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—— Abstract

Rocchio’s relevance feedback model is a classic query expansion method and it has been shown to
be effective in boosting information retrieval performance. The main problem with this method
is that the relevant and the irrelevant documents overlap in the vector space because they often
share same terms (at least the terms of the query). With respect to the initial vector space basis
(index terms), it is difficult to select terms that separate relevant and irrelevant documents. The
Vector Space Basis Change is used to separate relevant and irrelevant documents without any
modification on the query term weights. In this paper, first, we study how to incorporate Vector
Space Basis Change into the Rocchio’s model. Second, we propose Rocchio’s models based on
Vector Space Basis Change, called VSBCRoc models. Experimental results on a TREC collection
show that our proposed models are effective.
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1 Introduction

In the Vector Space Model (VSM), each component of the vector represents a term in
the document [18] i.e. each component in the vector represents the weight of the term in
the document. The set of all index terms is called the original vector space basis. For
the most vector space based Information Retrieval (IR) and feedback models, the original
vector space basis generates documents and queries. Although several term weighting and
feedback methods have been proposed, only a few approaches [4, 11, 8, 9] consider that
changing the vector space basis from the original vector space basis into another basis is an
issue of investigation. The Vector Space Basis Change (VSBC) consists of using a transition
L. By changing the vector space basis, each vector coordinate changes depending
on this matrix. If we change the basis, then the inner product changes and so the Cosine

matrix

1 The algebraic operator responsible for change of basis.
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function behavior changes [10]. By the same Dice, Jaccard and Overlap functions behavior
changes.

Pseudo Relevance Feedback (PRF) is known as a useful method for enhancing retrieval
performance. It assumes that the top-ranked n documents (pseudo-documents) of the initial
retrieval are relevant and extracts expansion terms from them. PRF has been shown to be
effective in improving IR performance [2, 3, 6, 7, 13, 14, 16, 17, 19, 20, 21]. PRF can also fail
in some cases. For example, when some pseudo-documents contain terms of the irrelevant
contents, then these terms misguide the feedback models by importing noisy terms into the
queries. This could influence the retrieval performance in a negative way.

With respect to the original vector space basis, relevant and irrelevant documents share
some terms (at least the terms of the query which selected these documents). To avoid
this problem, it suffice to separate relevant and irrelevant documents. VSBC is an effective
method for the separation of relevant and irrelevant documents. This method has been
studied in the past few years [4, 11, 8, 9]. In [8, 9], the authors have been found a basis
which gathers the relevant documents and the irrelevant ones are kept away from the relevant
ones. These approaches have been evaluated on a Relevance Feedback (RF) framework.

Rocchio’s model [16] is a classic framework for implementing (pseudo) RF via improving
the query representation. It models a way of incorporating (pseudo) RF information into
the VSM in IR. In this paper, first, we study how to incorporate VSBC into the Rocchio’s
model. Second, we propose Rocchio’s models based on the VSBC, called VSBCRoc models.

This paper is organized as follows. section 2 presents the related work. Sections 3
describes our approach based on the VSBC. In Section 4, the experimental results are
presented and discussed. A direct comparison is made to compare VSBCRoc models with
the classical Rocchio’s model. Finally, we conclude our work with a brief conclusion and
future research directions in Section 5.

2 Related Work

The VSM [18] is adopted to rank the documents. This model showed good feedback per-
formance on most collections whereas the probabilistic model had problems with some col-
lections [5].

2.1 Vector Space Basis Change

The Latent Semantic Indexing (LSI) [4] exploits the hypothesis that the term-document fre-
quency matrix encloses information about the semantic relations between terms and between
documents. This technique is based on Singular Value Decomposition (SVD) aiming at
decomposing the matrix and disclosing the principal components used to represent fewer
independent concepts than many inter-dependent index terms. This method results on a
new vector space basis, with a lower dimension than the original one (all index terms), and
in which each component is a linear combination of the indexing terms.

When using a term to express a query or a document, the user gave to the term a
semantics which is different from the semantics of the same term used by another user or
by the same user in another place, time, need. In other words, the use of a term depends
on context. Therefore, context influences the selection of the terms, their semantics and
inter-relationships. A vector space basis models a document or query terms. The semantics
of a document or query term depends on context. A vector space basis can be derived from a
context. Therefore, a vector space basis of a vector space is the construct to model context.
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Also, change of context can be modeled by linear transformations from one base to another
which is a VSBC [10, 11].

Recently, Mbarek et al. [8, 9] developed a RF algorithms based on a vector space basis
change. These RF algorithms improve the results of known models (BM25 model, Rocchio
model). They built a basis which gives a better representation of documents. This basis
should minimize the sum (S7) of squared distances between each relevant document and gg
(gr is the centroid of relevant documents) and should maximize the sum (S3) of squared
distances between each irrelevant document and gr. And so this basis should minimize the
quotient g—; [8] and maximize the difference Sy — S [9].

2.2 Pseudo-Relevance Feedback

In IR, PRF via query expansion is referred to as the techniques that reformulate the original
query by adding new terms into the query, in order to achieve a better retrieval performance.
There are a large number of studies on the topic of PRF. Here we mainly review the work
about PRF which is the most related to our research. A classical RF technique was proposed
by Rocchio in 1971 for the Smart retrieval system [16]. It is a framework for implementing
(pseudo) RF via improving the query representation, in which a set of documents are utilized
as the feedback information. Unique terms in this set are ranked in descending order of their
tf % idf weights. In the following decades, many other RF techniques and algorithms were
developed, mostly derived under Rocchio’s framework. A popular and successful automatic
PRF algorithm was proposed by [14] in the Okapi system; Amati et al. [1] proposed a query
expansion algorithm in his divergence from randomness retrieval framework; Carpineto et
al. [2] proposed to compute the weight of candidate expansion terms based on the diver-
gence between the probability distributions of terms in the top ranked documents and the
whole collection; Miao et al. [12] studied how to incorporate proximity information into the
Rocchio’s model, and proposed three proximity based Rocchio’s models.

In this paper, first, we will incorporate VSBC into the Rocchio’s model. Second, we
propose Rocchio’s models based on VSBC, called VSBCRoc models.

3 Rocchio’s Models based on Vector Space Basis Change

3.1 Rocchio’s Formula

Rocchio’s model [16] is a classic framework for implementing (pseudo) RF via improving
the query representation. It models a way of incorporating (pseudo) relevance feedback
information into the VSM in IR. In case of PRF, the Rocchio’s model (without considering
negative feedback documents) has the following steps:
All documents are ranked for the given query using a particular retrieval model. This
step is called initial retrieval, from which the |R| highest ranked documents are used as
the feedback set.
The representation of the query is finally refined by taking a linear combination of the ini-
tial query term vector with the feedback document vector, this initial formula is denoted
by VSBCRocl:

VSBCRocl :lea*Qo—i—ﬂ*Z% (1)

deR

where (¢ represents the original query vector, ()1 represents the first iteration query
vector, d is the document weight vector, and o and S are tuning constants controlling how
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much we rely on the original query and the feedback information. In practice, we can always
fix a at 1, and only study S in order to get better performance.

3.2 Vector Space Basis Change

In [8, 9], the authors built a new vector space basis which separates relevant and irrelevant
documents without any modification on the query term weights. That is, this basis gathers
the relevant documents and the irrelevant ones are kept away from the relevant ones. It can
be viewed as a representation that keeps the relevant documents gathered to their centroid
and the irrelevant ones far from it. Each document d; is represented in a vector space
by d; = (w1, w2, ...w;n)T where wj; is the weight of term ¢; in document d; and N is
the number of index terms?. As for us our approach is independent of the term weighting
method.
The Euclidian distance between documents d; and d; is given by:

N

> (wik — wji)?

k=1

= \/(wll — Wj1... Wi N —ij) . (w,-l —wjl...wiN—ij)T

= (&= dp)T (i~ dy).

By changing the basis using a transition matrix M, the distance between 2 vectors d
and d7 which are respectively d; and d; rewritten in the new basis is given by:

dist(d; ,d;) = dist(M.d;, M.dj)

Rt

VJ(MLd; — M.d;)T - (M.d; — M.d;)

_ \/(di —d))T - MTM - (d; — d;).

The vector space basis which optimally separates relevant and irrelevant documents is
represented by a matrix M* called the optimal transition matrix. M™ puts the relevant
documents gathered to their centroid gr and the irrelevant documents far from it.

gr is done by:
1
9r = g 2
IR ien

where R is the set of relevant documents.
By the same, using a transition matrix M, we obtain:

1 1
M_ :M- h— d:* M'd
=M (g S0 =y 3

2 27 is the transpose of x
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The optimal matrix M* should minimize the sum of squared distances between each
relevant document and gg, i.e.:

M* = i dist*(M - d, M - 2
arg MGI?V}S(R)(;% ist? 9r) (2)

= i Md—Mgr)" - (Md— M
arg | min di;( gr)" - ( gr)

i d—gr)t - MT™M - (d - gg).
argMenj}g(R);%( 9R) (d— gr)

By the same, the optimal matrix M™* should maximize the sum of squared distances of
each irrelevant document and gg, which leads on the following:

M* = dist>(M - d, M - 3
argMggf(R); ist( M - gR) (3)
= Md— Mgg)" - (Md - M
arg | max d;( gr)" - ( 9R)
= d—gr)T - MTM.(d—
arg  max ; (d—gr) (d—gr)

where S is the set of irrelevant documents.
In [8], the authors have been showed that the Equations 2 and 3 result on the following
single equation:

Z(d—gR)T-MTM-(d—gR)—I—a

M* =arg min deh (4)
MEM,,(R) Z (d—gr)T-MTM - (d—gr)+a
des

where « is real parameter close to 0.
And in [9], the authors have been showed that the Equations 2 and 3 result on the
following single equation:

M* = argMg;}X(R)[Z (d—gr)" - M"M-(d—gr)=Y_ (d—gr)" - M"M-(d—gg)]. (5)
" des deR

Let M7 be a solution of Equation 4 and M3 be a solution of Equation 5. These matrices
separate relevant and irrelevant documents. The proposed Rocchio’s models based on VSBC

are:
M:d
VSBCRoc2 : Q2 = Qo+ * ) (6)
ien 1B
M*
VSBCRoc3 : Q3 = Qo + B3 * Z |]§|d (7)

deR

We remark that the initial Rocchio’s formula, VSBCRocl (Equation 1), corresponds to
incorporating the identity matrix® (there is no basis change).

3 A square matrix with ones on the main diagonal and zeros elsewhere.
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4 Experiments

In this section we give the different experiments and results obtained to evaluate our ap-
proach. We describe the environnement of evaluation and the experimental conditions.

4.1 Environment

The test collection TREC-7 was used for the experiments in this article. Data was prepro-
cessed through stop-word removal and Porter’s stemming, and one-word terms were stored;
the initial rankings of documents (Baseline Model) were weighted by the BM25 formula
proposed in [15]. BM25 parameters are b = 0.5, k1 = 1.2, ks = 0 and k3 = 8.

The initial query Qg is made from the short topic description, and using it the top 1000
documents are retrieved from the collections (weighted o = 1).
R is the set of top ranking n documents, assumed to be relevant.

S is the set of retrieved documents 501 — 1000, assumed to be irrelevant.

For the three approaches, the retrieved documents are ranked by the inner product done
by:

RSV(Qid)=Qf -d  1<i<3 (8)

4.2 Results

To evaluate the performance we execute several runs using the topics provided by TREC.
In detail, the TREC-7 collection has 50 topics. Topics are structured in three fields: title,
description and narrative. To generate a query, the title of a topic was used, thus falling
into line with the common practice of TREC experiments; description and narrative were
not used.

We perform 100 runs by considering all possible combinations of the three parameters
involved in the three models. In particular, we take into account: n (the cardinality of R), m
(the number of expansion terms) and the parameter 5 (used for the linear combination): see
Equations 1, 6 and 7. We select different ranges for each parameter: n ranges in (1,2, 3,4,5),
m ranges in (10, 20, 30,50) and § ranges in (0.1,0.2,0.5,1,2).

We evaluate each run in terms of Mean Average Precision (MAP). The experiments and
the evaluations are articulated around the comparison between VSBCRocl, VSBCRoc2 and
VSBCRoc3.

Figure 1 plots the MAP values for each run and approach: VSBCRocl is the original
Rocchio model, VSBCRoc2 and VSBCRoc3 are the new Rocchio models obtained by in-
corporating the VSBC strategy. These graphs highlights as the system performance vary
according to parameters changes. It is possible to note that:

VSBCRoc2 and VSBCRoc3 models have better performance than VSBCRocl model.

The MAP value of VSBCRocl is similar for § = 1 and 8 = 2 (the same remark for

VSBCRoc2 and VSBCRoc3).

The MAP values of VSBCRocl, VSBCRoc2 and VSBCRoc3 increase if the number of

expansion terms increase.

The MAP values of VSBCRocl and VSBCRoc3 increase if the number of pseudo-

documents increase.
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Figure 1 Plot of MAP values on TREC-7.

0,3

V5BCRoc3

0,28 .  =——VSBCRoC2

=——=\/5BCRoOC1

MAP

For the VSBCRocl, VSBCRoc2 and VSBCRoc3 models, the lowest MAP value is 0.2385,
0.2451 and 0.2503, respectively. This value occurs when only one relevant document and 10
expansion terms are involved. The highest MAP value for VSBCRocl is 0.2625, while for
VSBCRoc3 is 0.2913. Both values are obtained with 5 relevant documents and 50 expansion
terms. The highest MAP value for VSBCRoc2 is 0.2813. This value occurs when 4 relevant
documents and 50 expansion terms are involved.

4.3 Significance of Our Results

Statistical significance is the probability that an effect is not due to just chance. These tests
are based on a pre-specified low probability threshold called p-values. P-values are always
coupled to a significance level, usually at 0.05. Thus, if a p-value was found to be less than
0.05, then the result would be considered statistically significant. To study the statistical
significance of our result we use a free software environment, R, for statistical computing
4. Before applying the student’s t-test we compute a R data frame in which
each row has a measurement and a categorical system identifier.

and graphics

Listing 1 t-test of significance of the difference of results of VSBCRocl and VSBCRoc2.

> MAP<-c(0.2385,0.2392,0.2401,...,0.2685,0.2723,0.2722)
> Sys<-c("VSBCRocl1","VSBCRocl1","VSBCRocl1","VSBCRocl",...,"VSBCRoc2",
"VSBCRoc2","VSBCRoc2")
> X<-data.frame (MAP=MAP,Sys=Sys)
> X
MAP Sys
1 0.2385 VSBCRoc1
0.2392 VSBCRoc1
0.2401 VSBCRoc1l

w N

4 http://www.r-project.org/
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100 0.2625 VSBCRocl
101 0.2451 VSBCRoc2

198 0.2685 VSBCRoc2
199 0.2723 VSBCRoc2
200 0.2722 VSBCRoc2
> t.test (MAP ~ Sys, paired=T, data=X)

Paired t-test

data: MAP by Sys
t = -11.7418, df = 99, p-value < 2.2e-16

Listing 2 t-test of significance of the difference of results of VSBCRocl and VSBCRoc3.

> MAP<-c¢(0.2385,0.2392,0.2401,...,0.2851,0.2913,0.2913)
> Sys<-c("VSBCRocl","VSBCRocl","VSBCRocl",...,"VSBCRoc3",
"VSBCRoc3","VSBCRoc3")
> X<-data.frame (MAP=MAP, Sys=Sys)
> X
MAP Sys
1 0.2385 VSBCRocl1l
2 0.2392 VSBCRoc1
3 0.2401 VSBCRoc1

100 0.2625 VSBCRocl
101 0.2503 VSBCRoc3

198 0.2851 VSBCRoc3
199 0.2913 VSBCRoc3
200 0.2913 VSBCRoc3
> t.test (MAP ~ Sys, paired=T, data=X)

Paired t-test
data: MAP by Sys
t = -26.4026, df = 99, p-value < 2.2e-16

Listing 3 t-test of significance of the difference of results of VSBCRoc2 and VSBCRoc3.

> MAP<-c¢(0.2451,0.2511,0.2572,...,0.2851,0.2913,0.2913)
> Sys<-c("VSBCRoc2","VSBCRoc2","VSBCRoc2",...,"VSBCRoc3",
"VSBCRoc3","VSBCRoc3")

> X<-data.frame (MAP=MAP, Sys=Sys)

> X

MAP Sys

0.2451 VSBCRoc2

2 0.2511 VSBCRoc2

0.2572 VSBCRoc?2

[y

w
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.2722 VSBCRoc2
.2503 VSBCRoc3

100
101

o O

198 0.2851 VSBCRoc3
199 0.2913 VSBCRoc3
200 0.2913 VSBCRoc3
> t.test (MAP ~ Sys, paired=T, data=X)

Paired t-test
data: MAP by Sys
t = -8.6917, df = 99, p-value = 7.741le-14

In listings 1, 2 and 3 we have the p-values < 0.05, then our results are statistical signi-
ficant.

5 Conclusion

The main problem with Rocchio’s approach is that the relevant and the irrelevant documents
overlap in the vector space because they often share same terms (at least those of the query).
Therefore it is difficult to select terms that separate relevant and irrelevant documents which
cause the query drift problem (Croft and Harper). To guide the RF process, the authors
of [8, 9] have been computed a vector space basis which gives a better representation of
the documents such that the relevant documents are gathered and the irrelevant ones are
kept away from the relevant documents. Vector space basis change discriminates irrelevant
documents from relevant ones, thus reducing the potential noise in the vector space after
produced by query expansion. The combinations of Rocchio’s models with vector space
basis change improve the results of classic Rocchio’s formula.

This paper reports about incorporating transition matrix (i.e. the algebraic operator
responsible for change of basis) into the classic Rocchio’s model. We intend to incorporate
other algebraic operator (like vector product) into the classic Rocchio’s model.
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