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Abstract
Symmetry of information states that C(x) + C(y|x) = C(x, y) + O(logC(x)). In [3] an online
variant of Kolmogorov complexity is introduced and we show that a similar relation does not
hold. Let the even (online Kolmogorov) complexity of an n-bitstring x1x2 . . . xn be the length of
a shortest program that computes x2 on input x1, computes x4 on input x1x2x3, etc; and similar
for odd complexity. We show that for all n there exists an n-bit x such that both odd and even
complexity are almost as large as the Kolmogorov complexity of the whole string. Moreover,
flipping odd and even bits to obtain a sequence x2x1x4x3 . . . , decreases the sum of odd and even
complexity to C(x). Our result is related to the problem of inferrence of causality in timeseries.
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1 Introduction

Imagine two people want to perform a two-person theater play. First suppose that the play
consists of only two independent monologues each one performed by one player. Before
performing, the players must memorize their part of the play, and the total studying effort
for the two players together can be assumed to be equal to the effort for one person to study
the whole script.

Now imagine a play consisting of a large dialogue where both players alternate lines.
Each player only needs to study their half of the lines, and it is sufficient to remember each
line only after hearing the last lines of the other player. Thus each player needs only to
remember their incremental amount of information in his lines, and this suggests the total
studying effort might be close to the effort for one person to study the whole script.

However, it often happens that after studying only his own lines, an actor can reproduce
the whole piece. Sometimes actors just study the whole piece. This suggests that studying
each half of the lines can be as hard as studying everything. In other words, the total effort
of both players together might be close to twice the effort of studying the full manuscript.

Can we interpret this example in terms of Shannon information theory? In the first case, let
a theater play be modeled by a probability density function P (X,Y ) where X and Y represent
the two monologues. Symmetry of information states that H(X) +H(Y |X) = H(X,Y ), i.e.
the information in the first part plus the new information in the second part equals the total
information. This equality is exact and can be extended to the interactive case where a
similar additivity property remains valid, and this contrasts to the story above.

An absolute measure of information in a string is given by its Kolmogorov complexity,
which is the minimal length of a program on a universal Turing machine that prints the string.

© Bruno Bauwens;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 125–136

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.125
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


126 Asymmetry of online Kolmogorov complexity

See section 2 for formal definitions. Symmetry of information for Kolmogorov complexity
holds within logarithmic terms [19, 1]: C(x) + C(y|x) = C(x, y) +O(logC(x, y)).

For the interactive case, we need the online variant of Kolmogorov complexity introduced
in [3]. Let Cev(x) denote the length of a shortest program that computes x2 on input x1,
computes x4 on input x1x2x3, etc.; and similar for Codd(x). In the above example all xi

with odd i correspond to lines for the first player and the others to the second.
In Theorem 1, we show that there exist infinitely many bitstrings x, such that both Cev(x)

and Codd(x) are almost as big as C(x), in agreement with our example. In Theorem 2, we
show that there exists c > 0 such that (Cev +Codd −C)(x) ≥ c|x|, i.e. the online asymmetry
of information can be large compared to the length of x. Finally, we raise the question how
large (Cev +Codd −C)(x) can be in terms of |x|. A more direct upper bound is |x|/2 +O(1),
and one can raise the question whether this is tight. We show there exists a smaller one:
there exists c > 0 such that (Cev + Codd − C)(x) ≤ (1/2− c)|x| for all large x.

Our main result is stronger and is related to the problem of defining causality in time
series. Imagine there exists a complex system (e.g. a brain) and we make some measurements
in two parts of it. The measurements are represented by bitstrings x (from some part X of
the brain) and y (from some part Y ). We perform these measurements regularly and get a
sequence of pairs

(x1, y1), (x2, y2), . . .

We assume that both parts are communicating with each other, however, the time resolution
is not enough to decide whether yi is a reply to xi or vice versa. However, we might compare
the dialogue complexity Codd + Cev of

x1, y1, x2, y2, . . .

and

y1, x1, y2, x2, . . .

and (following Occam’s Razor principle) choose an ordering that makes the dialogue
complexity minimal. We show that these complexities can differ substantially.

Questions of causality are often raised in neurology and economics. The notions of Granger
causality and information transfer reflect the idea of “influence” and our result implies a
theoretical notion of asymmetry of influence that does not need to assume a time delay to
“transport” information between X and Y in contrast to existing definitions [6, 7, 15, 11].1

To understand why (current) practical algorithms need a time delay to make inferences
about the direction of influence, consider two variables X,Y with a joint probability density
function P (X,Y ). Using Shannon entropy, we can quantify the influence of X upon Y as
I(Y ;X) = H(Y ) − H(Y |X). Symmetry of information directly implies that this equals
the influence of Y upon X: H(X) −H(X|Y ) = H(X) + H(Y ) −H(X,Y ). In the online
setting, mutual information is replaced by information transfer, which is well studied in the
engineering literature [4, 15, 10, 14, 18, 11, 13]. For time delays k and l > k the information
transfer from X to Y is given by

H(Yn|Yn−l, . . . , Yn−1)−H(Yn|Yn−l, . . . , Yn−1, Xn−l, . . . Xn−k) ,

1 In the case of three or more timeseries there exist algorithms that infer directed information flows
between some variables in some special cases where enough conditional independence exist among the
variables, see [12, p. 19–20, 50]. In our example no independence is assumed.
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(if this term is dependent on n, the sum is taken). This quantification of causality coincides
with Granger causality [6, 7] if all involved conditional distributions are Gaussian.

If we incorporate a time delay k ≥ 1, the information transfers from X to Y and Y to X
can be different. On the other hand, for k = 0 they are always equal, and this is a corollary of
(the conditional version of) symmetry of information. In the offline case, a similar observation
holds for algorithmic mutual information: C(x)−C(x|y) = C(y)−C(y|x) +O(logC(x, y)).2
In the online setting, algorithmic mutual information can be generalized to algorithmic
information transfer. For an n-bit x and y the version without time delay is given by

IT (x→ y) = C(y)− Cev(x1y1 . . . xnyn) .

We show that for all ε > 0 there are infinitely many pairs (x, y) with |x| = |y| and C(x, y) ≥
Ω(|x|) such that IT (x→ y) ≤ εC(x, y) while IT (y → x) exceeds C(x, y) +O(1). Hence, in
contrast to Shannon information theory, significant online dependence of xi on yi might not
imply significant online dependence of yi on xi.

Warning: The example where influence (and causality) is asymmetric heavily uses that
shortest models are not computable. Decompression algorithms used in practice are always
total (or can be extended to total ones). On the other hand, if one wants to be practical, it
is natural to not only consider total algorithms but algorithms that terminate within some
reasonable time bound (say polynomial). On that level non-symmetry may reappear, even
for one pair of messages, which was not possible in our setting. For example suppose x1
represents a pair of large primes and y1 represents their product, then it is much easier to
produce first x1 and then y1 then vice versa.

Muchnik paradox is a result about online randomness [9] that is related to our observations.
Consider the example from [3]: in a tournament (say chess), a coin toss decides which player
starts the next game. Consider the sequence b1, w1, b2, w2, . . . of coin tosses and winners of
subsequent games. This sequence might not be random (the winner might depend on who
starts), but we would be surprised if the coin tossing depends on previous winners.

More precisely, a sequence is Martin-Löf random if no lower semicomputable martingale
succeeds on it. To define randomness for even bits, we consider martingales that only bet on
even bits, i.e. a martingale F satisfies F (x0) = F (x1) if |x0| is odd. The even bits of ω are
online random if no lower semicomputable martingale succeeds that only bets on even bits.
(In our example, coin tosses bi are unfair if a betting scheme makes us win on b1w1b2w2 . . .

while keeping the capital constant for “bets” on wi.) In a similar way randomness for odd
bits is defined. Muchnik showed that there exists a non-random sequence for which both odd
and even bits are online random. Hence, contributed information by the odd and even bits
does not “add up”. Muchnik’s paradox does not hold for the online version of computable
randomness (where martingales are restricted to computable ones), and is an artefact of the
non-computability of the considered martingales.

The article is organised as follows: the next section presents definitions and results. The
subsequent three sections are devoted to the proofs: first theorems are reformulated using
online semimeasures, and then lower bounds are proven. In the full version of the paper,
which is available on ArXiv, there are four appendices containing: a proof of the chain rule

2 However, logarithmic deviations can appear, if one considers prefix complexity, for example if y is chosen
to be a string consisting of K(x) zeros. In this case, it is known that for each n there exist n-bit x
such that K(K(x)) −K(K(x)|x) ≤ O(1) while K(x) −K(x|K(x)) ≥ logn − O(log logn). Moreover,
this small error was exploited in an earlier and more involved proof of Theorem 2 [2].

STACS’14



128 Asymmetry of online Kolmogorov complexity

for online complexity, the generalization of Theorem 1 for online computation with more
machines, a version of Theorem 2 with a larger linear constant, and a full proof of the upper
bound (Theorem 3).

2 Definitions and results

Kolmogorov complexity of a string x on an optimal machine U is the minimal length of
a program that computes x and halts. More precisely, associate with a Turing machine a
function U that maps pairs of strings to strings. The conditional Kolmogorov complexity is
given by

CU (x|y) = min {|p| : U(p, y) = x} .

This definition depends on U , but there exist a class of machines for which CU (x|y) is minimal
within an additive constant for all x and y. We fix such an optimal U , and drop this index,
see [8, 5] for details. If y is the empty string, we write C(x) in stead of C(x|y), and the
complexity of a pair C(x, y|z) is given by applying an injective computable pairing function
to x and y.

The even (online Kolmogorov) complexity [3] of a string z is

Cev(z) = min {|p| : U(p, z1 . . . zi−1) = zi for all i = 2, 4, . . . ,≤ |z|} .

Again, there exists a class of optimal machines U for which Cev is minimal within an
additive constant and we assume that U is such a machine. Note that C(x|y) − O(1) ≤
Cev(y1x1 . . . ynxn) ≤ C(x) + O(1) for n-bit x and y. Let Cev(w|v) be the conditional
variant. The chain rule for the concatenation vw of strings v and w holds: Cev(vw) =
Cev(v) + Cev(w|v) +O(log(|v|)), see the full version of the paper. In a similar way Codd(x)
is defined. A direct lower and upper bound for Codd + Cev are3

C(z)−O(log |z|) ≤ (Codd + Cev)(z) ≤ 2C(z) +O(1) .

The lower bound is almost tight, for example if all even bits of z are zero. Surprisingly, the
upper bound can also be almost tight and Codd +Cev can change significantly after a simple
permutation of the bits.

I Theorem 1. For every ε > 0 there exist δ > 0 and a sequence ω such that for large n

Codd(ω1 . . . ωn)
Cev(ω1 . . . ωn) ≥ (1− ε)C(ω1 . . . ωn) + δn .

Moreover, for all even n

Codd(ω2ω1 . . . ωnωn−1) = C(ω1 . . . ωn) +O(logn) (1)
Cev(ω2ω1 . . . ωnωn−1) ≤ O(1) . (2)

The first part implies

lim sup
|x|→∞

Codd(x) + Cev(x)
C(x) ≥ 2 ,

3 The O(log |x|) term could be decreased to O(1) if we compared online complexity with decision
complexity [17] as in [3]. However, plain and decision complexity differ by at most O(log |x|), and
because we focus on linear bounds, we do not use this rare variant of complexity.
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and by the upper bound Codd, Cev ≤ C + O(1), this supremum equals 2. Recall the
definition IT (x → y) = C(y) − Cev(x1y1 . . . xnyn) for x, y, n such that n = |x| = |y|. Let
x = ω1ω3 . . . ω2n−1 and y = ω2ω4 . . . ω2n, Theorem 1 implies

IT (x→ y) ≤ εC(x, y) +O(1)
IT (y → x) = C(x, y) +O(1) ,

(where C(x, y) ≥ δn−O(1)).4
Theorem 1 can be generalized to dialogues between k ≥ 2 machines, i.e. if k sources need

to perform a dialogue, it can happen that each source must contain almost full information
about the dialogue. Moreover, if the order is changed, the “contribution” of all except one
source becomes computable. Let the complexity of bits i mod k be given by

Ci mod k(x) = min {|p| : U(p, x1 . . . xj−1) = xj for all j = i, i+ k, . . . ,≤ |x|} .

For every k and ε > 0 there exist a δ > 0 and a sequence ω such that for all i ≤ k and large n

Ci mod k(ω1 . . . ωn) ≥ (1− ε)C(ω1 . . . ωn) + δn

Moreover, for ω̃ = ωkω1 . . . ωk−1 ω2kωk+1 . . . ω2k−1 . . . for all n, and i = 2 . . . k:

C1 mod k(ω̃1 . . . ω̃n) = C(ω1 . . . ωn) +O(logn)
Ci mod k(ω̃1 . . . ω̃n) ≤ O(1) .

In Theorem 1 the difference between C and Codd +Cev is linear in the length of the prefix
of ω. One might wonder how big this difference can be. A direct bound is |x|/2 + O(1).
Indeed, the odd complexity of x is at most C(x) hence

(Codd + Cev) (x)− C(x) = (Codd(x)− C(x)) + Cev(x) ≤ O(1) + |x|/2 +O(1) .

The next theorem shows that the difference can indeed be c|x| for a significant c.

I Theorem 2. There exist a sequence ω such that for all n

(Codd + Cev)(ω1 . . . ωn) ≥ n(log 4
3 )/2 + C(ω1 . . . ωn)−O(logn) .

Moreover, Equations (1) and (2) are satisfied.

The factor (log 4
3 )/2 can be further improved to (log 3

2 )/2 ≈ 0.292 at the cost of weakening (1)
and (2) (see full version of this paper). On the other hand, the upper bound 1/2 can not be
reached:

I Theorem 3. There exist β < 1
2 such that for large x

(Cev + Codd − C) (x) ≤ β|x| .

In summary, 1
2 log 3

2 ≤ lim sup (Cev+Codd−C)(x)
|x| < 1

2 , but the precise value of the lim sup is
unknown.

4 For the first we use C(y) ≤ C(ω1...2n) = C(x, y) up to O(1) terms. For the second C(x, y) ≥ C(x) ≥
Cev(y1x1 . . . ynxn) = C(x, y), thus C(x) = C(x, y), while Cev(y1x1 . . . ynxn) ≤ O(1). Also, note that
C(ω1...2n) must exceed δn because it exceeds Codd(ω1...2n) ≥ δn, all up to O(1) terms.

STACS’14
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3 Online semimeasures

We show that the problem of constructing strings where additivity of online complexity
is violated is equivalent to constructing lower semicomputable semimeasures that can not
be factorized into “odd” and “even” online lower semicomputable semimeasures. Before
defining such semimeasures and reformulating Theorems 1–3, we recall the algorithmic coding
theorem.

A (continuous) semimeasure P is a function from strings to [0, 1] such that P (x0)+P (x1) ≤
P (x) for all x. A real function f on strings is lower semicomputable if the set of all pairs (x, r)
of strings and rational numbers such that f(x) ≤ r is enumerable. There exist a maximal
lower semicomputable semimeasure M(x), i.e. a lower semicomputable that exceeds any
other such semimeasures within a constant factor: M(x) =

∑
i 2−iPi(x) for an enumeration

P1, P2, . . . of all such semimeasures (see [5, 8, 16] for details). The coding theorem [8,
Theorem 4.3.4] implies

log 1/M(x) = C(x) +O(logC(x)) .

An even (online) semimeasure [3] is a function from strings to [0, 1] such that for all x

i. P (x0) + P (x1) ≤ P (x) if |x0| is even,
ii. P (x0) = P (x1) = P (x) otherwise.

The coding theorem generalizes to the online setting.

I Theorem 4 ([3]). There exist maximal even (respectively odd) semimeasures. All such
semimeasures Mev (resp. Modd) satisfy

log 1/Mev(x) = Cev(x) +O (logCev(x)) .

Let ωk...l = ωk . . . ωl. Theorems 1, 2 and 3 follow from
I Proposition 5. For all ε > 0 and lower semicomputable odd and even online semimeasures
Qodd and Qev, there exist δ, a sequence ω, a lower semicomputable semimeasure P , and a
partial computable F such that for all n

(QoddQev)(ω1...n) ≤ (1− δ)nP (ω1...n)2−2ε

and F (ω1...2n, ω2n+2) = ω2n+1.
I Proposition 6. For all lower semicomputable odd and even online semimeasures Qodd
and Qev, there exist a sequence ω, a lower semicomputable semimeasure P , and a partial
computable F such that for all n

(QoddQev)(ω1...2n) ≤ (3/4)nP (ω1...2n)

and F (ω1...2n, ω2n+2) = ω2n+1.
I Proposition 7. For all lower semicomputable semimeasures Q, there exist α >

√
1/2 and a

family of odd and even semimeasures Podd,n and Pev,n uniformly lower-semicomputable in n,
such that for all x

Podd,|x|(x)Pev,|x|(x) ≥ α|x|Q(x)/4 . (3)

Proof that Proposition 7 implies Theorem 3. Choose Q = M in Proposition 7 and let for
a sufficiently small c > 0

Podd(x) = c

(
1
12Podd,1(x) + 1

22Podd,2(x) + . . .

)
.
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Figure 1 Decomposing semimeasures into odd and even ones.

Note that Podd is a lower semicomputable odd semimeasure and by universality Podd(x) ≤
O(Modd(x)). Hence − logModd(x) ≤ − logPodd,|x|(x) + O(log |x|). Similar for Pev(x). By
the online coding theorem we obtain up to terms O(log |x|),

(Codd + Cev)(x) ≤ − log
(
Podd,|x|(x)Pev,|x|(x)

)
≤ −|x| logα− logQ(x) .

Here, − logα < 1/2 and the last term is bounded by − logM(x) ≤ C(x) +O(log |x|). The
O(log |x|) can be removed for large |x| by choosing − logα < β < 1/2. J

Proof that Proposition 6 implies Theorem 2. Choosing Qodd = Modd and Qev = Mev, the
first part is immediate by the coding theorem and (2) follows directly from the definition of
even complexity. For any x we have

Codd(x)−O(1) ≤ C(x) ≤ Codd(x) + Cev(x) +O(log |x|)

We obtain (1) by applying Cev(x) ≤ O(1). J

Proof that Proposition 5 implies Theorem 1. For Theorem 1 we also apply Proposition 5
with Qodd = Modd and Qev = Mev to obtain for some δ′ > 0

(Codd + Cev)(ω1...2n) ≥ (2− 2ε)C(ω1...2n) + δ′n .

Notice that Codd ≤ C +O(1), hence Cev(ω1...2n) ≥ (1− 2ε)C(ω1...2n) + δ′n; and similar for
Codd. Conditions (1) and (2) follow in a similar way as above. J

The generalization of Theorem 1 mentioned in section 2 is shown in the full version. We
remark that P in these theorems can not be computable, this follows from the subsequent
lemma.

I Lemma 8. For every computable semimeasure P , there exist computable odd and even
online semimeasures Podd and Pev such that PoddPev = P .

Proof. Let ε be the empty string and let Podd(ε) = P (ε) and Pev(ε) = 1. Suppose that at
some node x we have defined Podd(x) and Pev(x) such that Podd(x)Pev(x) = P (x). Then
Podd and Pev are defined on 2-bit extensions of x according to Figure 1 for γ = P (x) and
α = Pev(x) [our assumption implies Podd(x) = γ/α]. Note that Podd and Pev are indeed
computable odd and even semimeasures and that PoddPev = P . J

STACS’14
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Figure 2 Game for Proposition 6 with n = 1.

4 Proofs of lower bounds

We start with Proposition 6, and repeat it for convenience.
I Proposition. For all lower semicomputable odd and even online semimeasures Qodd and Qev,
there exist a sequence ω, a lower semicomputable semimeasure P , and a partial computable F
such that for all n

(QoddQev)(ω1...2n) ≤ (3/4)nP (ω1...2n)

and F (ω1...2n, ω2n+2) = ω2n+1.
To develop some intuition, we first consider a game. The game is played between two

players (Alice and Bob) who alternate turns. Alice maintains values for P (x) on 2-bit x.
At each round she might pass or increase some values as long as

∑
{P (x) : |x| = 2} = 3/4.

Bob maintains lower semicomputable odd and even semimeasures Qodd(x) and Qev(x), see
figure 2. Also Bob might pass or increase some values as long as the conditions of the
definition of online semimeasure are satisfied, (hence max{p+ q, r+ s, u+ v} ≤ 1 in figure 2).
Alice wins if in the limit P (x) ≥ Qodd(x)Qev(x) holds for some x (i.e. if P (00) ≥ pr or
P (01) ≥ ps or P (10) ≥ qu or P (11) ≥ qv).

In this game Alice has a winning strategy. She starts by putting 1/4 at one leaf and zero at
the others, say P (00) = 1/4. Then she waits until Bob increases either Qodd or Qev above 1/2
at this leaf (thus Qodd(0) = Qodd(00) > 1/2 or Qev(00) > 1/2). If none of this happens, Alice
wins. Otherwise if Qodd(0) > 1/2, she plays P (11) = 1/2 and if Qev(00) > 1/2, she plays
P (01) = 1/2. In the first case Alice wins because Qodd(1) ≤ 1−Qodd(0) < 1/2 and hence
Qodd(1)Qev(11) < 1/2 and in the second case she wins because Qev(01) ≤ 1−Qev(00) < 1/2
and hence Qodd(0)Qev(01) < 1/2. Note that in both cases

∑
{P (x) : |x| = 2} = 1/2 + 1/4,

(and otherwise it is 1/4) and Alice’s condition is always satisfied. (Also note that the
second bit of x on which Alice wins is 1 if Qodd(0) > 1/2 or Qev(00) > 1/2. So for lower-
semicomputable Qodd and Qev, we can use this bit to determine which inequality was first
realized, and hence to compute the first bit of x. A similar observation will be used to
construct F in the proof below.)

To show the proposition, we need to concatenate strategies for the game above to strategies
for larger games. For this, it seems that the winning rule needs to be strengthened, and
this makes either the winning rule or the winning strategy for the small game complicated.
Therefore, in the more concise proof below, we gave a formulation without use of game
technique.
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Proof. We construct ω1...2n together with thresholds on, en inductively. Let o0 = e0 = 1.
For x of length 2n, consider the conditions Qodd(x0) > on/2 and Qev(x00) > en/2. We
fix some algorithm that enumerates Qodd and Qev from below and after each update tests
both conditions. Let Ox be the condition that Qodd(x0) > on/2 is true at some update and
Qev(x00) > en/2 did not appear at any update strictly before; and let Ex be the condition
that Qev(x00) > en/2 is true after some update but Qodd(x0) > on/2 is false at the current
update (and hence at any update before). Note that Ox and Ex cannot happen both. Let

(ω2n+1ω2n+2, on+1, en+1) =
(11, on/2, en) if Oω1...2n

happens,
(01, on, en/2) if Eω1...2n happens,
(00, on/2, en/2) otherwise.

By induction it follows that on ≥ Qodd(ω1...2n) and en ≥ Qev(ω1...2n). Indeed, this follows
directly for n = 0. For n ≥ 1, consider the case where Oω1...2n happens. Thus ω1...2n+2 =
ω1...2n+11 and

Qodd(ω1...2n1) ≤ Qodd(ω1...2n)−Qodd(ω1...2n0) ≤ on − on/2 = on/2 .

On the other hand, Qev(ω1...2n+2) ≤ Qev(ω1...2n) ≤ en = en+1. The case where Eω1...2n

happens is similar, and the last one is direct.
It remains to define F and P such that F (ω1...2n, ω2n+2) = ω2n+1 and

P (ω1...2n) = (4/3)nonen .

Note that ω2n+2 = 1 iff Oω1...2n or Eω1...2n happens, and knowing that one of the events
happens, we can decide which one and therefore also ω2n+1. Hence, given ω1...2n and ω2n+2
we can compute ω2n+1 and this procedure defines the partial computable function F .

To define P , observe that ω can be approximated from below: start with ω = 00 . . . , each
time Oω1...2n

(respectively Eω1...2n
) happens, change ω2nω2n+1 from 00 to 01 (respectively

to 11), let all subsequent bits be zero, and repeat the process. Hence, for all n and 2n-bit
x at most one pair (on, en) is defined which we denote as (ox, ex). Let P (x) be zero unless
(ox, ex) is defined in which case

P (x) = (4/3)|x|/2oxex .

Note that P is lower semicomputable and the equation above is satisfied. Also, P is a
semimeasure: P (ε) = (4/3)0 · 1 · 1 = 1, and in all three cases we have

∑
{oxbb′exbb′ : b, b′ ∈

{0, 1}} ≤ 3oxex/4 hence,
∑
{P (xbb′) : b, b′ ∈ {0, 1}} ≤ P (x). J

The proof of Proposition 5 follows the same structure.
I Proposition. For all ε > 0 and lower semicomputable odd and even online semimeasures
Qodd and Qev, there exist δ, a sequence ω, a lower semicomputable semimeasure P , and a
partial computable F such that for all n

(QoddQev)(ω1...n) ≤ (1− δ)nP (ω1...n)2−2ε

and F (ω1...2n, ω2n+2) = ω2n+1.

Proof. We first consider the following variant for the game above on strings of length two.
Alice should satisfy the weaker condition

∑
{P (x) : |x| = 2} ≤ 1− δ, where δ � ε will be

determined later. She wins if

(PoddPev)(x) ≤ (P (x))2−2ε

STACS’14
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for some x. The idea of the winning strategy is to start with a very small value somewhere,
say P (00) = δ. If ε = 0 then Bob could reply with Qodd(0) = Qev(00) = δ, (in fact he
could win by always choosing Qodd(x) = Qev(x) = P (x)). For ε > 0 and δ � ε one of the
online semimeasures should exceed δ1−ε = kδ for k = δ−ε. k can be arbitrarily large if
δ � ε is chosen sufficiently small. At his next move, (as before), Alice puts all his remaining
measure, i.e. 1− 2δ in a leaf that does not belong to a branch where the corresponding online
semimeasure is large. Note that 1− 2δ is close to 1 and taking a power 2 ≥ 2− 2ε we see that
Bob needs at least 1− 4δ in each online semimeasure, but he already used kδ in one of them.

More precisely, the winning strategy for Alice is to set P (00) = δ and wait until Qodd(0) >
δ1−ε or Qev(00) > δ1−ε. If these conditions are never satisfied, then Alice wins on x = 00.
Suppose at some moment Alice observes that the first condition holds, then she plays
P (11) = 1− 2δ, in the other case she plays P (01) = 1− 2δ. Afterwards she does not play
anymore. Note that

∑
{P (x) : |x| = 2} ≤ 1 − δ. We show that Alice wins. Assume that

Qodd(0) > δ1−ε (the other case is similar). We know that Qev(11) ≤ 1 hence if Alice does
not win, this implies Qodd(1) > (1− 2δ)2−2ε. This is lower bounded by (1− 2δ)2 ≥ 1− 4δ.
We choose δ = 2−2/ε. This implies

δ1−ε = 2−(2/ε)(1−ε) = 2−2/ε+2 = 4δ.

Hence Qodd(0) + Qodd(1) > 4δ + (1 − 4δ) = 1 and Bob would violate his restrictions.
Therefore Alice wins. For later use notice that in the first case our argument implies
Qodd(1) ≤ (1− 2δ)2−2ε.

In a similar way as before we adapt Alice’s strategy to an inductive construction of
ω and P : let Ox and Ex be defined as before using conditions Qodd(x0) > onδ

1−ε and
Qev(x00) > enδ

1−ε. Let β = (1− 2δ)2−2ε and let ω, on and en be given by

(ω2n+1ω2n+2, on+1, en+1) =
(11, onβ, en) if Oω1...2n

happens,
(01, on, enβ) if Eω1...2n happens,
(00, onδ

1−ε, enδ
1−ε) otherwise.

This implies on ≥ Qodd(ω1...2n) and en ≥ Qev(ω1...2n). F is defined and shown to satisfy the
condition in exactly the same way. It remains to construct P such that

(1− δ)nP (ω1...2n) = (onen)1/(2−2ε)
,

(the proposition follows after rescaling δ). In a similar way as before ox and ex are defined
and let

P (x) = (1− δ)−|x|/2(oxex)1/(2−2ε) .

To show that P is indeed a semimeasure observe that
∑
{P (xbb′) : b, b′ ∈ {0, 1}}

= (1− δ)−|x|/2−1
∑
{(oxbb′exbb′)1/(2−2ε) : b, b′ ∈ {0, 1}}

≤ (1− δ)−|x|/2−1
(
β1/(2−2ε) + δ

)
(oxex)1/(2−2ε)

,

and because β1/(2−2ε) = 1− 2δ this equals

= (1− δ)−|x|/2 (oxex)1/(2−2ε) = P (x) . J
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