
Structural Rewriting in the π-Calculus
David Sabel

Goethe-University, Frankfurt am Main
sabel@ki.cs.uni-frankfurt.de

Abstract
We consider reduction in the synchronous π-calculus with replication, without sums. Usual
definitions of reduction in the π-calculus use a closure w.r.t. structural congruence of processes.
In this paper we operationalize structural congruence by providing a reduction relation for pi-
processes which also performs necessary structural conversions explicitly by rewrite rules. As we
show, a subset of structural congruence axioms is sufficient. We show that our rewrite strategy
is equivalent to the usual strategy including structural congruence w.r.t. the observation of barbs
and thus w.r.t. may- and should-testing equivalence in the pi-calculus.
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1 Introduction

The π-calculus [9, 8, 21] is a well-known core model for concurrent and mobile processes
with message passing. Its syntax includes parallel process-composition, named channels, and
input/output-capabilities on the channels. The data flow in programs of the π-calculus is
represented by communication between processes. Since links between processes can be sent
as messages, the induced network of processes behaves dynamically.

Even though the π-calculus has been investigated for several decades, its analysis is
still an active research topic. One reason is that variants of the π-calculus have a lot of
applications even outside the field of computer science. Examples are the Spi-calculus [1]
to reason about cryptographic protocols, the stochastic π-calculus [14] with applications in
molecular biology, and the use of the π-calculus to model business processes.

The operational behavior of π-processes is defined in terms of a reduction semantics
(and often extended by an action semantics, for semantic reasoning), which is built by a
single reduction rule for exchanging a message, and applying this reduction rule in so-called
reduction contexts. Additionally, a notion of structural congruence is used, which can be
applied to processes before and after the reduction step. Structural congruence allows
conversions like commuting the order of parallel processes, moving the scope of binders, etc.
Unfortunately the complexity of structural congruence is very high. Indeed in its original
formulation by Milner, it is even unknown whether structural congruence is decidable. A
recent result [22] shows that it is at least EXPSPACE-hard. For reasoning on reductions
and semantics of processes the implicit use of structural congruence is difficult and also
error-prone. This becomes even more difficult, when such proofs are automated. Hence,
in this paper we make the conversion w.r.t. structural congruence explicit by including the
congruence axioms as separate reduction rules in the reduction relation. Moreover, we also
simplify the conversion by dropping some rules, which are not necessary for defining the
reduction relation (but they may be used as program optimizations).
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52 Structural Rewriting in the π-Calculus

Our main result is that the semantics of π-processes remains unchanged if our new
reduction relation replaces the original one. As semantics we use barbed may- and should-
testing equivalence [4] which holds for two processes if their input and output capabilities
coincide if the processes are plugged into any program context. This notion of process
equivalence is directly based on the reduction semantics and – unlike other process equivalences
– like bisimulation or barbed congruence (see e.g. [21]) – it is insensitive for reduction traces.
Hence barbed may- and should-testing equivalence can be viewed as the coarsest notion
of process equivalence which distinguishes obviously different processes (see [4] for a deep
analysis of the different notions of process equivalences and their relation).

Outline In Sect. 2 we recall the synchronous π-calculus and its reduction semantics which
includes structural congruence, and we define may- and should-testing equivalence. In Sect. 3
we introduce the simplified reduction semantics – called D-standard reduction – which makes
conversions w.r.t. structural congruence explicit. In Sect. 4 we show that may- and should-
testing equivalence remains unchanged if the D-standard reduction is used. We conclude in
Sect. 5.

2 The Synchronous π-Calculus with May- and Should-Testing

We consider the synchronous π-calculus with replication but without sums (and recursion).

I Definition 2.1 (Syntax of the π-Calculus). Let N be a countably infinite set of names.
Processes P and action prefixes π are defined by the following grammar, where x, y ∈ N :

P ::= π.P | P1 |||P2 | !P | 0 | νx.P
π ::= x(y) | x〈y〉

The prefix x(y) is called an input-prefix, and x〈y〉 is called an output-prefix.

Names are bound by the ν-binder (in νx.P name x is bound with scope P ) and by the
input-prefix (in x(y).P name y is bound with scope P ). This induces a notion of α-renaming
and α-equivalence as usual. We treat α-equivalent processes as equal. If necessary, we make
α-renaming explicit and denote α-equivalence by =α. We use fn(P ) (fn(π), resp.) for the
set of free names of process P (prefix π, resp.) and bn(P ) (bn(π), resp.) for the set of
bound names of process P (prefix π, resp.). Note that fn(x(y)) = {x}, fn(x〈y〉) = {x, y},
bn(x(y)) = {y}, and bn(x〈y〉) = ∅. We assume the distinct name convention, i.e. free names
are distinct from bound names and bound names are pairwise distinct.

A process x(y).P has the capability to receive some name z along the channel named x
and then behaves like P [z/y] where [z/y] is the capture free substitution of name y by name
z. A process x〈y〉.P has the capability to send a name y along the channel named x. The
silent process 0 has no capabilities to communicate. P1 |||P2 is the parallel composition of
processes P1 and P2. νz.P restricts the scope of the name z to process P . As a notation we
use νX .P abbreviating νx1. . . . .νxn.P . We also use set-notation for X and e.g. write x ∈ X
with its obvious meaning. !P is the replication of process P , i.e. it can be interpreted as
infinitely many copies of P running in parallel.

I Definition 2.2 (Contexts). A process context C ∈ C is a process with a hole [·] at process-
position, i.e. C ∈ C ::= [·] | π.C | C |||P | P |||C | !C | νx.C. For a context C and a process
P the construct C[P ] denotes the process where the hole of C is replaced by process P . For
contexts C1, C2 we say C1, C2 are prefix disjoint iff there does not exist a context C3 with
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C1 = C2[C3] or C2 = C1[C3]. For P = C[Q] the replication depth of Q in P w.r.t. C is the
number m of replications above Q which is exactly the number of contexts Ci of the form
! [·] if C = C1 . . . Cn where Ci are contexts of hole-depth 1.

I Definition 2.3 (Structural congruence ≡). Structural congruence ≡ is the smallest congru-
ence on processes satisfying the equations:

P ≡ Q, if P =α Q

P1 ||| (P2 |||P3) ≡ (P1 |||P2) |||P3
P1 |||P2 ≡ P2 |||P1
P ||| 0 ≡ P

νz.νw.P ≡ νw.νz.P

νz.0 ≡ 0
νz.(P1 |||P2) ≡ P1 ||| νz.P2, if z 6∈ fn(P1)

!P ≡ P ||| !P

It is unknown whether structural congruence of processes is decidable (see also [2, 3, 6]
for more discussion and further results), at least it is a very hard problem:

I Proposition 2.4 ([22, Corollary 4.4]). The decision problem whether for two π-processes
P ≡ Q holds is EXPSPACE-hard.

We define the usual reduction semantics of π-processes (see e.g. [21]) as a small-step
reduction relation. The only reduction rule is the rule (ia) for communication (interaction):

x(y).P |||x〈v〉.Q ia−→ P [v/y] |||Q

Reduction contexts D are process contexts where the hole is not below a replication or a
π-prefix, i.e. D ∈ D ::= [·] | D |||P | P |||D | νx.D where x ∈ N and where P is a process.

I Definition 2.5 (Standard Reduction, sr−→). With D,ia−−−→ we denote the closure of ia−→ w.r.t. re-
duction contexts, and a standard reduction sr−→ consists of applying a D,ia−−−→-reduction modulo
structural congruence, i.e.

P
ia−→ Q

D[P ] D,ia−−−→ D[Q]
where D ∈ D

P ≡ P ′ ∧ P ′
D,ia−−−→ Q′ ∧ Q′ ≡ Q

P
sr−→ Q

We use the following notation for unions of transformations, where a transformation is
some binary relation on processes (e.g. sr−→):

I Definition 2.6. For a transformation a−→ we define a,0−−→ := {(P, P ) | P is a process} and
a,i−−→ := {(P,Q) | P a−→ S ∧ S a,i−1−−−→ Q} for i > 0. Transitive and reflexive-transitive closure
are defined as a,+−−→ :=

⋃
i>0

a,i−−→, and a,∗−−→ :=
⋃
i≥0

a,i−−→. For a−→ and b−→ let a∨b−−→ := a−→∪ b−→.

I Example 2.7. An example for a sequence of standard reductions is

νx.(x〈w〉.0 |||x(y).z〈y〉.0) ||| ! z(u).0 sr−→ νx.(z〈w〉.0) ||| ! z(u).0 sr−→ ! z(u).0

Making the conversions w.r.t. ≡ more explicit we can write this as:

νx.(x〈w〉.0 |||x(y).z〈y〉.0) ||| ! z(u).0 ≡ νx.(x(y).z〈y〉.0 |||x〈w〉.0) ||| ! z(u).0
D,ia−−−→ νx.(z〈w〉.0 ||| 0) ||| ! z(u).0 ≡ νx.(z〈w〉.0) ||| ! z(u).0 ≡ νx.(z〈w〉.0 ||| ! z(u).0)
≡ νx.(z〈w〉.0 ||| (z(u).0 ||| ! z(u).0)) ≡ νx.((z(u).0 ||| z〈w〉.0) ||| ! z(u).0)

D,ia−−−→ νx.((0 ||| 0) ||| ! z(u).0) ≡ νx.(0 ||| ! z(u).0) ≡ νx.0 ||| ! z(u).0 ≡ 0 ||| ! z(u).0 ≡ ! z(u).0

WPTE’14
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The high complexity of deciding structural congruence justifies making structural conver-
sion visible during reduction. I.e., instead of using ≡ implicitly during reduction, it makes
sense to introduce the conversions as separate reduction rules. Moreover, not all axioms
of structural congruence are required to apply D,ia−−−→-steps, e.g. the axiom 0 |||P ≡ P is not
necessary, and also it is not necessary to apply the axioms below a replication or a π-prefix.
Before defining a modified reduction for the π-calculus (in Sect. 3) we define the semantics
of π-processes by a process equivalence. In the π-calculus several definitions and notions for
process equivalences exist. We choose the approach of testing the input and output capabil-
ities of processes in all contexts and also test whether the capability may or should occur.
This notion of may- and should-testing (sometimes also called must- or fair must testing,
see e.g. [11, 7, 4, 16]) is close to contextual equivalence [10, 13] in other program calculi
like the lambda calculus, but adapted to the concurrent setting (see e.g. [12, 17, 18, 19, 23]
for contextual equivalence with may- and should-semantics in extended concurrent lambda
calculi). A strong connection between may- and should-testing equivalence and a classic
notion of contextual equivalence (using a notion of success) for the π-calculus was shown in
[20]. May- and should-testing equivalence is a coarse notion of program equivalence equating
as much processes as possible, but discriminating obviously different processes.

Input and output capabilities are formalized by the notion of a barb:

I Definition 2.8 (Barb). A process P has a barb on input x (written as P �x) iff P can
receive a name on channel x, i.e. P = νX .(x(y).P ′ |||P ′′) where x 6∈ X , and P has a barb on
output x (written as P �x) iff P can emit a name on channel x, i.e. P = νX .(x〈y〉.P ′ |||P ′′)
where x 6∈ X . We write P ≡�x (P ≡�x, resp.) iff P ≡ P ′ and P ′ �x (P ′ �x, resp.).

As observations for process equivalence we will use on the one hand whether a process
may reduce to a process that has a barb, and on the other hand whether a process has the
ability to have a barb on every reduction path:

I Definition 2.9 (May-barb and Should-barb). For µ ∈ {x, x}, P may have a barb on µ

(written as P ↓µ) iff P
sr,∗−−→ Q ∧Q≡�µ, and P should have a barb on µ (written as P ⇓µ) iff

P
sr,∗−−→ P ′ =⇒ P ′ ↓µ. We write P ↑µ iff P ⇓µ does not hold, and P ⇑µ iff P ↓µ does not hold.

Note that P ↑µ equivalently means that P can reduce to a process that has no input (or
output, resp.) capabilities on the channel µ, i.e. P ↑µ holds iff P sr,∗−−→ P ′ and P ′⇑µ.

I Definition 2.10 (Barbed May- and Should-Testing Equivalence). Processes P and Q are
barbed testing equivalent (written P ∼ Q) iff P - Q∧Q - P , where - := -may ∩-should and

P -may Q iff ∀x ∈ N , µ ∈ {x, x}, C ∈ C: C[P ]↓µ =⇒ C[Q]↓µ
P -should Q iff ∀x ∈ N , µ ∈ {x, x}, C ∈ C: C[P ]⇓µ =⇒ C[Q]⇓µ

Our definition of barbed testing equivalence is given in a general form, since the may-
and should-behavior, all channel names, the input and output barbs, and also all channels
are separately considered. However, in the π-calculus the definition is equivalent to simpler
definitions. I.e., it is sufficient to observe the should-behavior only, and to observe input (or
output) channels exclusively, and to either observe a single channel name, or existentially
observing the barb capabilities (see [4] for the asynchronous π-calculus and [20] for the
synchronous variant used in this paper). However, since our results also apply for the general
definition, we refrain from working with the simpler definition.

As an easy result, we show that structural congruence preserves the semantics of processes:

I Proposition 2.11. If P ≡ Q then P ∼ Q.



D. Sabel 55

Proof. Let P ≡ Q, C be a context s.t. P ↓µ (P ↑µ, resp.), i.e. C[P ] sr,∗−−→ P ′ and P ′≡�µ (or
P ′ ⇑µ, resp.). Since ≡ is a congruence and included in sr−→, we have C[Q] ≡ C[P ] sr,∗−−→ P ′

and C[Q] sr,∗−−→ P ′ which shows C[Q] ↓µ (C[Q] ↑µ, resp.). Also C[Q] ↓µ =⇒ C[P ] ↓µ and
C[Q]↑µ =⇒ C[P ]↑µ hold by symmetry of ≡. Since S ↑µ ⇐⇒ ¬S⇓µ, this implies P ∼ Q. J

3 Structural Congruence as Rewriting

In this section we make the conversion w.r.t. structural equivalence explicit and also restrict
this conversion to reduction contexts. In the following definition the relation sca−−→ is the
reduction relation corresponding to structural congruence axioms applied in both directions.
However, the rewrite rules are a little bit more general than the congruence axioms, but not
more general than the structural congruence relation. The relation sc−→ is a restriction of
sca−−→, the replication axiom is only permitted in the expanding direction, and rules adding,
removing and moving down ν-binders as well as adding or removing the silent process are
not included. The removed rules can be seen as optimizations, i.e. removing “garbage”, but –
as we show – they are dispensable for reasoning about may- and should-testing equivalence.

I Definition 3.1 (Structural Reduction). The relation sc−→ is defined by the following rules:

(assocl) P1 ||| (P2 |||P3) sc−→ (P1 |||P2) |||P3

(assocr) (P1 |||P2) |||P3
sc−→ P1 ||| (P2 |||P3)

(commute) P1 |||P2
sc−→ P2 |||P1

(replunfold) !P sc−→ P ||| !P
(nuup) D[νz.P ] sc−→ νz.D[P ], if z 6∈ fn(D),

[·] 6= D ∈ D

The relation sca−−→ is defined by the rules:

P
sca−−→ Q if P sc−→ Q

(nuintro) P
sca−−→ νz.P if z 6∈ fn(P )

(nurem) νz.P
sca−−→ P if z 6∈ fn(P )

(nudown) νz.D[P ] sca−−→ D[νz.P ], if z 6∈ fn(D), [·] 6= D ∈ D

(replfold)P ||| !P sca−−→ !P
(intro0l) P

sca−−→ 0 |||P
(intro0r) P

sca−−→ P ||| 0
(rem0r) P ||| 0 sca−−→ P

The relations D,sc−−−→ and C,sca−−−→ are defined as:

P
sc−→ Q

D[P ] D,sc−−−→ D[Q]
where D ∈ D

P
sca−−→ Q

C[P ] C,sca−−−→ C[Q]
where C ∈ C

We sometimes add more information on the reduction arrow, and e.g. write D,sc,nuup,∗−−−−−−−−→
for a (maybe empty) finite sequence of D,sc−−−→-transformations which all apply the rule (nuup).

I Lemma 3.2. The relation C,sca,∗−−−−→ coincides with structural congruence, i.e. C,sca,∗−−−−→ = ≡.

Since C,sca,∗−−−−→ and ≡ coincide, we can replace ≡ in the definition of standard reduction:

I Corollary 3.3. P sr−→ Q iff P
C,sca,∗−−−−→ P ′ ∧ P ′

D,ia−−−→ Q′ ∧ Q′
C,sca,∗−−−−→ Q.

We define our new variant of standard reduction, called D-standard reduction, which
restricts the conversion w.r.t. structural congruence to D,sc−−−→-transformations:

I Definition 3.4 (D-Standard Reduction, dsr−−→). A D-standard reduction dsr−−→ applies the rule
(ia) in a reduction context D ∈ D modulo D,sc,∗−−−−→, i.e. :

P
D,sc,∗−−−−→ P ′ ∧ P ′

D,ia−−−→ Q′ ∧ Q′
D,sc,∗−−−−→ Q

P
dsr−−→ Q

WPTE’14
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I Example 3.5. We consider the same process as in Example 2.7.

νx.(x〈w〉.0 |||x(y).z〈y〉.0) ||| ! z(u).0 D,sc−−−→ νx.(x(y).z〈y〉.0 |||x〈w〉.0) ||| ! z(u).0
D,ia−−−→ νx.(z〈w〉.0 ||| 0) ||| ! z(u).0 D,sc,5−−−−→ νx.(0 ||| ((z〈w〉.0 ||| z(u).0) ||| ! z(u).0))
D,ia−−−→ νx.(0 ||| ((0 ||| 0) ||| ! z(u).0))

Note that D-standard reduction cannot remove the 0-components and the ν-binder.

Replacing standard reduction by D-standard reduction results in modified observation
predicates and a modified definition of may- and should-testing equivalence. However, we
will show that the modified equivalence coincides with the original one in Theorem 4.13.

I Definition 3.6. For µ ∈ {x, x}, P may have a barb w.r.t. dsr−−→ on x (written as P ↓D,µ) iff
P

dsr,∗−−−→ Q
D,sc,∗−−−−→ Q′ and Q′ �µ, and P should have a barb w.r.t. dsr−−→ on x (written as P ⇓D,µ)

iff for all processes P ′ such that P dsr,∗−−−→ P ′, also P ′ ↓D,µ holds. We write P ↑D,µ iff ¬(P ⇓D,µ)
holds and P ⇑D,µ iff ¬(P ↓D,µ) holds. Processes P and Q are barbed testing equivalent
w.r.t. dsr−−→ (written P ∼D Q) iff P -D Q ∧Q -D P , where -D := -D,may ∩-D,should and

P -D,may Q iff ∀x ∈ N , µ ∈ {x, x, C ∈ C}: C[P ]↓D,µ =⇒ C[Q]↓D,µ
P -D,should Q iff ∀x ∈ N , µ ∈ {x, x}, C ∈ C}: C[P ]⇓D,µ =⇒ C[Q]⇓D,µ

Note that P ↑D,µ is equivalent to: ∃Q : P dsr,∗−−−→ Q ∧Q⇑D,µ. Our main result will be that ∼
and ∼D coincide and thus D-standard reduction can be used for reasoning about process
equivalence. For showing ∼ = ∼D it is sufficient to prove that ↓µ =↓D,µ and⇓µ =⇓D,µ.

4 Relating Reduction Strategies

As a required notation we define conversions w.r.t. ≡ that are not included in D,sc−−−→:

I Definition 4.1 (Internal C,sca−−−→-Transformations, isca−−→). With isca−−→ we denote a C,sca−−−→
transformation that is not a D,sc−−−→ transformation, i.e. isca−−→ = C,sca−−−→ \ D,sc−−−→. With isca〈k〉−−−−→
we denote a isca−−→-transformation at replication depth k, i.e. k is the number of replications
above the redex of the isca−−→-transformation.

In the remainder of this section we establish our main result by showing that ∼ and ∼D
coincide. The proof is structured into three parts: in Sect. 4.1 we show that for a sequence
of standard reductions P sr,∗−−→ Q the internal conversions isca−−→ can be shifted to the right
resulting in a reduction P dsr,∗−−−→ Q′

isca,∗−−−−→ Q. In Sect. 4.2 we show that if a process has a
barb w.r.t. ≡, i.e. P ≡�µ, then we can remove internal conversions isca−−→ and thus P D,sc,∗−−−−→ P ′

s.t. P ′ �µ. In Sect. 4.3 we use the results of both previous sections to show ↓µ =↓D,µ and
⇓µ =⇓D,µ which implies the coincidence of ∼ and ∼D.

4.1 Shifting Internal Conversions to the End
In this section we show that for every standard reduction sequence P sr,∗−−→ Q, also a
D-standard reduction sequence followed by internal structural conversion steps exists,
i.e. P dsr,∗−−−→ Q′

isca,∗−−−−→ Q. The result is established by inspecting overlappings of the forms
P1

isca−−→ P2
D,sc−−−→ P3 and P1

isca−−→ P2
D,ia−−−→ P3, where in both cases the isca−−→-transformation

must be commuted with the other reduction or transformation.
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We will use so-called commuting diagrams as a notation, which are diagrams of the form
as shown on the right. Every arrow represents a transformation step or a sequence of steps
denoted by ∗ (0 or more steps) or + (1 or more steps) as part of the
label. Labels denote the used reduction rule, solid arrows mean given
transformations, dashed arrows are existentially quantified transformations.
If the label is id, then this means that processes are identical. Labels may

·
label3

��

label1// ·
label2
��

·
label4
// ·

include variables x, xi for the name of a used rule. These variables are meant universally
quantified for the diagram, i.e. all occurrences of x in one diagram can only be instantiated
with the same rule name x, and for diagrams with different variables (e.g. x1 and x2) any
variable can be instantiated with different (or equal) rule names. If not otherwise stated
x, x1, x2 may be instantiated with (assocl), (assocr), (commute), (nucomm), (nudownr),
(nuup), (replunfold), (replfold), (nuintro), (intro0l), (intro0r), (rem0r), or (nurem).

Inspecting all overlappings between a D,sc−−−→- and an isca−−→-step shows:

I Lemma 4.2. Given a sequence P1
isca−−→ P2

D,sc−−−→ P3, then the sequence can always be
commuted by one of the following diagrams:

·
isca〈k〉,x //

D,sc
��

·
D,sc
��

·
isca〈k〉,x

// ·

k ≥ 0

·
isca〈k〉,x //

D,sc
��

·
D,sc
��

·
isca〈k−1〉,x

// ·
isca〈k〉,x

// ·

k ≥ 1

·
isca〈k〉,x //

D,sc,+
��

·
D,sc
��

·
isca〈k〉,x

// ·

k ≥ 0

·
isca〈0〉,x //

id

·
D,sc
��
·

·
isca〈0〉,x1 //

isca〈0〉,x2 %%

·
D,sc
��
·

·

D,sc %%

isca〈0〉,x // ·
D,sc
��
·

Inspecting all overlappings between a D,ia−−−→- and an isca−−→-step

I Lemma 4.3. Given a sequence P1
isca−−→ P2

D,ia−−−→ P3, then the sequence can always be
commuted by one of the following diagrams:

·
isca〈k〉 //

D,ia
��

·
D,ia
��

·
isca〈k〉

// ·

k ≥ 0

·
isca〈0〉,x //

D,sc,+ ��

·

D,ia

��

·
D,ia ��
·
isca〈0〉,x

// ·

Using the diagrams of the two previous lemmas we are able to show that in a sr−→-reduction
sequence all isca−−→-steps can always be shifted to the right end.

I Proposition 4.4. Let P1
a1−→ P2

a2−→ . . .
an−1−−−→ Pn where every ai−→ is either an C,sca−−−→ or a

D,ia−−−→ transformation. Then there exists P1
b1−→ Q1

b2−→ . . .
bm−−→ Qm

isca,∗−−−−→ Pn where every bi−→
is either a D,ia−−−→ or a D,sc−−−→ transformation.

Proof. In the input sequence (and also intermediate sequences in the proof) we can switch
to the representation where ai−→ is either an isca〈k〉−−−−→ (for some k ≥ 0) or a D,ia−−−→, or a D,sc−−−→
transformation. We represent the two latter cases uniformly by D,sc∨ia−−−−−→ and thus only
have to deal with sequences consisting of isca〈k〉−−−−→- and D,sc∨ia−−−−−→-steps. The diagrams of
Lemmas 4.2 and 4.3 can be seen as rewriting rules on such sequences, where we also simplify
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the representation resulting in the rules:
isca〈k〉−−−−→ .

D,sc∨ia−−−−−→  
D,sc∨ia−−−−−→ .

isca〈k−1〉−−−−−−→ .
isca〈k〉−−−−→ for k ≥ 1 (1)

isca〈k〉−−−−→ .
D,sc∨ia−−−−−→  

D,sc∨ia,n−−−−−−→ .
isca〈k〉−−−−→ for k ≥ 0 and any n ≥ 1 (2)

isca〈0〉−−−−→ .
D,sc∨ia−−−−−→  ε (where ε represents the empty string) (3)

isca〈0〉−−−−→ .
D,sc∨ia−−−−−→  

isca〈0〉−−−−→ (4)
isca〈0〉−−−−→ .

D,sc∨ia−−−−−→  
D,sc∨ia−−−−−→ (5)

Let R = P1
a1−→ P2

a2−→ . . .
an−1−−−→ Pn. We define a measure µ(R) for those reduction sequences:

let P(R) be the longest prefix of R that has an D,sc∨ia−−−−−→-step as its last step, or the empty
sequence, if there is no D,sc∨ia−−−−−→-step in R. W.l.o.g. P(R) = P1

a1−→ P2
a2−→ . . .

aj−1−−−→ Pj . Now
the multiset µ(R) is constructed by inserting the pair #(Pi

isca〈k〉−−−−→ Pi+1) for every reduction
step Pi

isca〈k〉−−−−→ Pi+1 in P(R) (and inserting no pairs for steps Pi
D,sc∨ia−−−−−→ Pi+1), where

#(Pi
isca〈k〉−−−−→ Pi+1) =


(k,∞), if isca〈k〉−−−−→ is not the last isca−−→ reduction in P(R)
(k, d), otherwise, where d = j − i− 1 (i.e. d is the number of

reductions in P(R) that follow after Pi
isca〈k〉−−−−→ Pi+1)

We use the multiset ordering, where pairs are ordered lexicographically. The order-
ing is well-founded and if the multiset µ(R) is empty, then P(R) does not contain isca−−→-
transformations. We show the claim by induction on µ(R): If µ(R) is empty then P(R)
only contains D,sc∨ia−−−−−→-steps (or is empty). Hence R is of the right form and the claim
holds. For the induction step assume that µ(R) contains at least one pair, hence P(R) has
at least a subsequence isca−−→ D,sc∨ia−−−−−→. Let P(R) = P1

a1−→ . . .
ai−→ Pi

isca〈k〉−−−−→ Pi+1
D,sc∨ia−−−−−→

Pi+2
D,sc∨ia,m−−−−−−−→ Pi+2+m and R = P(R) isca,∗−−−−→ Pn. We apply one of the rewriting rules

derived from the diagrams to the subsequence Pi
isca〈k〉−−−−→ Pi+1

D,sc∨ia−−−−−→ Pi+2, Let R′ be the
sequence R after applying the rewrite rule. We inspect the cases for all five rules (1)–(5):

(1) R′=P1
a1−→ . . .

ai−→Pi
D,sc∨ia−−−−−→P ′

isca〈k−1〉−−−−−−→P ′′
isca〈k〉−−−−→Pi+2

D,sc∨ia,m−−−−−−−→Pi+2+m
isca,∗−−−−→ Pn.

For µ(R′) compared to µ(R) there are two possibilities:

If m = 0, then P(R′) = P1
a1−→ . . .

ai−→ Pi
D,sc∨ia−−−−−→ P ′ and a pair (k, 1) is removed and

perhaps some other pair (k,∞) is replaced by (k, d) for some d <∞.
If m > 0, then P(R′)=P1

a1−→ . . .
ai−→Pi

D,sc∨ia−−−−−→P ′
isca〈k−1〉−−−−−−→P ′′

isca〈k〉−−−−→Pi+2
D,sc∨ia,m−−−−−−−→

Pi+2+m and a pair (k,m+ 1) is replaced by two pairs (k,m) and (k − 1,∞).
In both cases µ(R′) < µ(R) and thus the induction hypothesis can be applied to R′.

(2) R′ = P1
a1−→ . . .

ai−→ Pi
D,sc∨ia,m′−−−−−−−→ P ′

isca〈k〉−−−−→ Pi+2
D,sc∨ia,m−−−−−−−→ Pi+2+m

isca,∗−−−−→ Pn where
m′ ≥ 1. For µ(R′) compared to µ(R) there are two possibilities:

If m = 0, then P(R′) = P1
a1−→ . . .

ai−→ Pi
D,sc∨ia,m′−−−−−−−→ P ′ and a pair (k, 1) is removed

and perhaps some other pair (k,∞) is replaced by (k, d) where d <∞.
If m > 0, then P(R′) =P1

a1−→ . . .
ai−→Pi

D,sc∨ia,m′−−−−−−−→P ′
isca〈k〉−−−−→Pi+2

D,sc∨ia,m−−−−−−−→Pi+2+m
and a pair (k,m+ 1) is replaced by (k,m).

In both cases µ(R′) < µ(R) and thus the induction hypothesis can be applied to R′.
(3) R′ = P1

a1−→ . . .
ai−→ Pi = Pi+2

D,sc∨ia,m−−−−−−−→ Pi+2+m
isca,∗−−−−→ Pn. For µ(R′) compared to

µ(R) there are two possibilities:
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If m = 0, then P(R′) is a prefix of P1
a1−→ . . .

ai−→ Pi and a pair (k, 1) is removed and
perhaps a pair (k,∞) is replaced by (k, d) where d <∞.
If m > 0, then P(R′) = P1

a1−→ . . .
ai−→ Pi = Pi+2

D,sc∨ia,m−−−−−−−→ Pi+2+m and a pair
(k,m+ 1) is removed, and perhaps a pair (k,∞) is replaced by (k, d) for some d <∞.

In both cases µ(R′) < µ(R) and thus the induction hypothesis can be applied to R′.
(4) R′ = P1

a1−→ . . .
ai−→ Pi

isca〈k〉−−−−→ Pi+2
D,sc∨ia,m−−−−−−−→ Pi+2+m

isca,∗−−−−→ Pn. For µ(R′) compared
to µ(R) there are two possibilities:

If m = 0, then P(R′) is a prefix of P1
a1−→ . . .

ai−→ Pi and a pair (k, 1) is removed and
perhaps some other pair (k,∞) is replaced by (k, d) where d <∞.
If m > 0, then P(R′) = P1

a1−→ . . .
ai−→ Pi

isca〈k〉−−−−→ Pi+2
D,sc∨ia,m−−−−−−−→ Pi+2+m and a pair

(k,m+ 1) is replaced by (k,m).

(5) R′ = P1
a1−→ . . .

ai−→ Pi
D,sc∨ia−−−−−→ Pi+2

D,sc∨ia,m−−−−−−−→ Pi+2+m
isca,∗−−−−→ Pn. For µ(R′) compared

to µ(R) there are two possibilities:

P(R′) is empty, since all aj−→-steps are D,sc∨ia−−−−−→-steps. Then R′ is of the right form.
P(R′) = P1

a1−→ . . .
ai−→ Pi

D,sc∨ia−−−−−→ Pi+2
D,sc∨ia,m−−−−−−−→ Pi+2+m. Then a pair (k,m) is

removed and another pair (k,∞) is replaced by a pair (k, d) where d <∞ (and d > m).
In this case µ(R′) < µ(R) and thus we can apply the induction hypothesis to R′. J

I Remark 4.5. Termination of the rewriting in the previous proof can also be shown
automatically by encoding the rules as an (extended) term rewriting system (TRS) and
then using a termination prover. Let K,N, and X be variables, S,Z be constructor symbols
encoding Peano-numbers, and isca, dscdia, and gen be defined function symbols. The
encoding of the rules (1)–(5) is straight-forward, except for rule (2) due to the constraint
n ≥ 1. It is encoded by three TRS-rules (2), (2’), (2”), where the first rule “guesses” the
number n, and the rules (2’) and (2”) generate the corresponding number of D,sc∨ia−−−−−→-steps:
isca(S(k), dscdia(X)) → dscdia(isca(K, isca(S(K), X))) (1)

isca(K, dscdia(X)) → gen(S(N), isca(K, X)) (2)
gen(S(N), X) → dscdia(gen(N, X)) (2′)

gen(Z, X) → X (2′′)

isca(Z, dscdia(X)) → X (3)
isca(Z, dscdia(X)) → isca(Z, X) (4)
isca(Z, dscdia(X)) → dscdia(Z, X) (5)

Thus the TRS has rules with free variables on the right hand side. However, the termination
prover AProVE [5] has shown innermost-termination of the TRS (which is sufficient), and
the certifier CeTA [24] has certified the termination proof1. A similar encoding approach
was already used for automating correctness proofs for program transformations in [15].

We conclude this subsection by showing that also the number of (ia)-reductions is
preserved by shifting internal transformations:

I Theorem 4.6. 1. If P dsr,n−−−→ Q then P sr,n−−→ Q. 2. If P sr,n−−→ Q then P dsr,n−−−→ Q′
isca,∗−−−−→ Q.

Proof. Part (1) holds, since every dsr−−→-step is also an sr−→-step. For part (2), let P =
P0

sr−→ P1 . . .
sr−→ Pn = Q. Corollary 3.3 shows that for ≤ i ≤ n − 1 Pi

sr−→ Pi+1 can
be written as Pi

C,sca,∗−−−−→ P ′i
D,ia−−−→ P ′′i

C,sca,∗−−−−→ Pi+1 for some processes P ′i , P ′′i and thus
P = P0

C,sca,∗−−−−→ P ′0
D,ia−−−→ P ′′0

C,sca,∗−−−−→ P1 . . . Pn−1
C,sca,∗−−−−→ P ′n−1

D,ia−−−→ P ′′n−1
C,sca,∗−−−−→ Pn = Q.

Proposition 4.4 shows that there exists a process Q′ s.t. P D,ia∨sc,∗−−−−−−→ Q′
isca,∗−−−−→ Q. The

1 the termination proof is available at http://www.ki.cs.uni-frankfurt.de/persons/sabel/picalc.html
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construction in the proof of Proposition 4.4 together with the diagrams in Lemmas 4.2 and
4.3 imply that no D,ia−−−→ transformation is eliminated or introduced. Thus P D,ia∨sc,∗−−−−−−→ Q′

must contain exactly n D,ia−−−→-transformations and thus it is also a sequence P dsr,n−−−→ Q′. J

4.2 Removing Internal Conversions from Barbs

In this section we show that P ≡�µ also implies that P D,sc,∗−−−−→ P ′ s.t. P ′ �µ. Let F -contexts
be the class of contexts that do not have a hole below an input- or output prefix, i.e.

F ∈ F ::= [·] | !F | F |||P | P |||F | νx.F where x ∈ N and P is a process

We say that F ∈ F captures the name x ∈ N iff the hole of F is in scope of a restriction νx.

I Lemma 4.7. If P ≡ νX .(π.Q |||R), then there exists F ∈ F , a prefix π′, and process Q′,
s.t. P = F [π′.Q′] and fn(π) ∩ X = fn(π′) ∩ fn(P ).

Proof. Let P0
C,sca,n−−−−−→ Pn = νX .(π.Q |||R). We use induction on n. If n = 0 then the claim

holds, since νX .([·] |||R) is an F-context. If n > 0 let P0
C,sca−−−→ P1

C,sca,n−1−−−−−−→ νX .(π.Q |||R).
The induction hypothesis shows that P1 = F1[π1.Q1] s.t. fn(π) ∩ X = fn(π1) ∩ fn(P1).
Inspecting all possibilities for the step P0

C,sca−−−→ P1, shows that P0 = F0[π0.Q0] for some
F -context F0, and where π0 is π1 but perhaps with a renaming of variables due to α-renaming.
However, C,sca−−−→-transformation can neither capture free names nor move bound names out
of their scope, and thus the claim of the lemma holds. J

I Lemma 4.8. If P = F [π.Q] for some F ∈ F , prefix π, and process Q, then P
D,sc,∗−−−−→

νX .(π′.Q′ |||R) s.t. fn(π) ∩ fn(F [π.Q]) = fn(π′) ∩ X .

Proof. We use structural induction on F . If F is empty, then P is of the required form.

If F = F ′ |||R then by the induction hypothesis (and since [·] |||R is a D-context):
F ′[π.Q] |||R

D,sc,∗−−−−→ (νX .(π′.Q′ |||R′)) |||R s.t. fn(π) ∩ fn(F [π.Q]) = fn(π′) ∩ X . Suppose
X = {x1, . . . , xm} and let Y := {y1, . . . , ym} be fresh names, and [~y/~x] be the substitution
[y1/x1, . . . , ym/xm]. We can extend this reduction as follows: (νX .(π′.Q′ |||R′)) |||R

=α (νY.(π′[~y/~x].Q′[~y/~x] |||R′[~y/~x])) |||R
D,sc,nuup,∗−−−−−−−−→ (νY.((π′[~y/~x].Q′[~y/~x] |||R′[~y/~x]) |||R))

D,sc,assocr−−−−−−−→ (νY.(π′[~y/~x].Q′[~y/~x] ||| (R′[~y/~x] |||R))). Clearly, only bound names of π′ are
renamed and thus the condition on the names holds.
If F = R |||F ′ then the reasoning is analogous to the previous case.
If F = νx.(F ′) then by the induction hypothesis (F ′[π.Q]) D,sc,∗−−−−→ (νX .(π′.Q′ |||R′)) where
fn(π) ∩ fn(F ′[π.Q]) = fn(π′) ∩ X . The same reduction can be performed in the D-context
νx.([·]): νx.(F ′[π.Q]) D,sc,∗−−−−→ νx.(νX .(π′.Q′ |||R′)) and occurrences of x in π and π′ are
captured for both processes.
If F = !F ′ then by the induction hypothesis F ′[π.Q] D,sc,∗−−−−→ (νX .(π′.Q′ |||R′)) where
fn(π)∩fn(F ′[π.Q]) = fn(π′)∩X . Suppose that X = {x1, . . . , xm} and let Y = {y1, . . . , ym}
be fresh names, [~y/~x] be the substitution [y1/x1, . . . , ym/xm], and P0 be an α-renamed copy
of F ′[π.Q]. Then !F ′[π.Q] D,sc,replunfold−−−−−−−−−−→ F ′[π.Q] ||| !P0

D,sc,∗−−−−→ (νX .(π′.Q′ |||R′)) ||| !P0

=α (νY.(π′[~y/~x].Q′[~y/~x] |||R′[~y/~x])) ||| !P0
D,sc,nuup,∗−−−−−−−−→ νY.((π′[~y/~x].Q′[~y/~x] |||R′[~y/~x]) ||| !P0)

D,sc,assocr−−−−−−−→ νY.(π′[~y/~x].Q′[~y/~x] ||| (R′[~y/~x] ||| !P0)). The last process is of the required form
and free names of π′ remain free in π′[~y/~x]. J
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Combining Lemmas 4.7 and 4.8 results in:

I Theorem 4.9. If P ≡ νX .(π.Q |||R) then P
D,sc,∗−−−−→ νX ′.(π′.Q′ |||R′) s.t. fn(π) ∩ X =

fn(π′) ∩ X ′.

I Corollary 4.10. For all x ∈ N and µ ∈ {x, x}: P ≡�µ iff P
D,sc,∗−−−−→ Q and Q �µ.

Proof. This follows since D,sc,∗−−−−→ ⊂ ≡, and from Theorem 4.9. J

4.3 Coincidence of ∼ and ∼D

We now prove our main result, by first showing that the observation predicates ↓µ,⇓µ remain
unchanged if sr−→ is replaced by dsr−−→. This implies that ∼ = ∼D.

I Proposition 4.11. ↓µ = ↓D,µ.

Proof. We have to show two parts:

If P ↓D,µ, then P
dsr,n−−−→ Q

D,sc,∗−−−−→ Q′ and Q′ �µ. Theorem 4.6 shows that P sr,n−−→ Q and
Corollary 4.10 shows that Q≡�µ. Thus we have P ↓µ.
If P ↓µ then P sr,n−−→ Q∧Q≡�µ. Theorem 4.6 shows that P dsr,n−−−→ Q′

isca,∗−−−−→ Q, Lemma 3.2
implies that Q′≡�µ, and by Corollary 4.10 Q′ dsr,∗−−−→ Q′′ s.t. Q′′ �µ. This shows P ↓D,µ. J

I Proposition 4.12. ⇓µ = ⇓D,µ.

Proof. We show the converse, i.e. ↑µ = ↑D,µ. Proposition 4.11 already implies⇑µ =⇑D,µ.

Let P be a process with P ↑D,µ. Then P
dsr,n−−−→ Q and Q⇑D,µ. Theorem 4.6 shows that

P
sr,n−−→ Q. Since Q⇑D,µ ⇐⇒ Q⇑µ, this implies P ↑µ.

If P ↑µ, then P
sr,n−−→ Q and Q⇑µ. Theorem 4.6 shows that P dsr,n−−−→ Q′

isca,∗−−−−→ Q. This
also implies Q′ ≡ Q and thus Q′⇑µ. Since Q′⇑D,µ ⇐⇒ Q′⇑µ, this shows P ↑D,µ. J

The definitions of ∼ and ∼D only differ in the used observation predicates. In the two
previous propositions we have shown, that the observation predicates are identical, and thus:

I Theorem 4.13. ∼ = ∼D.

A consequence of the previous theorem and Proposition 2.11 is:

I Corollary 4.14. If P ≡ Q then P ∼D Q.

5 Conclusion

We have defined a reduction strategy for the synchronous π-calculus which makes conversions
w.r.t. structural congruence explicit by reduction rules, and uses a restricted set of those
conversions. We have shown that the new reduction strategy does not change the semantics
of processes w.r.t. may- and should-testing equivalence. For further research, we may use the
new reduction strategy for proving correctness of process transformations, e.g. automated
computation of overlappings between transformation steps and D-standard reductions. Also
extensions of the π-calculus, may be the topic of further research.
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