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Abstract
Pseudo-repetitions are a natural generalisation of the classical notion of repetitions in sequences:
they are the repeated concatenation of a word and its encoding under a certain morphism or
antimorphism (anti-/morphism, for short). We approach the problem of deciding efficiently,
for a word w and a literal anti-/morphism f , whether w contains an instance of a given pattern
involving a variable x and its image under f , i.e., f(x). Our results generalise both the problem of
finding fixed repetitive structures (e.g., squares, cubes) inside a word and the problem of finding
palindromic structures inside a word. For instance, we can detect efficiently a factor of the form
xxRxxxR, or any other pattern of such type. We also address the problem of testing efficiently, in
the same setting, whether the word w contains an arbitrary pseudo-repetition of a given exponent.
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1 Introduction

A word is a repetition if it can be written as a repeated concatenation of one of its prefixes
to itself. A word w is a pseudo-repetition if it can be written as a repeated concatenation of
one of its prefixes t and its image f(t) under some morphic or antimorphic function f (for
short, an “anti-/morphism” f), thus w ∈ t{t, f(t)}+.

The concept of pseudo-repetitions (introduced in [4]) draws its original motivations from
two important biological concepts: tandem repeat, i.e., the consecutive repetition of the same
sequence of nucleotides, and the inverted repeat, i.e., a sequence of nucleotides whose reversed
complement (or, Watson-Crick complement) occurred already in the longer DNA sequence we
analyse, both occurrences (the original one and the complemented one) encoding, essentially,
the same genetic information. Noting that the Watson-Crick complement can be abstracted
as an antimorphic involution on the DNA-alphabet, pseudo-repetitions formalise generalised
tandem repeats, in which one sequence is followed by several consecutive occurrences of
either its copy or of its reversed complement.

Other situation in which one encounters pseudo-repetitions appears in musical theory.
The repetition of some fragment, in its initial form but also slightly modified (like the initial
fragment on a higher or lower pitch), are used to provide unity to a musical piece. For
instance, the ternary (song) form appears frequently: three consecutive musical fragments
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such that the first and third ones are identical, while the second one is constructed in order
to provide a contrast to the other two (and, sometimes, this can be seen as the image of the
other two parts under some simple anti-/morphism).

Note that both in biology and music, the function applied to obtain the pseudo-repetition
is structurally simple: it usually rewrites each letter (nucleotide or note) into another one (i.e.,
it is literal), and usually does not rewrite more letters into the same one (i.e., it is bijective).
Besides the two examples above, in which pseudo-repetitions occur, the concept seems to be
of intrinsic theoretical interest, as it generalises a combinatorics on words concept (that is,
repetitions) that is central both in theory and applications. If we consider palindromes as a
natural modification of squares, repetitive structures containing both normal occurrences of
some factor and mirrored occurrences of the same factor seem to be one of the most natural,
hence, interesting, concepts derived from the classical repetitions.

The results obtained so far on pseudo-repetitions were both of combinatorial [4, 12, 13] and
of algorithmic [6, 7, 14] nature. We continue here the study of algorithmic problems related to
this concept. More precisely, we study how efficiently can one decide, given an input word w,
a literal (in some cases, bijective) anti-/morphism f , and a pattern involving both a variable
x and its image under f , namely f(x), whether an input word contains as a factor an instance
of that pattern. The problem seems natural to us, both in the light of the combinatorial
questions on the avoidability of patterns under anti-/morphisms, raised in [13], as well as in
the respect that it generalises both the well-studied problems of efficiently deciding whether
a word contains k-repetitions or, alternatively, various palindromic structures.

The paper is structured as follows. We begin with a series of basic definitions, then we
overview our results and compare them to the existing literature, and conclude with two
technical sections, containing the proofs of our results.

Some Basic Concepts. For more detailed definitions we refer to [2].
Let V be a finite alphabet; V ∗ is the set of all words over V , and the empty word is

denoted by λ. The length of a word w ∈ V ∗ is denoted by |w|, while alph(w) denotes the set
of all letters that occur in w. In our problems, we assume that the letters of any word w of
length n are in fact integers from {1, . . . , n}; accordingly, w is a sequence of integers. This is
a common assumption in stringology (see, e.g., [8]).

If w = xuy, for w, x, u, y ∈ V ∗, then u is a factor of w, x is a prefix of w, and y is a suffix
of w. For 1 ≤ i ≤ j ≤ |w|, we denote by w[i] the symbol at position i in w and by w[i..j] the
factor w[i]w[i+ 1] · · ·w[j] of the word w. A word u occurs in w at position i if u is a prefix
of w[i..|w|]. The powers of a word w are defined recursively by w0 = λ and wn = wwn−1 for
n ≥ 1. A word w that is not a power of some other word is called primitive. If w is not
primitive, then there exists a unique primitive word u, called the primitive root of w, such
that w = un for some n ≥ 2. A period of a word w over V is a positive integer p such that
w[i] = w[j] for all i and j with i ≡ j (mod p); per(w) denotes the smallest period of w.

A function f : V ∗ → V ∗ is a morphism if f(xy) = f(x)f(y) for all x, y ∈ V ∗; f is an
antimorphism if f(xy) = f(y)f(x) for all x, y ∈ V ∗. To define an anti-/morphism it is
enough to define f(a), for all a ∈ V . We call f literal if |f(a)| = 1 for all a ∈ V . Let
f(V ) = {f(a) | a ∈ V }. We assume that any literal anti-/morphism f is given as the image
of the letters of V under f (in order, from 1 to |V |).

We say that a word w is an f-repetition with root t or, alternatively, an f -power with
root t, if w is in {t, f(t)}+, for a factor t of w. If w is not an f -power, then w is f -primitive.
For example, the word abcaab is primitive from the classical point of view (i.e., 1-primitive,
where 1 is the identical morphism) as well as g-primitive for the morphism g defined by



P. Gawrychowski, F. Manea, and D. Nowotka 339

g(a) = b, g(b) = a, g(c) = c. However, when considering the morphism f(a) = c, f(b) = a,
f(c) = b, we get that abcaab = ab f(ab) ab, thus, being an f -repetition with root ab.

For an anti-/morphism f : V ∗ → V ∗, a unary f -pattern p is an element of the set
{x, f(x)}∗ (i.e., a word over the alphabet having the letters x and f(x)); here x is called
variable and, if p ∈ {x, f(x)}k, we say that k is the length of p. An instance of the f -pattern
p is a word obtained by replacing in it the variable x by a word t ∈ V + and evaluating the
resulting expression in V ∗. For instance, if f is the identity antimorphism (i.e., f is (·)R, the
mirror image) then xf(x) = xxR is a pattern whose instances are all palindromes of even
length; if f is the identity morphism then xf(x) = x2 is a pattern whose instances are all
squares. We will only discuss the case of unary f -patterns, called patterns for brevity.

Finally, the computational model we use is the standard unit-cost RAM with logarithmic
word size. Also, all logarithms appearing here are in base 2.

2 The problems

In [6], the problem of identifying, given a word w and an anti-/morphism f , all the f -
repetitions (either of arbitrary or of given exponent) contained in w was efficiently solved.
The solutions and their time complexities depended on the properties of f , but, in all cases,
they were influenced by the fact that we needed to output all f -repetitions.

Here we approach two related problems. We are given a word w, an anti-/morphism f ,
just like before, but also a unary f -pattern p. We want to test whether w has as factor

an instance of the given pattern p (i.e., whether w is p-free). Further, in the same setting,
but given a number k instead of the pattern, we are interested in testing whether the word w
contains an f -repetition of exponent k, that is, a word of the form {t, f(t)}k. This task was
called in [1] the problem of testing pseudo-kth-power freeness. Compared to the first problem,
this one requires deciding whether w contains an instance of any pattern of length k.

The results we present deal with the cases when f is a literal morphism or antimorphism;
moreover, in part of the results we restrict f to being bijective. These cases seem to be
interesting as they cover exactly the classes of morphisms and antimorphisms that play
an important role in the literature: the classical mirror image of words, the antimorphic
involutions used in the initial papers on pseudo-repetitions [1, 4, 14] to model the DNA
Watson-Crick complementarity, or the anti-/morphic permutations used in [13] in the context
of avoiding pseudo-repetitions or in [12] to show generalised periodicity lemmas.

The two problems are defined formally in the following.
I Problem 1. Given w ∈ V +, |w| = n, f : V ∗ → V ∗ a literal anti-/morphism, and an
f -pattern p of length k, decide whether there exists an instance of p occurring in w.
I Problem 2. Given w ∈ V +, |w| = n, f : V ∗ → V ∗ a literal anti-/morphism, and an integer
k > 0, decide whether there exists a factor v of w with v ∈ {t, f(t)}k for some t ∈ V +.

Our results are the following. We first give, in Section 4, solutions to Problem 1 and 2
that run in O(nk2) time when f is both a literal morphism or a literal antimorphism. This is
especially interesting as it shows that Problem 1 can be solved in linear time for f -patterns
of fixed length (or Problem 2 for constant k). For instance, the occurrence of patterns having
length 2 (generalised squares) or 3 (cubes under literal anti-/morphisms), inside a word can
be tested in linear time. The solutions we present here rely both on several combinatorics
on words results and on the possibility of constructing efficient data structures for word
processing. It is worth noting that our approach begins similarly to that used in [11] to
detect classical repetitions; however, the arguments used further in our algorithms and proofs
are more general and required both a deeper analysis and novel techniques. Moreover, the
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tools we developed may have a broader range of applications. For instance, Lemmas 3, 4,
or 7, provide novel insight in the combinatorics of pseudo-repetitions, while Lemma 2 shows
how an extended Lempel-Ziv-like factorisation of a word can be efficiently computed, which
might be useful in, e.g., efficiently detecting inverted repeats in DNA sequences.

In Section 5, we consider the problems for f bijective. As already described, this case
played an important role in the existing theory and its motivations. In this setting we propose
new solutions for Problems 1 and 2, running in O(n logn) time. While being based on a
different approach than the previous ones, these solution have also the nice feature that they
are efficient even for larger values of k. Moreover, the solution of Problem 2 can be used to
compute the maximum k such that w contains an instance of a pattern of length k.

Before concluding this section, let us note that our results improve significantly the
results reported in [14], [1], and [6]. In [14] it was shown that factors of the form tk−1f(t) or
(tf(t))k (and symmetrical) can be detected in O(kn) time; in [1] these results were extended
to show that that pseudo-cube freeness can be tested in O(n2) time. Both these results
were developed for f an antimorphic involution and an alphabet of constant size. In [1],
within the same setting, an algorithm outputting all the pseudo-k-powers contained in a
word in O(n2 logn) time was reported, and used to test pseudo-kth-power freeness; a faster
algorithm finding all the pseudo-k-powers occurring in a word in time Θ(n2) was given in [6]
(for f literal, and working over integer alphabets, as here), but it was still slower than our
algorithms when used to test pseudo-kth-power freeness. For patterns without functional
dependencies, Problems 1 and 2 coincide, and can be solved in linear time (see, e.g., [11]).

3 Prerequisites

For a word u, |u| = n, over V ⊆ {1, . . . , n} we can build in O(n) time the suffix tree and
suffix array structures, as well as data structures allowing us to retrieve in constant time
the length of the longest common prefix of any two suffixes u[i..n] and u[j..n] of u, denoted
LCPu(i, j) (the subscript u is omitted when there is no danger of confusion). Such structures
are called LCP data structures in the following. For details, see, e.g., [8], and the references
therein. Similarly, we can build structures allowing us to retrieve in constant time the length
of the longest common suffix of any two prefixes u[1..i] and u[1..j] of u, denoted LCSu(i, j).

I Remark 1. Given a word w of length n and a divisor ` of n we can use one LCP query to
check in constant time whether w = xk, where |x| = ` and k = n

` . Indeed, w = xk if and
only if LCP(1, `+ 1) = n− `. The longest prefix of w that is a power of u[1..`] is obtained
similarly, as the longest prefix w′ of w whose length is divisible by ` and |w′| ≤ LCP(1, `+ 1).

When solving Problems 1 and 2 we construct LCP data structures for the words w, wR

(the mirror image of w), and v = wf(w); this takes O(|w|) time. Note that, when f is a literal
morphism, checking whether f(w[i..j]) appears at position ` in w is equivalent to checking
whether `+ j − i ≤ n and LCPv(`, |w|+ i) ≥ j − i+ 1. When f is a literal antimorphism,
checking whether f(w[i..j]) appears at position ` in w is, in this case, equivalent to checking
whether `+ j − i ≤ n and LCPv(`, 2|w| − j + 1)) ≥ j − i+ 1.

In some of the proofs we will need an efficient solution for the interval union-find problem,
which asks to maintain a partition of the universe U = [1, n] into a number of disjoint
intervals, so that given any element we can locate its current interval, and we can merge
two currently adjacent intervals into one. Both operations can be implemented in amortised
constant time [5] in our model of computation.

The following classical combinatorial result is used in this paper; for proofs and details
see [10], the handbook [2, Chapter 9], and the references therein.
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I Lemma 1. Let w ∈ V ∗, with |w| = n, and PSw = {u primitive | u2 prefix of w}. Then
|PSw| ≤ 2 logn and one can compute all the sets PSw[i..n], for 1 ≤ i ≤ n, in O(n logn) time.

4 General solutions

The main result we show in this section is that both our problems can be solved in O(nk2)
time, so in linear time for constant k. That is, testing freeness with respect to a fixed
f -pattern or testing pseudo-kth-power freeness for constant k can be done in linear time.
These results seem highly interesting to us as they show that the efficiency of testing square,
cube, or palindrome freeness is preserved for a class of more general patterns.

We begin this section with a slightly modified version of the s-factorisation defined in [11]
(see also [2]), and series of lemmas on the newly defined concept. Let g : V ∗ → V ∗ be a
literal anti-/morphism and w ∈ V ∗ a word. The g-factorisation of w is defined as follows.
We factor w = u1 · · ·ur if the following hold for all i ≥ 1:

If letter a occurs in w immediately after u1 · · ·ui−1 and neither a nor g(a) appeared in
u1 · · ·ui−1, then ui = a.
Otherwise, ui is the longest word such that u1 · · ·ui−1ui is a prefix of w and ui or g(ui)
occurs at least once as a factor in u1 · · ·ui−1.

The 1-factorisation of w (the not-self-referential variant of the s-factorisation from [11]) is
obtained by just taking g to be 1, the identity morphism.

By arguments similar to those used in [3], it follows that g-factorisations of words can be
computed in linear time, for g literal anti-/morphism.

I Lemma 2. If g is a literal anti-/morphism we can compute the g-factorisation of a word
w of length n in time O(n).

The following combinatorial lemma shows the relation between possible occurrences of
an f -pattern p in a word and its f -factorisation, for a morphism f .

I Lemma 3. Let f be a literal morphism, w a word, and p a pattern of length k ≥ 2, such
that p 6= xk−1f(x). Let w = u1 · · ·ur be the f-factorisation of w and consider all instances
of p. Then for any instance w[i..j] with |u1 · · ·uh−1| < j ≤ |u1 · · ·uh| we have two mutually
exclusive possibilities:
1. i > |u1 · · ·uh−1|, and we call w[i..j] a secondary instance, completely contained in uh,
2. j − i+ 1 ≤ k(|uh−1|+ |uh|), and we call w[i..j] a crossing instance.
Furthermore, the leftmost instance of the pattern is crossing.

A related result can be shown also for f antimorphic, but in a slightly more particular
setting: the word w is 1-factored and the pattern p has at least length 3.

I Lemma 4. Let f be a literal anti-/morphism, w a word, and p a pattern of length
k ≥ 3, such that p /∈ {xk−1f(x), f(x)k−1x}. Let w = u1 · · ·ur be the 1-factorisation of
w and consider all instances of the pattern p. Then for any such instance w[i..j] with
|u1 · · ·uh−1| < j ≤ |u1 · · ·uh| we have two mutually exclusive possibilities:
1. i > |u1 · · ·uh−1|, and w[i..j] is a secondary instance, completely contained in uh,
2. j − i+ 1 ≤ k(|uh−1|+ |uh|), and w[i..j] is a crossing instance.
Furthermore, the leftmost instance of the pattern is crossing.

We only present here the solutions of Problems 1 and 2 for f antimorphic. The morphic
case can be solved in a similar manner with less technicalities. For Problem 1, for instance,
we compute the f -factorisation of the input word w, and then we try to identify (like in
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t f(t) t

y f(y′) yz f(z′) z

t = yz

`︷ ︸︸ ︷ `︷ ︸︸ ︷ `︷ ︸︸ ︷

f(t)

f(y′) f(z′)

w1 w2

f(t) = f(y′)f(z′)

α1 α1α2 α2

β1 β1β2 β2

Figure 1 Finding tf(t)tf(t) in the catenation of two words.

the antimorphic case, described below) the leftmost occurrence, if any, of an instance of the
pattern p, which is crossing by Lemma 3. The usage of f -factorisations is needed here so
that the case of patterns of length 2 (or f -squares) is also covered. The time complexity of
this approach is O(nk2).

The case of Problem 1, for antimorphisms. When f is an antimorphism we use 1-
factorisations of the input words, instead of f -factorisations. The major points of the
algorithm detecting instances of the pattern f are given in the following.

In the following, a pseudopalindrome of length ` is a word of the form uf(u) with |u| = `.
Its occurrence is centred at position i if the first character of f(u) is aligned there. The
pseudopalindromic radius at i is simply the length of the longest pseudopalindrome centred
at i, which can be computed in constant time using LCS queries on wf(w).

To begin with, patterns of the form xf(x) or f(x)x are detected in O(n) time by
checking the existence of positions with strictly positive pseudopalindromic radius in w and,
respectively, wR. Moreover, if the pattern is xk, the problem reduces to detecting the usual
repetitions, hence can be done in O(n) time. If the pattern is f(x)k, we just need to check
which letters can be an image under f , so which factors of w can contain an instance of the
pattern, and again we can reduce the problem to the standard case of detecting repetitions.

I Lemma 5. Let f be a literal antimorphism, w be a 1-factorised word, and p a pattern
of length k ≥ 3, p /∈ {xk−1f(x), f(x)xk−1, f(x)k−1x, xf(x)k−1, xk, f(x)k}. All M crossing
instances of p (if any) can be detected (and output as pairs of indices) in O(nk2 +M) time.

Proof. The proof is based on Lemma 4. Assume that the 1-factorisation of w is u1 · · ·ur and
for each h ≤ r we look for an instance of p ending inside uh, shorter than k(|uh−1|+ |uh|).

We describe how to find an instance v of a given pattern p of length k, in the concatenation
of two words w1 and w2, such that this occurrence crosses the boundary; then we can apply the
strategy for w2 = uh and w1 a suffix of u1 · · ·uh−1, |w1| = min{|u1 · · ·uh−1|, k(|uh−1uh|)−1}.
For each such w1 and w2 we construct a list of simple conditions which guarantee the
existence of an occurrence. Then we consider all such conditions together, and verify them
in a specific order. For simplicity, we only explain the case of v = tf(t)tf(t) (an instance of
p = xf(x)xf(x)), with k = 4, and then show how to generalise. Let us also assume that the
first letter of w2 belongs to the first f(t), see Figure 1; the other cases are analogous. Let `
denote |t| and assume that we built LCP and LCS data structures for w′ = w1w2f(w1)f(w2).

Now, let α1 be the length of the longest factor starting at positions |w1| − `+ 1 in w1
and ` in w2; let α2 be the length of the longest factor starting at positions 1 and 2` + 1
in w2. Similarly, let β1 be the length of the longest factor ending at positions |w1| − ` in
w1 and ` − 1 in w2, and β2 be the length of the longest factor ending at positions |w1| in
w1 and 2` in w2. All α1, α2, β1, β2 can be computed with LCPw′ and LCSw′ queries. Now,
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if min{α1, α2} + min{β1, β2} < `, clearly no instance exists. Otherwise, the only possible
instances have |z| ≤ min{α1, α2} and |z| ≥ `−min{β1, β2} (where z is defined as in Figure 1).
Moreover, those two conditions guarantee that all fragments corresponding to t are the same,
and all fragments corresponding to f(t) are equal, too. They do not guarantee, though, that
the fragment which is supposed to be f(t) is indeed an image of the fragment corresponding
to t. Hence we also need to check if the pseudopalindromic radius at |w1| − `+ |z| in w1w2
is at least `. That is, an instance of the pattern corresponds exactly to a pseudopalindrome
of length ` centred at i ∈ [|w1| −min{β1, β2}, |w1| − `+ min{α1, α2}] in w1w2, if any.

We build a list of all such conditions corresponding to different values of ` ≤ |w1|+|w2|
k

(and different pairs of concatenated words w1 and w2 = uh, as described in the beginning)
and then process them all at once in the order of increasing `. This is done efficiently by
maintaining in a structure S all positions i such that the pseudopalindromic radius at i is at
least the current `. Then, reporting all instances corresponding to a single condition requires
iterating through all i ∈ S such that i is in the corresponding range. Note now that S can
be implemented as the interval union-find structure. Then, if the range contains H numbers,
we output them in O(1 +H) time. We check similarly all the other possibilities for a factor
t or f(t) to fall on the border, so the claimed complexity (for p = xf(x)xf(x)) follows.

Other patterns of length 3 and 4 are analysed similarly. If the pattern is longer (of length
k > 4), we check k possibilities for the factor falling on the border. For each of them we need
to execute O(k) constant time queries to generate the conditions on |y| or detect that no such
instance is possible. Hence the total number of conditions is

∑
2≤h≤r

∑
`≤|uh−1|+|uh| k =

O(nk), and the total time to generate all of them is O(nk2), plus additional O(n) to maintain
the interval union-find structure. Then each instance is reported in constant time. J

Assume first that p /∈ {xk−1f(x), f(x)xk−1, f(x)k−1x, xf(x)k−1, xk, fk(x)}. Lemma 4
shows that if p occurs in w, then there exists a crossing instance of p in w. The previous
lemma shows that we can locate in O(nk2) time such a crossing instance of p, if any (just
output the first instance we meet and stop searching for others). If we found one, we conclude
that w contains an instance of the pattern; otherwise, w does not contain any instance of p.

Further, we only have to consider now the cases when p is xk−1f(x) or xf(x)k−1; the
other cases can be reduced to these two by looking for the occurrences of pR in wR. In the
first (respectively, second) remaining case, we only need to check if there is a position i such
that the pseudopalindromic radius at i is at least as long as the length of the shortest word
whose k-th power is a suffix (respectively, prefix) of w[1..i− 1] (respectively, w[i..n]). Thus,
to conclude, we apply the following lemma for w (respectively, wR).

I Lemma 6. Given a word w of length n and k ≥ 2, we can compute for each position i the
smallest ` ≥ 1 such that w[i− k`+ 1..i] is a power of w[i− `+ 1..i], in O(n) total time.

This technical lemma and its main consequence, that we can detect instances of the pat-
terns xk−1f(x) and f(x)k−1x in O(n) time, improves significantly the results reported in [14]:
we decreased the complexity from O(nk), and our algorithm works for integer alphabets.

The case of Problem 2, for antimorphisms. Let us first give the following lemma:

I Lemma 7. If w contains max(k, 3) pseudopalindromes of length ` starting at positions
s, s + δ1, s + δ2, . . . with all δi ≤ `

4 , then w has a factor rk with r = f(r). Accordingly, w
contains an instance of any pattern of length k.

To solve Problem 2, we begin with checking if there is an instance of xk, fk(x), f(x)k−1x,
xf(x)k−1, xk−1f(x), or f(x)xk−1 using the method from the previous section. If there is
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no such instance, we apply the reasoning described in Lemma 5. Of course, now we do not
know the exact structure of the pattern. Nevertheless, we can look at the 1-factorisation
w = u1 · · ·ur, and for each two adjacent factors uh−1 and uh we consider all possibilities for
the length ` of t, the image of the variable x. Assume that for each such possibility we get
that an instance of the pattern corresponds to the existence of a pseudopalindrome of length
` centred in a range of at most 2`k positions, these positions being the suffix of w1 of length
`k and the prefix of w2 of length `k, with w1 and w2 = uh defined as in the proof of Lemma 5.
We generate all pseudopalindromes in such ranges using the same approach as in that lemma,
i.e., by considering the entire set of conditions at once and maintaining an interval union-find
structure. If we can generate sufficiently many results, we terminate, as Lemma 7 shows that
w contains instances of all patterns of length k. More concretely, for each range of length
2`k there can be at most 8k2 pseudopalindromes of length ` centred there, provided that
no word rk with r = f(r) exists in w. Also, ` ≤ |uh−1|+ |uh| (by Lemma 4). So, summing
up over all h and ` we get that the total number of generated pseudopalindromes should
not exceed

∑
2≤h≤r

∑
`≤|uh−1|+|uh| 8k

2 = 16nk2. Thus, assume that we generated at most
16nk2 pseudopalindromes. Each of them corresponds to certain values of ` and i such that
the instance of xf(x) is centred at i and the image of x has length `. So, we can check in
O(k) time whether the image of xf(x) can be extended to an instance of a pattern of length
k. For this we do not need to know the exact structure of this pattern, we just check that
how many fragments of length ` are the same as either the left or the right half of the found
pseudopalindrome with LCP queries. This gives an O(nk3) time solution.

We can shave off one factor of k by using dynamic programming. We consider all generated
pseudopalindromes with the same value of ` at once. For each such pseudopalindrome vf(v),
we compute the largest k′ such that there is a k-repetition with x = v starting with this
vf(v). The idea is that after any vf(v) we must have a power of v or f(v) followed by
another vf(v) (or by the end of the instance of the pattern). Hence with a constant number
of LCP queries we can compute the highest power of both v and f(v) following this vf(v),
and then check if the next fragment of length 2` is vf(v) as well. Then the total running
time becomes proportional to the number of generated pseudopalindromes, which is O(nk2).

5 The bijective case

An O(n logn) solution for Problem 1. The second solution we propose for Problem 1 is
based on a careful analysis of the length 3 factors that may occur in the pattern, and is valid,
in this case, both for f literal bijective morphism and antimorphism.

We first check whether the pattern p contains any of the factors xxf(x), f(x)f(x)x,
f(x)xx, or xf(x)f(x). This takes O(k) ⊂ O(n) time. If not, then the pattern is a prefix of
x∞, f(x)∞, (xf(x))∞, or of (f(x)x)∞. We treat separately each of these cases.

First, let us note that if p is a prefix of x∞ then Problem 1 is equivalent to testing
whether w contains k-repetitions. This can be done in O(n) time, using the algorithm given
by Main [11]. When p is a prefix of f(x)∞ the Problem 1 can be solved similarly, in linear
time, by detecting repetitions in the factors of w containing only letters from f(V ).

I Lemma 8. Testing whether a word w, |w| = n, has as factor an instance of a pattern p, |p| =
k, that contains xxf(x), f(x)f(x)x, f(x)xx, or xf(x)f(x), can be done in O(kn logn) time.

Proof. We analyse now the cases when p contains xxf(x) or f(x)f(x)x (the cases when
p contains f(x)xx or xf(x)f(x) are solved by considering the reversed word and reversed
pattern). Hence, any instance of p contains a square. We analyse the first occurrence of a
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factor xxf(x) or f(x)f(x)x in p and check whether it is possible that such a factor occurs at
position i in the word w, for all i ∈ {1, . . . , n}. To this end, we consider such a number i; by
Lemma 1, there are at most 2 logn primitive squares occurring at position i in w. Clearly,
when vvf(v) is a word that occurs at position i then v is a power of some y ∈ PSw[i..n].
Thus, we iterate through all the elements of y ∈ PSw[i..n] and see whether we can construct
a word v such that vvf(v) or f(v)f(v)v occurs at position i in w and v is a power of y.

Let us assume that xxf(x) occurs before any occurrence of f(x)f(x)x in p (the other
case can be treated similarly). We have two subcases to analyse. The first subcase is when
y = f(y) (and this can be checked in constant time). Then we compute the maximum q such
that yq is a prefix of w[i..n]; this takes O(1) time, as q = LCPw(i,i+|y|)

|y| + 1. Similarly, using
an LCPwR query, we compute the maximum ` such that y` is a suffix of w[1..i]. If q ≥ 3 we
take v = y and, clearly, an instance of the pattern p occurs in w whenever `+ q ≥ k, where
k = |p|. The second subcase is when y 6= f(y). Just like before, we compute the maximum q

such that yq is a prefix of w[i..n]. Now, if q is even and f(y) occurs at position 1 + q|y|, we
have v = y

q
2 ; if q is odd then v cannot be a power of y. Once we know v we check whether

an instance of p occurs in w such that its first factor xxf(x) is mapped to the factor vvf(v)
occurring at position i in w. This check is done in O(k) time, using LCPwf(w) queries.

If f(x)f(x)x occurs first in p (before xxf(x)) then one should also analyse, for each
y, two subcases just like before. If f(v)f(v)v occurs at position i then f(v) is a power of
some y ∈ PSw[i..n]. The first subcase is when y = f(y), and can be treated just as the case
y = f(y) above. The second subcase is when we assume that y = f(z) for some z 6= y. As f
is injective, we have y 6= f(y). Thus, z is the first factor of length |y| that occurs after the
maximal prefix yp of w[i..n]. We then check by an LCPwf(w) query whether f(z) = y and p
is even, and follow the same procedure as before, for v starting with z and of length p|y|

2 . J

In conclusion, the case when p contains an occurrence of the factor xxf(x) or of f(x)f(x)x
can be solved in O(kn logn) time. By similar arguments, the case when p is a prefix of
(xf(x))∞ is analysed faster, in O(n logn) time.

Altogether, the analysis of the above cases takes O(kn logn), where the most time-
consuming step is the case when p contains at least one factor xxf(x), f(x)f(x)x, f(x)xx,
or xf(x)f(x), and the word v, to which x is mapped, is different from f(v). In the following,
we show how we can reduce the time needed to analyse this case to O(n logn) (that is, shave
off the k factor), and, consequently, obtain that Problem 1 can be solved in O(n logn) time.

I Lemma 9. Testing whether a word w, |w| = n, has as factor an instance of a pattern p, |p| =
k, that contains xxf(x), f(x)f(x)x, f(x)xx, or xf(x)f(x), can be done in O(n logn) time.

Proof. The approach in Lemma 8 can be optimised as follows. Instead of iterating through
all positions where a factor of the form vvf(v), f(v)f(v)v, f(v)vv or vf(v)f(v) occurs, and
then verifying in O(k) time if a given occurrence can be extended to form an occurrence of
the whole pattern, we look at entire groups of such factors at once, and adapt the Knuth-
Morris-Pratt algorithm (see [9]) to verify all of them at once. To make this verification
efficient, we will run the pattern matching algorithm not on the original word, but on its
suitably constructed compressed representation.

Using the same strategy as in the initial analysis of this case, we identify all the factors
vvf(v), f(v)f(v)v, f(v)vv and vf(v)f(v) with v 6= f(v) in w. We saw above that there are
O(n logn) occurrences of such factors. Note that a factor vvf(v) (or a factor vf(v)f(v))
can be also identified as a factor f(v′)f(v′)v′ (respectively, as a factor f(v′)v′v′), but only
when f(f(a)) = a for all the letters a occurring in v.
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Then we group together the occurrences of vvf(v), f(v)f(v)v, f(v)vv and vf(v)f(v)
factors having the same length. This can be done in O(n logn) time by describing each
such factor as a pair containing the position where it starts and the length of |v|, and then
putting together in a set (ordered with respect to the starting position) all the factors with v
of a certain length. As |v| ≤ n we will have O(n) such sets. Furthermore, we additionally
partition each set into smaller sets (again, ordered with respect to the starting position)
according to the remainder of the starting position modulo the length of v, which takes
linear time in the size of the set. Finally, each such set is split into even smaller groups: we
put together all the consecutive elements in the (ordered) set, that have the form vvf(v),
f(v)f(v)v, f(v)vv and vf(v)f(v) for a certain (the same for all factors) word v. As we have
already mentioned, a factor vvf(v) (or a factor vf(v)f(v)) can be also identified as a factor
f(v′)f(v′)v′ (respectively, as a factor f(v′)v′v′), whenever v′ = f(v) 6= v; however, the group
corresponding to v is exactly the same one as the one constructed for v′, so we do not need
to consider them separately. Note that, in the end, there may be more than one group
corresponding to the same v; however, one occurrence of vvf(v) (as well as one occurrence
of f(v)f(v)v, f(v)vv and vf(v)f(v)) belongs to exactly one group.

The idea of this splitting into groups is that an instance of the pattern p, with x mapped
to v, should have all the occurrences of factors xxf(x), f(x)f(x)x, xf(x)f(x), or f(x)xx
mapped to elements of the same group, that corresponds to v. Hence, in what follows we fix a
single group (and, consequently, a word v) and show how to detect a corresponding instance
of the pattern, with x mapped to v, in linear time in the size of the group. In particular,
if f acts as an involution on the letters of v, we should also try to detect a corresponding
instance of p, with x mapped to f(v); but this is done analogously, and takes the same time.

We additionally partition the fixed group into subgroups. Each subgroup is a maximal
set of consecutive elements of the group such that between any two of them we either have a
power of either v or f(v) (note that two consecutive elements, say vvf(v) and vf(v)f(v),
might overlap, and in such case there is nothing between them). The partitioning requires
just a single left-to-right scan of the elements of the group, with a constant number of LCP
queries when moving from one element to the other. Now a single subgroup corresponds
to a factor of w of the form {v, f(v)}+, and we have an ordered list of all occurrences of
vvf(v), f(v)f(v)v, f(v)vv and vf(v)f(v) in this factor. Furthermore, the factor starts and
ends with factors of this form, so we call it v-delimited. We can represent an v-delimited
word in a unique compressed form, called v-representation, as follows.

Sweep through all occurrences of vvf(v), f(v)f(v)v, f(v)vv and vf(v)f(v). For each
of them append xxf(x), f(x)f(x)x, f(x)xx, or xf(x)f(x), respectively, to the current v-
representation. Then, for each such two adjacent occurrences additionally insert one of
the following between the corresponding elements of the current representation: −2 if the
occurrences overlap by 2|v|; −1 if the occurrences overlap by |v|; 0 if the occurrences are one
after another; (x, h) if the fragment between the occurrences is vh with h > 0; (f(x), h) if
the fragment between the occurrences is f(v)h with h > 0.

I Example 1. If v = a, f(v) = b, and the word is aabbaaaaabbbba, its v-representation is
[xxf(x),−1, f(x)f(x)x, (x, 2), xxf(x), (f(x), 1), f(x)f(x)x].

Finally, treat each element of the representation as a single character (over a new alphabet,
whose size is O(nc) for some constant c, so the characters can be compared in constant time),
and the whole representation as a single word. It is clear that above definition guarantees
that the v-representation is unique. Furthermore, given a subgroup we can construct its
v-representation in linear time (in the size of the subgroup). Similarly, we can locate the
first and the last occurrence of xxf(x), f(x)f(x)x, f(x)xx or xf(x)f(x) in the pattern and
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construct in linear time (in the length of the pattern) the representation of its x-delimited
factor starting at the first and ending at the last of such occurrences. Finally, observe that
an occurrence of the whole pattern with x mapped to v corresponds to an occurrence of such
maximal v-delimited factor, and furthermore given the latter we can verify in constant time
if it corresponds to the former using a few LCP queries (i.e., the maximal v-delimited factor
can be padded with powers of v or f(v), to get an actual instance of the pattern p).

Hence, we can focus on generating all instances of the maximal x-delimited factor of the
pattern, and this is what we designed the x-representation for. We simply apply the usual
Knuth-Morris-Pratt algorithm to locate all occurrences of the x-representation of the maximal
x-delimited factor of the pattern in the v-representation of the factor corresponding to the
subgroup. This takes linear time in the size of the subgroup, excluding the preprocessing,
and the number of occurrences is linear, too. Finally, note that the preprocessing of the
pattern is done for all subgroups just once. J

This approach clearly identifies an instance, if any, of a pattern p that contains one of the
factors xxf(x), f(x)xx, xf(x)f(x), or f(x)f(x)x, in time O(n logn). In conclusion, by this
last argument and the previous remarks, we obtained an O(n logn) solution for Problem 1.

An O(n logn) solution for Problem 2. In this case we want to test whether w contains
the image of any pattern p from {x, f(x)}k, for a given k. However, we will determine the
maximum ` such that w contains an instance of some pattern p ∈ {x, f(x)}`. Let us note
that for ` ≤ 3 we have a linear time solution for testing whether w contains an f -repetition
of exponent `, as described in Section 4. Hence we focus on the remaining case ` ≥ 4.

The key remark in our approach is that if w contains an instance of a pattern p ∈
{x, f(x)}k1 then it also contains an instance of a pattern p′ ∈ {x, f(x)}k2 where x is replaced
by a primitive word v and k2 ≥ k1. Hence, we identify first the maximal factors of w that
have the form {t, f(t)}∗, for some primitive word t (thus, with f(t) primitive, as well), and
contain either tt or f(t)f(t), and, then, the ones that do not contain such squares.

This is done similarly to the subgroup splitting of the previous section. We first locate
the occurrences of such factors, in O(n logn) time, and then refine this set to obtain the
subgroups containing the occurrences of factors defined by the same t which have between
them only elements from {t, f(t)}∗. Like before, this takes O(n logn) time.

So far, we obtained the maximal factors of w that have the form {t, f(t)}∗ and start
either with tt or f(t)f(t). For such a factor y that starts with tt we compute in constant
time the maximal factor z that ends just before y and has the form (t{f(t)t}∗∪{f(t)t}∗)f(t),
following Remark 1. Then zy is a maximal factor that contains tt. Similarly, for a factor
y ∈ f(t)f(t){t, f(t)}∗ we compute the maximal factor z that ends just before y and has
the form (f(t){tf(t)}∗ ∪ {tf(t)}∗)t. Then zy is a maximal factor that contains f(t)f(t).
Consequently, we computed the maximal factors of w that have the form {t, f(t)}∗ and
contain either tt or f(t)f(t). Clearly, the time complexity of this procedure is O(n logn).

Now, if at least one of the maximal factors of w of the form {t, f(t)}∗ and containing tt
or f(t)f(t) is an f -power of t having the exponent at least k, then we can answer Problem 2
positively. Otherwise, we need to check whether w contains a repetition of the form {tf(t)}`,
{tf(t)}`t, {f(t)t}`, or {f(t)t}`f(t), for a large enough exponent ` ≥ 2. But, when looking at
maximal f -repetitions of this type, we get that their prefix of length 2|t| (that is, tf(t) or f(t)t)
should be primitive; otherwise, longer repetitions were detected in the previous step. Hence,
such repetitions start with a primitively rooted square. Now, analysing all the primitively
rooted squares occurring in w, and mapping them to t(f)tf(t) or f(t)tf(t)t, depending on
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the form pattern we look for (from the ones above), we can detect all these repetitions in
O(n logn) time, too. In conclusion, we solve completely Problem 2 in O(n logn) time.

Using this strategy, we also identify, in O(n logn) time, all the factors t and v of w such
that t is primitive and v ∈ {t, f(t)}∗, and v cannot be extended, in any direction, by neither t
nor f(t). It is not hard to see that one of these f -repetitions is the one that has the maximum
exponent among all the f -repetitions contained in w. Thus, we can also find the maximum
power of an f -repetition contained in w, within O(n logn) time.

6 Conclusions

In this paper we showed the following theorems.

I Theorem 10. Given a word w ∈ V ∗, with |w| = n, a literal anti-/morphism f : V ∗ → V ∗,
and an f -pattern p of length k, we can decide whether w contains an instance of p in O(nk2)
time; for a fixed pattern p, the problem can be solved in linear time. If f is bijective, then
the problem can be solved in O(n logn) time.

I Theorem 11. Given a word w ∈ V ∗, with |w| = n, a literal anti-/morphism f : V ∗ → V ∗,
and a positive integer k, we can decide whether w contains a factor of the form {t, f(t)}k,
for some word t, in O(nk2) time; for a constant k, the problem can be solved in linear time.
If f is bijective, then we can compute the maximum k such that w contains a factor of the
form {t, f(t)}k, for some word t, in O(n logn) time.

We conjecture that results in the line of the second parts of our theorems (and similar
proofs) hold also for general literal morphisms. In this case, however, one has to overcome
the difficulty that when f is not bijective, then f(t) is no longer primitive for all primitive t;
accordingly, the technicalities are expected to be far more involved. Consequently, the time
bounds are expected to be larger (although still close to linear time).

The main question left open is whether the results reported here can be improved to find
(if there exist) algorithmic solutions for the approached problems running in O(n) time.
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