems, no planarity-
exploiting algorithm is known or there is reason to believe faster algorithms can be
obtained.
Approximation schemes. Research on polynomial-time approximation schemes (PTAS)
for optimization problems in planar graphs goes back to the pioneering work of Lipton
and Tarjan (1977) and Baker (1983), who introduced linear-time algorithms for certain
problems in which the constraints were quite local, e.g. maximum-weight independent
set and minimum-weight dominating set. For many years, little progress was made on
problems with non-local constraints. In the mid-nineties, polynomial-time approximation
schemes were developed for the traveling-salesman problem (TSP) in planar graphs, but
in these the degree of the polynomial running time depended on the desired accuracy. A
decade later, a linear-time approximation scheme was found for TSP. Shortly afterwards,
the first polynomial time approximation schemes were found for problems, e.g. Steiner tree,
in which the solution was much smaller than the input graph. Since then approximation
schemes have been found for several other problems in planar graphs, such as two-
connected spanning subgraph, Steiner forest, survivable network design, k-terminal cut,
and k-center. Important new techniques have emerged, but we still lack fast approximation
schemes for many important problems (e.g. facility location). The area of approximation
schemes for planar graphs is ripe for further exploration.
Fixed-parameter tractable algorithms. Another way to cope with computational intract-
ability of some planar graph problems is through the lens of fixed-parameter tractability.
The theory of bidimensionality and algorithms exploiting tree decompositions of planar
graphs give a general methodology of dealing with planar problems. One way to obtain
fixed-parameter tractability results is to show that there is a polynomial-time prepro-
cessing algorithm that creates a “problem kernel” by reducing the size of the instance such
that it is bounded by a function of the parameter k. Research on kernelization for planar
graph problems has been a very active topic recently, culminating in a meta-theorem that
gives problem kernels for a wide range of problems (2009).

The scientific program of the seminar consisted of 24 talks. Five of these talks were longer
(60-90 minute) tutorials overviewing the three main areas of the seminar: Jeff Erickson (“Flows
in planar and surface graphs”) and Christian Wulff-Nilsen (“Separators in planar graphs
with applications”) covered polynomial-time algorithms; Philip Klein (“Some techniques
for approximation schemes on planar graphs”) covered approximation schemes; and Dániel
Marx (“The square-root phenomenon in planar graphs”) and Daniel Lokshtanov (“Kernels
for planar graph problems”) covered fixed-parameter tractability. One of the main goals
of the seminar was to encourage collaboration between the three communities, and these
well-received tutorials were very helpful by introducing the basics of each of these topics.
The rest of the talks were 25-minute presentations on recent research of the participants.

The time between lunch and the afternoon coffee break was left open for individual
discussions and collaborations in small groups. Two open-problem sessions were organized
(on Monday evening and Wednesday evening). Notes on the presented problems can be found
in this report.
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3 Overview of Talks

3.1 A polynomial-time approximation scheme for planar multiway cut
MohammadHossein Bateni (Google – New York, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Bateni, MohammadHossein; Hajiaghayi, Mohammad Taghi; Klein, Philip; Mathieu, Claire
Main reference M. Bateni, M. Hajiaghayi, P.N. Klein, C. Mathieu, “A Polynomial-time Approximation Scheme for

Planar Multiway Cut,” in Proc. of the 23rd Annual ACM-SIAM Symp. on Discrete Algorithms
(SODA’12), pp. 639–655, SIAM, 2012.

URL http://dl.acm.org/citation.cfm?id=2095116.2095170

Given an undirected graph with edge lengths and a subset of nodes (called the terminals),
the multiway cut (also called the multi-terminal cut) problem asks for a subset of edges,
with minimum total length, whose removal disconnects each terminal from all others. The
problem generalizes minimum s-t cut, but is NP-hard for planar graphs and APX-hard for
general graphs [2]. In this paper, we present a PTAS for multiway cut on planar graphs.

This work has been published in SODA [1].

References
1 MohammadHossein Bateni, MohammadTaghi Hajiaghayi, Philip N. Klein and Claire Math-

ieu. A polynomial-time approximation scheme for planar multiway cut. In SODA. SIAM,
Philadelphia, PA, USA, 2012.

2 E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou , P. D. Seymour, M. Yannakakis. The
Complexity of Multiterminal Cuts. SIAM Journal on Computing: 23, 864–894, 1994.

3.2 Triangulating planar graphs under constraints
Therese Biedl (University of Waterloo, CA)
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Main reference T. Biedl, “On triangulating k-outerplanar graphs,” arXiv:1310.1845v2 [cs.DM] , 2013.
URL http://arxiv.org/abs/1310.1845v2

Most planar graph drawing algorithms operate by first triangulating the planar graph. If
we want to use this approach, but draw the planar graph with approximately the optimal
height, then we’ll need to be careful about how we triangulate. It is easy to see that this can
be done without increasing the area-requirement (at least if we don’t insist on triangulating
the outerface): take an optimal drawing and triangulate it in the computational geometry
sense. But how can we find the edges to add without knowing the optimal drawing? This
remains open.

In this talk, I will present two results that are close, in that they maintain some graph
parameters that are closely related to the optimal height of a planar drawing. Namely, I will
show how to triangulate a planar graph such that the outer-planarity remains (roughly) the
same, and I will show how to triangulate a planar graph such that the pathwidth remains
(asymptotically) the same.
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3.3 The ball cover problem
Glencora Borradaile (Oregon State University, US)
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Joint work of Borradaile, Glencora; Chambers, Erin

A recent result of Chepoi, Estellon and Vaxes [Disc. Comp. Geom. ‘07] states that any
planar graph of diameter at most 2R can be covered by a constant number of balls of size R;
put another way, there are a constant-sized subset of vertices within which every other vertex
is distance half the diameter. We generalize this result to graphs embedded on surfaces
of fixed genus with a fixed number of apices, making progress toward the conjecture that
graphs excluding a fixed minor can also be covered by a constant number of balls. To do
so, we develop two tools which may be of independent interest. The first gives a bound
on the density of graphs drawn on a surface of genus g having a limit on the number of
pairwise-crossing edges. The second bounds the size of a non-contractible cycle in terms of
the Euclidean norm of the degree sequence of a graph embedded on the surface.

3.4 Parameterized complexity of 1-planarity
Sergio Cabello (University of Ljubljana, SI)

License Creative Commons BY 3.0 Unported license
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Joint work of M. J. Bannister; Cabello, Sergio; D. Eppstein
Main reference M. J. Bannister, S. Cabello, D. Eppstein, “Parameterized complexity of 1-planarity,” in Proc. of

the 13th Int’l Symp. on Algorithms and Data Structures (WADS’13), LNCS, Vol. 8037, pp. 97–108,
Springer, 2013; also available as pre-print as arXiv:1304.5591v1 [cs.DS].

URL http://dx.doi.org/10.1007/978-3-642-40104-6_9
URL http://arxiv.org/abs/1304.5591v1

We consider the problem of finding a 1-planar drawing for a general graph, where a 1-planar
drawing is a drawing in which each edge participates in at most one crossing. Since this
problem is known to be NP-hard we investigate the parameterized complexity of the problem
with respect to the vertex cover number, tree-depth, and cyclomatic number. For these
parameters we construct fixed-parameter tractable algorithms. However, the problem remains
NP-complete for graphs of bounded bandwidth, pathwidth, or treewidth.

3.5 Multiple source shortest paths in embedded graphs
Erin Moriarty Wolf Chambers (St. Louis University, US)

License Creative Commons BY 3.0 Unported license
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Let G be a graph with non-negative edge lengths, embedded on an orientable surface of genus
g, and let f be an arbitrary face of G. We describe an algorithm to preprocess the graph in
O(gn logn) time, so that the shortest-path distance from any vertex on the boundary of f
to any other vertex in G can be retrieved in O(logn) time. Our result directly generalizes
the O(n logn)-time algorithm of Klein [Proc. SODA 2005] for multiple-source shortest paths
in planar graphs. Intuitively, our preprocessing algorithm maintains a shortest-path tree as
its source point moves continuously around the boundary of f . As an application of our
algorithm, we describe algorithms to compute a shortest non-contractible or non-separating
cycle in G in O(g2n logn) time.
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3.6 Catalan structures & embedded dynamic programming – a survey
Frederic Dorn (SINTEF – Trondheim, NO)

License Creative Commons BY 3.0 Unported license
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Joint work of Dorn, Frederic; Fomin, Fedor; Penninkx, Eelko; Bodlaender, Hans; Thilikos, Dimitrios
Main reference F. Dorn, E. Penninkx, H. L. Bodlaender, F.V. Fomin, “Efficient Exact Algorithms on Planar

Graphs: Exploiting Sphere Cut Decompositions,” Algorithmica 58(3):790–810, 2010.
URL http://dx.doi.org/10.1007/s00453-009-9296-1

Main reference F. Dorn, “Planar Subgraph Isomorphism Revisited,” in Proc. of the 27th Int’l Symp. on
Theoretical Aspects of Computer Science (STACS’10), LIPIcs, Vol. 5, pp. 263–274, Dagstuhl
Publishing, 2010.

URL http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2460

The topic of this talk is a survey on tools for solving NP-hard planar graph problems exactly.
For basic problems such as Planar Vertex Cover a commonly used exact algorithm goes
as follows: find a structure of the input graph with small separators which are used to do
some Myhill-Nerode equivalence class type of dynamic programming. Planarity only plays a
role for finding such structure, typically tree- or branch-decompositions, and for proving the
bounded separator size. Sphere-cut decompositions represent a novel tool that allows one
to do dynamic programming which explicitly exploits planarity. The small separators are
connected by simple, closed curves in the plane and thereby obtaining a circular order of the
separator vertices. For problems like Planar Longest Cycle, where the solution intersects the
separator as a set non-crossing paths, one can bound the number of equivalent solutions by
the Catalan numbers. Embedded dynamic programming goes one step further. For problems
such as Planar Subgraph Isomorphism one looks at how a separator curve may intersect the
pattern. The latter problem for patterns of size k and input graphs with n vertices may be
solved in solved in time 2O(k)n.

3.7 Node-weighted network design in planar and minor-free graphs
Alina Ene (Princeton University, US and University of Warwick, GB)

License Creative Commons BY 3.0 Unported license
© Alina Ene

Joint work of Chekuri, Chandra; Ene, Alina; Vakilian, Ali
Main reference C. Chekuri, A. Ene, A. Vakilian, “Node-weighted network design in planar and minor-closed

families of graphs,” in Proc. of the 39th Int’l Colloquium on Automata, Languages, and
Programming (ICALP’12), Part I, LNCS, Vol. 7391, pp. 206–217, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-31594-7_18

We consider node-weighted network design problems in planar graphs. In particular, we focus
on the survivable network design problem (SNDP). The input consists of a node-weighted
undirected graph G and connectivity requirements r(uv) for each pair of nodes uv. The goal
is to find a minimum weight subgraph H of G such that, for each pair uv of nodes, H contains
r(uv) edge-disjoint paths between u and v. In this talk, we describe an O(k)-approximation
algorithm for the problem when the graph is planar; here k is the maximum requirement
of a pair. This improves the O(k logn)-approximation known for node-weighted SNDP in
general graphs [Nutov ’10].
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3.8 Minimum cuts and maximum flows in planar and surface graphs
Jeff Erickson (University of Illinois – Urbana Champaign, US)

License Creative Commons BY 3.0 Unported license
© Jeff Erickson

This talk is a survey of the state of the art for the classical minimum cut and maximum flow
problems for planar and surface-embedded graphs.

3.9 Online node-weighted Steiner forest in planar graphs and
extensions

MohammadTaghi Hajiaghayi (University of Maryland, US)

License Creative Commons BY 3.0 Unported license
© MohammadTaghi Hajiaghayi

Consider a graph G = (V,E) with a weight value w(v) associated with each vertex v. A
demand is a pair of vertices (s, t). A subgraph H satisfies the demand if s and t are connected
in H. In the (offline) node-weighted Steiner forest problem, given a set of demands the goal
is to find the minimum-weight subgraph H which satisfies all demands. In the online variant,
the demands arrive one by one and we need to satisfy each demand immediately; without
knowing the future demands.

In the online variant of the problem, we give a randomized O(log3(n))-competitive
algorithm. The competitive ratio is tight to a logarithmic factor. This result generalizes
the recent result of Naor, Panigrahi, and Singh for the Steiner tree problem, thus answering
one of their open problems. When restricted to planar graphs (and more generally graphs
excluding a fixed minor) we give a deterministic primal-dual algorithm with a logarithmic
competitive ratio which is tight to a constant factor.

3.10 Some techniques for approximation schemes in planar graphs
Philip N. Klein (Brown University, US)

License Creative Commons BY 3.0 Unported license
© Philip N. Klein

An approximation scheme for an optimization problem gives a (1 + ε)-approximation al-
gorithm for every ε > 0. I survey some techniques for obtaining approximation schemes for
optimization problems in planar graph. I briefly illustrate Baker’s framework in addressing
vertex cover. I then turn to the traveling salesman problem (TSP) in planar graphs with
edge-weights. I discuss a framework in which one can obtain a linear-time approximation
scheme for TSP. The framework has been used to obtain approximation schemes for a variety
of problems. The key step is computing a spanner designed for the specific optimization
problem. I outline the spanner construction for TSP and for Steiner tree, and finish with a
few words on the tools needed to extend the Steiner tree result to Steiner forest.

References
1 Brenda S. Baker. Approximation algorithms for NP-complete problems on planar graphs.

J. Assoc. Comput. Mach. 41:153–180, 1994.
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3.11 All-or-nothing multicommodity flow problem with bounded
fractionality in planar graphs

Yusuke Kobayashi (University of Tokyo, JP)
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We study the following all-or-nothing multicommodity flow problem in planar graphs.
Input: A graph G with n vertices and k pairs of vertices (s1, t1), (s2, t2), . . . , (sk, tk) in G.
Find: A largest subset W of {1, . . . , k} such that for every i in W , we can send one unit

of flow between si and ti.
This problem is different from the well-known maximum edge-disjoint paths problem

in that we do not require integral flows for the pairs. This problem is APX-hard even for
trees, and a 2-approximation algorithm is known for trees. For general graphs, Chekuri et al.
(STOC’04) give a poly-logarithmic factor approximation algorithm and show that a natural
LP-relaxation has a poly-logarithmic integrality gap. This result is in contrast with the
integrality gap Ω(

√
n) for the maximum edge-disjoint paths problem.

Our main result considerably strengthens this result when an input graph is planar.
Namely, for the all-or-nothing multicommodity flow problem in planar graphs, we give an
O(1)-approximation algorithm and show that the integrality gap is O(1). In particular, in
polynomial time, we can find an index set W with |W | = Ω(OPT) and eight si-ti paths for
each i ∈W such that each edge is used at most eight times in these paths (with multiplicity),
where OPT is the optimal value of the LP-relaxation of the all-or-nothing multicommodity
flow problem.

Our result can be compared to the recent result by Séguin-Charbonneau and Shepherd
(FOCS’11) who give an O(1)-approximation algorithm for the maximum edge-disjoint paths
problem in planar graphs with congestion 2 (but not implied by this result).
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3.12 Prize-collecting network design in planar graphs
Nitish Korula (Google – New York, US)
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Nitish; Marx, Dániel

Main reference M. Bateni, C. Chekuri, A. Ene, M.T. Hagjiaghayi, N. Korula, D. Marx, “Prize-collecting Steiner
problems on planar graphs,” in Proc. of the 22nd ACM-SIAM Symp. on Discrete Algorithms
(SODA’11), pp. 1028–1049, SIAM, 2011.

URL http://dx.doi.org/10.1137/1.9781611973082.79

In this talk, based on work in [1], we describe reductions from Prize-Collecting Steiner
TSP (PCTSP), Prize-Collecting Stroll (PCS), Prize-Collecting Steiner Tree (PCST), Prize-
Collecting Steiner Forest (PCSF), and more generally Submodular Prize-Collecting Steiner
Forest (SPCSF), on planar graphs (and also on bounded-genus graphs) to the corresponding
problems on graphs of bounded treewidth. We show that for each of the mentioned problems,
an α-approximation algorithm for the problem on graphs of bounded treewidth implies an
(α+ ε)-approximation algorithm for the problem on planar graphs (and also bounded-genus
graphs), for any constant ε > 0. PCS, PCTSP, and PCST can be solved exactly on graphs
of bounded treewidth and hence we obtain a PTAS for these problems on planar graphs and
bounded-genus graphs.

In contrast, we show that PCSF is APX-Hard on series-parallel graphs, which are planar
graphs of treewidth at most 2. Apart from ruling out a PTAS for PCSF on planar graphs
and bounded-treewidth graphs, this result is also interesting since it gives the first provable
hardness separation between the approximability of a problem and its prize-collecting version.
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3.13 Kernels for planar graph problems
Daniel Lokshtanov (University of Bergen, NO)
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URL http://www.ii.uib.no/~daniello/papers/EfficientRepSet.pdf

Bollobás’ lemma and its generalization to matroids, due to Lovász, are classical results in
extremal combinatorics. In this talk we will discuss algorithmic variants of these lemmas,
and survey some recent applications in parameterized and exact algorithms.
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3.14 The square-root phenomenon in planar graphs
Dániel Marx (Hungarian Academy of Sciences, HU)
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Most of the classical NP-hard problems remain NP-hard when restricted to planar graphs, and
only exponential-time algorithms are known for the exact solution of these planar problems.
However, in many cases, the exponential-time algorithms on planar graphs are significantly
faster than the algorithms for general graphs: for example, 3-Coloring can be solved in
time 2O(

√
n) in an n-vertex planar graph, whereas only 2O(n)-time algorithms are known

for general graphs. For various planar problems, we often see a square-root appearing in
the running time of the best algorithms, e.g., the running time is often of the form 2O(

√
n),

nO(
√
k), or 2O(

√
k) ·n. By now, we have a good understanding of why this square-root appears.

On the algorithmic side, most of these algorithms rely on the notion of treewidth and its
relation to grid minors in planar graphs (but sometimes this connection is not obvious and
takes some work to exploit). On the lower bound side, under a complexity assumption called
Exponential Time Hypothesis (ETH), we can show that these algorithms are essentially best
possible, and therefore the square root has to appear in the running time.

3.15 Approximating k-center in planar graphs
Claire Mathieu (Brown University, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Eisenstat, David; Klein, Philip; Mathieu, Claire
Main reference D. Eisenstat, P.N. Klein, C. Mathieu, “Approximating k-center in planar graphs,” to appear in the

Proc. of the 25th Symp. on Discrete Algorithms (SODA’14), 2014.
URL http://www.davideisenstat.com/cv/EisenstatKM14.pdf

We consider variants of the metric k-center problem. Imagine that you must choose locations
for k rehouses in a city so as to minimize the maximum distance of a house from the nearest
rehouse. An instance is specified by a graph with arbitrary nonnegative edge lengths, a set of
vertices that can serve as rehouses (i.e., centers) and a set of vertices that represent houses.
For general graphs, this problem is exactly equivalent to the metric k-center problem, which
is APX-hard. We give a polynomial-time bicriteria approximation scheme when the input
graph is a planar graph [1].

References
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January 2014. To be published.
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3.16 Lower and upper bounds for long induced paths in 3-connected
planar graphs

Tamara Mchedlidze (KIT – Karlsruhe Institute of Technology, DE)
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Computer Science (WG’13), LNCS, Vol. 8165, pp. 213–224, Springer, 2013.
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Let G be a 3-connected planar graph with n vertices and let p(G) be the maximum number
of vertices of an induced subgraph of G that is a path. We prove that p(G) ≥ logn

12 log logn .
To demonstrate the tightness of this bound, we notice that the above inequality implies
p(G) ∈ Ω((log2 n)1−ε), where ε is any positive constant smaller than 1, and describe an
infinite family of 3-connected planar graphs for which p(G) ∈ O(logn).

As a byproduct of our research, we prove a result of independent interest: Every 3-
connected planar graph with n vertices contains an induced subgraph that is outerplanar and
connected and that contains at least 3

√
n vertices. The proofs in the paper are constructive

and give rise to O(n)-time algorithms.

3.17 Large independent sets in triange-free planar graphs
Matthias Mnich (Universität des Saarlandes, DE)
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Joint work of Dvorak, Zdenek; Mnich, Matthias
Main reference Z. Dvorak, M. Mnich, “Large Independent Sets in Triangle-Free Planar Graphs,”

arXiv:1311.2749v1 [cs.DM], 2013.
URL http://arxiv.org/abs/1311.2749v1

Every triangle-free planar graph on n vertices has an independent set of size at least (n+1)/3,
and this lower bound is tight. We give an algorithm that, given a triangle-free planar graph
G on n vertices and an integer k >= 0, decides whether G has an independent set of size
at least (n+ k)/3, in time 2O(

√
k)n. Thus, the problem is fixed-parameter tractable when

parameterized by k. Furthermore, as a corollary of the result used to prove the correctness
of the algorithm, we show that there exists ε > 0 such that every planar graph of girth at
least five on n vertices has an independent set of size at least n/(3− ε).
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3.18 Multiple-source multiple-sink maximum flow in directed planar
graphs in near-linear time

Shay Mozes (Interdisciplinary Center Herzliya, IL)
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Maximum Flow in Directed Planar Graphs in Near-Linear Time,” in Proc. of the IEEE 52nd
Annual Symp. on Foundations of Computer Science (FOCS’11), pp. 170–179, IEEE, 2011.

URL http://dx.doi.org/10.1109/FOCS.2011.73

In this talk I describe an O(n log3 n) algorithm that, given an n-node directed planar graph
with arc capacities, a set of source nodes, and a set of sink nodes, finds a maximum flow
from the sources to the sinks. I give an overview of the algorithm and go into the details of a
procedure to redistribute flow among nodes of a cycle separator. The procedure is based on
a representation of circulations via face potentials and efficiently computing shortest paths
using an extension of Fakcharoenphol and Rao’s fast Dijkstra on dense distance graphs.

3.19 Min-cost flow duality in planar networks
Yahav Nussbaum (Tel Aviv University, IL)

License Creative Commons BY 3.0 Unported license
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Joint work of Kaplan, Haim; Nussbaum, Yahav
Main reference H. Kaplan, Y. Nussbaum, “Min-Cost Flow Duality in Planar Networks,” arXiv:1306.6728v1

[cs.DM] , 2013.
URL http://arxiv.org/abs/1306.6728v1

In this talk we will discuss the minimum-cost flow problem in planar graphs.
We begin with a minimum-cost flow problem in a planar graph and modify the problem

using the following two transformations. First, we express the problem as a problem in the
geometric dual graph. Then, we find the linear programming dual of this problem. The result
is a minimum-cost flow problem in a related planar graph, such that the balance constraints
are defined by the costs of the original problem, and the costs are defined by the capacities
of the original problem.

As an application for our transformation, we show an O(n log2 n) time algorithm for the
minimum-cost flow problem in an n-vertex outerplanar graph, which takes advantage of the
simple structure of the dual graphs of outerplanar graphs.
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3.20 Network sparsification for Steiner problems on planar and
bounded-genus graphs

Marcin Pilipczuk (University of Warsaw, PL)
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We propose polynomial-time algorithms that sparsify planar and bounded-genus graphs while
preserving optimal solutions to Steiner problems. Our main contribution is a polynomial-time
algorithm that, given a graph G embedded on a surface of genus g and a designated face
f bounded by a simple cycle of length k, uncovers a set F ⊆ E(G) of size polynomial in g
and k that contains an optimal Steiner tree for any set of terminals that is a subset of the
vertices of f .

We apply this general theorem to prove that:
given a graph G embedded on a surface of genus g and a terminal set S ⊆ V (G), one can
in polynomial time find a set F ⊆ E(G) that contains an optimal Steiner tree T for S
and that has size polynomial in g and |E(T )|;
an analogous result holds for the Steiner Forest problem;
given a planar graph G and a terminal set S ⊆ V (G), one can in polynomial time find a
set F ⊆ E(G) that contains an optimal edge multiway cut C separating S (i.e., a cutset
that intersects any path with endpoints in different terminals from S) and that has size
polynomial in |C|.

In the language of parameterized complexity, these results imply the first polynomial kernels
for Steiner Tree and Steiner Forest on planar and bounded-genus graphs (parameterized
by the size of the tree and forest, respectively) and for Edge Multiway Cut on planar
graphs (parameterized by the size of the cutset).

3.21 The k-disjoint paths problem on directed planar graphs
Michał Pilipczuk (University of Bergen, NO)
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Computer Science (FOCS’13), pp. 197–206, IEEE CS, 2013; also available as pre-print as
arXiv:1304.4207v1 [cs.DM].
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It was shown in the 90s by Schrijver that the k-Disjoint Paths problem can be solved in
nO(k) time on directed planar graphs [1]. In this work we present an FPT algorithm for the
problem working in time f(k) ∗ nO(1) for a doubly-exponential function f .
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3.22 A near-optimal planarization algorithm
Saket Saurabh (The Institute of Mathematical Sciences – Chennai, IN)
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Joint work of Jansen, Bart M. P.; Lokshtanov, Daniel; Saurabh, Saket

The problem of testing whether a graph is planar has been studied for over half a century, and
is known to be solvable in O(n) time using a myriad of different approaches and techniques.
Robertson and Seymour established the existence of a cubic algorithm for the more general
problem of deciding whether an n-vertex graph can be made planar by at most k vertex
deletions, for every fixed k. Of the known algorithms for k-Vertex Planarization, the
algorithm of Marx and Schlotter (WG 2007, Algorithmica 2012) running in time 2kO(k3) · n2

achieves the best running time dependence on k. The algorithm of Kawarabayashi (FOCS
2009), running in time f(k)n for some f(k) ∈ Ω

(
2kΩ(k3)

)
that is not stated explicitly,

achieves the best dependence on n.
In this paper we present an algorithm for k-Vertex Planarization with running time

2O(k log k) ·n, significantly improving the running time dependence on k without compromising
the linear dependence on n. Our main technical contribution is a novel scheme to reduce
the treewidth of the input graph to O(k) in time 2O(k log k) · n. It combines new insights
into the structure of graphs that become planar after contracting a matching, with a Baker-
type subroutine that reduces the number of disjoint paths through planar parts of the
graph that are not affected by the sought solution. To solve the reduced instances we
formulate a dynamic programming algorithm for Weighted Vertex Planarization on
graphs of treewidth w with running time 2O(w logw) · n, thereby improving over previous
double-exponential algorithms.

While Kawarabayashi’s planarization algorithm relies heavily on deep results from the
graph minors project, our techniques are elementary and practically self-contained. We expect
them to be applicable to related edge-deletion and contraction variants of planarization
problems.

3.23 Approximation algorithms for Euler genus, and related problems
Anastasios Sidiropoulos (University of Illinois – Urbana Champaign, US)
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Joint work of Chekuri, Chandra; Sidiropoulos, Anastasios

The Euler genus of a graph is a fundamental and well-studied parameter in graph theory
and topology. Computing it has been shown to be NP-hard by [Thomassen ’89 & ’93], and
it is known to be fixed-parameter tractable. However, the approximability of the Euler
genus is wide open. While the existence of an O(1)-approximation is not ruled out, only an
O(
√

(n))-approximation [Chen, Kanchi, Kanevsky ’97] is known even in bounded degree
graphs. In this paper we give a polynomial-time algorithm which on input a bounded-degree
graph of Euler genus g, computes a drawing into a surface of Euler genus poly(g, log(n)).
Combined with the upper bound from [Chen, Kanchi, Kanevsky ’97], our result also implies a
O(n1/2−α)-approximation, for some constant α > 0. Using our algorithm for approximating
the Euler genus as a subroutine, we obtain, in a unified fashion, algorithms with approximation
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ratios of the form poly(OPT, log(n)) for several related problems on bounded degree graphs.
These include the problems of orientable genus, crossing number, and planar edge and vertex
deletion problems. Our algorithm and proof of correctness for the crossing number problem
is simpler compared to the long and difficult proof in the recent breakthrough by [Chuzhoy
2011], while essentially obtaining a qualitatively similar result. For planar edge and vertex
deletion problems our results are the first to obtain a bound of form poly(OPT, log(n)).

We also highlight some further applications of our results in the design of algorithms for
graphs with small genus. Many such algorithms require that a drawing of the graph is given
as part of the input. Our results imply that in several interesting cases, we can implement
such algorithms even when the drawing is unknown.

3.24 Separators in planar graphs with applications
Christian Wulff-Nilsen (University of Copenhagen, DK)
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For planar graphs, we have separators with small size and/or nice structural properties. I
present some of these and give applications to shortest path and min cut/max flow problems.
Minor-free and shallow minor-free graps also have good separators but we do not know how
to compute them in linear time. I will present faster separator algorithms for these graph
classes and give applications to shortest paths and maximum matching.

4 Open Problems

4.1 Planarization by vertex deletion
Proposed by Peter Rossmanith (rossmani@cs.rwth-aachen.de)

License Creative Commons BY 3.0 Unported license
© Peter Rossmanith

Given a graph with m edges, can it be made planar by deleting at most m/6 vertices?

4.2 All-pair distances on the infinite face
Proposed by Shay Mozes (smozes@idc.ac.il)

License Creative Commons BY 3.0 Unported license
© Shay Mozes

Here is a special case of multiple-source shortest paths: Given a planar graph, one can
compute all the shortest path trees rooted at vertices on the infinite face f∞, in total time
O(n logn) (Klein, Cabello-Chambers-Erickson), and there is a matching lower bound. Can
one compute all-pair distances between vertices of f∞ in time O(n+ |f∞|2)?
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4.3 Two-edge-connected planar subgraph
Proposed by Philip Klein (klein@brown.edu)
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Given a planar graph G with edge weights, find a subgraph H such that V (H) = V (G), H is
2-edge-connected, and the total weight of H is minimum. Does there exist an efficient PTAS,
that is, a PTAS with running time f(ε)nc, where c is an absolute constant (independent
of ε)?

The problem has linear-time PTAS (Grigni) in the special case when all edge weights
are 1, and there is a PTAS with running time nf(ε) for general weights. The problem is
APX-hard for general graphs.

A similar problem is two-edge-connected Steiner subgraph where V (H), instead of being
equal to V (G), must contain a specified set T of terminal vertices. Is there a PTAS?

4.4 Euclidean multiway cut with unit disks
Proposed by Sergio Cabello (sergio.cabello@fmf.uni-lj.si)

License Creative Commons BY 3.0 Unported license
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Given k points s1s2, . . . sk in the Euclidean plane, and a collection of unit disks (none of
which contains any si), find a minimum cardinality set of disks that separates every si from
every sj . Is there a PTAS?

The problem is NP-hard and has a constant factor approximation. In the special case
where k = 2, the problem is in P . In the generalization where disks have weights, is there a
constant factor approximation? In the variant where the goal is to separate s1 from every si
for i 6= 1, is the problem FPT?

4.5 Minimum stretch shape shifting
Proposed by Erin Chambers (echambe5@slu.edu)

License Creative Commons BY 3.0 Unported license
© Erin Chambers

Given an unweighted triangulated planar graph and two curves ` and r, “morph” ` into r
by a sequence of elementary moves while minimizing the length of the longest intermediate
curve. There are two types of elementary moves: either replace one edge of a triangle t by
the other two edges of t, or vice versa, or, when the curve goes through a vertex x, insert
(x, y), (y, x) into the curve, where {x, y} is an edge.

A logarithmic approximation is known by divide-and-conquer using a shortest path, even
if the edges have weights. It is not known whether the problem is in NP, nor whether it is
NP-hard. In the unweighted triangulation case it is also not known whether the optimal
sequence is monotonic, that is, never traverses the same triangle twice. (There is an example
where the motion is not purely monotonic, but it is in a graph with appropriate weights.)
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4.6 Vertex-capacitated max flow in directed planar graphs
Proposed by Jeff Erickson (jeffe@illinois.edu)

License Creative Commons BY 3.0 Unported license
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Here is a table showing best known strongly-polynomial running times for some variants of

max flow in directed planar graphs:
source s, sink t sources s, s′, sink t

edge capacities O(n log n) O(n log n)
vertex capacities O(n log n) O(n2 log n)

The top-right variant can be addressed by first finding a max st-flow and then finding
a max s′t-flow in the residual graph. The bottom-left variant can be addressed by using a
reduction from vertex-capacities to edge-capacities.

For the fourth variant, there is no planarity-exploiting algorithm known!
1. Cannot use the reduction because it leads to violation at one vertex.
2. Cannot use the residual graph because there isn’t a residual graph with respect to vertex

capacities.

4.7 k-minimum spanning tree problem
Proposed by Alina Ene (aene@cs.princeton.edu)

License Creative Commons BY 3.0 Unported license
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input: undirected edge-weighted graph, integer k
output: subgraph tree T with at least k vertices
goal: minimize the weight of the tree

In general graphs, this is SNP-hard, and there is a 2-approximation algorithm due to Garg,
using primal-dual techniques. There exists a PTAS for the Euclidean case. What happens
in planar graphs? Is there a PTAS? Is the problem APX-hard? Indications are that the
spanner approach will not work.

4.8 Prize-collecting Steiner forest
Proposed by Alina Ene (aene@cs.princeton.edu)

License Creative Commons BY 3.0 Unported license
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Prize-collecting Steiner forest is APX-hard in series-parallel graphs.
The best approximation we have for bounded treewidth is one for general graphs (the ap-

proximation ratio is 2.54). Can we do better? If so, it would yield an improved approximation
ratio for planar graphs as well.
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4.9 Achieving subexponential time for several parameterized problems
in planar graphs

Proposed by Marcin Pilipczuk (malcin@mimuw.edu.pl)

License Creative Commons BY 3.0 Unported license
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1. directed k-path
2. weighted (undirected) k-path: path on k vertices of minimum weight
3. Exact k-cycle
4. Steiner tree parameterized by number of terminals
5. k-MSR parameterized by k
6. Subgraph isomorphism parameterized by size of subgraph
All but the fourth can be solved in (1 + ε)knε−2 so we don’t expect a ETH lower bound.

They should have running times of the form 2
√
kpolylog knc but it would be interesting to

have 2o(k)nc.

For (undirected) planar disjoint paths, the bound is f(k) · poly where f(k) is triply
exponential in k. Can we get 2poly k · poly?
Finding an independent set of size m

4 + k – is this fixed-parameter tractable?
Kernels for feedback vertex set, dominating set. Can the dependence of the kernel size
on k be reduced, from around 100k to, say, 10k?
Vertex cover. There is a 2k-vertex kernel. It is believed that one cannot do better because
it might imply a better approximation than 2, which we don’t expect. But what about
planar graphs?
k-vertex deletion to get a planar graph, or, more generally, to get a graph that excludes
a fixed graph H as a subgraph. Hitting all minors leads to a bound that is doubly
exponential in treewidth. Can we get a bound of 2poly tw · poly(input graph)?

4.10 Recognizing map graphs
Proposed by Daniel Lokshtanov (daniello@ii.uib.no)

License Creative Commons BY 3.0 Unported license
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A map graph derives from a modified notion of planarity in which two (connected) regions of
a map are considered adjacent when they share a point of their boundaries (not an edge, as
standard planarity requires) (Chen, Grigni, Papadimitriou, STOC’98). How quickly can we
recognize them? Thorup has n≥120. Can O(n10) be achieved?

4.11 Planar local TSP
Proposed by Rolf Niedermeier (rolf.niedermeier@tu-berlin.de)

License Creative Commons BY 3.0 Unported license
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input: edge-weighted planar graph, Hamilton cycle C, given by a permutation π of the
vertices, integer k ≥ 0
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output: Does there exist a permutation π′ such that λ(π, π′) ≤ k and such that π′ gives a
shorter tour?

Here λ is a funtion measuring distance between permutations. There are two versions of λ
that are the same up to a factor of 2:

number of edges in symmetric difference
number of reversals

For λ =number of swaps, the problem is known to be FPT.

4.12 Subgraph isomorphism in planar graphs with a twist
Proposed by Dániel Marx (dmarx@cs.bme.hu)

License Creative Commons BY 3.0 Unported license
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Testing whether H is isomorphic to a subgraph of G, where the parameter k is the difference
|E(G)| − |E(H)|. Is this problem FPT?

For the parameter being zero, the problem is isomorphism, which is solvable in polynomial
time.

Can easily achieve nkpoly (n). If H is also 3-connected, the problem is FPT.

4.13 Mincost flow in planar graphs
Proposed by Jeff Erickson (jeffe@illinois.edu)

License Creative Commons BY 3.0 Unported license
© Jeff Erickson

Every vertex has a supply value (could be negative or zero).
Every arc has a capacity and a cost.

Assign a flow value to every arc such that net flow out of a vertex equals the supply of the
vertex. Flow values are nonnegative but no more than capacity.

Goal: minimize cost.

Without loss of generality, can assume each vertex’s supply is zero , which yields the
problem min-cost circulation.
Alternatively, can assume capacities are infinite, which yields the transshipment problem.

Can you give an algorithm whose running time is strongly polynomial-time and beats
O(n2 logn)?

If maximum cost is O(1) or or max capacity is O(1), can achieve O(n1.5) time (Cornelsen
and Karrenbauer; Cornelsen, Karrenbauer, Li).
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