
Inverse Unfold Problem and Its Heuristic Solving
Masanori Nagashima, Tomofumi Kato, Masahiko Sakai, and
Naoki Nishida

Graduate School of Information Science, Nagoya University
Furo-cho, Chikusa-ku, Nagoya 464–8603 Japan
nagashima@sakabe.i.is.nagoya-u.ac.jp, tomofumi@trs.cm.is.nagoya-u.ac.jp,
sakai@is.nagoya-u.ac.jp, nishida@is.nagoya-u.ac.jp

Abstract
Unfold/fold transformations have been widely studied in various programming paradigms and
are used in program transformations, theorem proving, and so on. This paper, by using an
example, show that restoring an one-step unfolding is not easy, i.e., a challenging task, since some
rules used by unfolding may be lost. We formalize this problem by regarding one-step program
transformation as a relation. Next we discuss some issues on a specific framework, called pure-
constructor systems, which constitute a subclass of conditional term rewriting systems. We show
that the inverse of T preserves rewrite relations if T preserves rewrite relations and the signature.
We propose a heuristic procedure to solve the problem, and show its successful examples. We
improve the procedure, and show examples for which the improvement takes effect.

1998 ACM Subject Classification I.2.2 Automatic Programming

Keywords and phrases program transformation, unfolding, conditional term rewriting system

Digital Object Identifier 10.4230/OASIcs.WPTE.2014.27

1 Introduction

Unfold/fold transformations have been widely studied on functional[6, 23], logic[11, 24, 25, 21,
22, 20] and constraint logic [12, 7, 4, 8] programs. They are used in program transformations,
theorem proving, and so on.

This paper proposes the inverse problem of one-step unfolding. Let’s see that the problem
is not trivial by an example in terms of term rewriting systems (TRSs). Both TRSs R1 and
R2, given as follows, define the same function mult that computes the multiplication of two
natural numbers:

R1 =
{

mult(0, y)→ 0,
mult(s(x), y)→ add(mult(x, y), y)

}
∪Radd, and

R2 =


mult(0, y)→ 0,
mult(s(0), y)→ add(0, y),
mult(s2(x), y)→ add(add(mult(x, y), y), y)

 ∪Radd,

where

Radd =
{

add(0, y)→ y,

add(s(x), y)→ s(add(x, y))

}
.

Here R2 is derived from R1 by unfolding mult(x, y) in the right-hand side of the second
rewrite rule in R1 by using the rules for mult in R1. On the other hand, however, it is
difficult to transform R2 into R1 in the reverse direction. One may think a folding operation

© Masanori Nagashima, Tomofumi Kato, Masahiko Sakai, and Naoki Nishida;
licensed under Creative Commons License CC-BY

1st International Workshop on Rewriting Techniques for Program Transformations and Evaluation (WPTE’14).
Editors: Manfred Schmidt-Schauß, Masahiko Sakai, David Sabel, and Yuki Chiba; pp. 27–38

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WPTE.2014.27
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

28 Inverse Unfold Problem and Its Heuristic Solving

is applicable for this purpose, but it is impossible because the second rewrite rule of R1 is
necessary for the folding, but is missing in R2.

This paper is organized as follows. First, we define the inverse problem of an one-step
program transformation in Section 3. In sessions that follow Section 3, we discuss some issues
on a specific framework, called pure-constructor system, used in our previous work [14] on a
determinization of conditional term rewriting systems. We targeted this framework because
of the firmness of the structure of the rules, i.e., every root position of left-hand sides in
the body or conditions of rewrite rules is a defined symbol, and all the other position have
no defined symbols even in right-hand sides. Remark that a deterministic pure-constructor
system is convertible to an equivalent TRS, vice versa. Nested defined symbols in a right-hand
side of a rule of a TRS are represented by a sequence of conditions.

In Section 4, we show that the inverse of an one-step transformation T preserves rewrite
relations if T preserves rewrite relations and their signatures. In Section 5, we propose a
heuristic procedure for this problem and show some examples. Overcoming failure examples,
we propose an advanced heuristic solving in Section 6 and demonstrate its effectiveness
for those examples. Finally, in Section 7, we show a motivated example induced from the
program inversion[10, 15, 16, 17, 18].

2 Preliminaries

In this section, we introduce notations used in this paper. We assume that the reader is
familiar with basic concepts of term rewriting [2, 19].

Let F be a signature, a finite set of function symbols accompanied with a mapping
arity which maps each function symbol f to a natural number arity(f). F is assumed to
be partitioned into two disjoint sets D of defined symbols and C of constructors, that is,
F = D] C. Let V be a countably infinite set of variables such that F ∩ V = ∅. A function
symbol g ∈ F is called a constant if arity(g) = 0.

The set of terms over F and V is denoted by T (F ,V), the set of variables occurring at
least one of terms t1, . . . , tn by Var(t1, . . . , tn). A term t ∈ T (F , ∅) is called ground. The set
of all ground terms is denoted by T (F). A term t ∈ T (C,V) is called a constructor term. A
term of the form f(t1, . . . , tn) is called a pattern in T (F ,V) if f ∈ D and t1, . . . , tn ∈ T (C,V).
The root symbol of a term t is denoted by root(t).

Let � 6∈ F ∪V be a special constant, called a hole. A context is a term C ∈ T (F ∪{�},V)
with exactly one occurrence of �. We write C[t] for the term obtained from C by replacing
the occurrence of � in C with a term t.

A substitution is a function σ : V → T (F ,V) such that {x | σ(x) 6= x} is finite. The set
{x | σ(x) 6= x} is denoted by Dom(σ) and called the domain of σ. A substitution σ can be
extended to σ : T (F ,V)→ T (F ,V) in a natural way. We write tσ for σ(t). A substitution σ
is ground if xσ ∈ T (F) for all x ∈ Dom(σ). A substitution σ is a constructor substitution if
xσ ∈ T (C,V) for all x ∈ Dom(σ). The composition σθ of two substitutions σ and θ is defined
as x(σθ) = (xσ)θ.

An equation is a pair of terms s, t ∈ T (F ,V), which is denoted by s ∼ t. A substitution
σ is a unifier of a set E of equations if sσ = tσ for every s ∼ t ∈ E. E is said to be unifiable
if there is a unifier of E. A unifier σ of E is a most general unifier of E if for any unifier θ of
E, there exists a substitution δ such that θ = σδ. It is known that most general unifiers of
E are unique up to variable renaming. We use mgu(E) for the most general unifier of E.

An oriented conditional rewrite rule (rewrite rule, for short) is a formula in the form of
l → r ⇐ u1 → v1; · · · ;un → vn (n ≥ 0). l → r and u1 → v1; · · · ;un → vn are called the

M. Nagashima, T. Kato, M. Sakai, and N. Nishida 29

body part and the conditional part of the rule, respectively. Terms l and r are called the
left-hand side and the right-hand side of the rule, respectively. Each ui → vi (1 ≤ i ≤ n) is
called a condition of the rule. A rewrite rule whose conditional part is empty is called an
unconditional rule, denoted as l → r by omitting ⇐. The set of variables occurring in an
object o (e.g., a rewrite rule) is denoted by Var(o).

A condition u→ v is called a pattern condition if u is a pattern and v is a constructor
term. A rewrite rule l → r ⇐ c is called a pure-constructor rule if l is a pattern, r is
a constructor term, and the conditions of c are all pattern conditions. Note that pure-
constructor rules are also normal [5]. A rewrite rule l → r ⇐ c is said to be of type 3 [13]
if Var(r) ⊆ Var(l) ∪ Var(c). A conditional rewrite rule l → r ⇐ u1 → v1; · · · ;un → vn of
type 3 is called deterministic [9] if Var(ui) ⊆ Var(l, v1, . . . , vi−1) for all i (1 ≤ i ≤ n).

An oriented conditional term rewriting system (CTRS, for short) is a finite set R of
oriented conditional rewrite rules. A pure-constructor system is a CTRS whose rewrite rules
are all pure-constructor rewrite rules.1 A CTRS R is called deterministic if all rewrite rules
of R are deterministic.

I Example 2.1. CTRS Radd in Section 1 is convertible to the following equivalent and
deterministic pure-constructor system:

Radd =
{

add(0, y)→ y

add(s(x), y)→ s(z)⇐ add(x, y)→ z

}
.

We introduce a relational logic over T (F ,V). An atom is a pair of terms s and t, denoted
by s→ t. Formulas are atoms, existentially quantified formulas, conjunction of formulas and
implication of formulas. Satisfaction of a formula ϕ by a pair of a relation ⇀ on T (F ,V) and
a substitution σ : V → T (F ,V), denoted by 〈⇀,σ〉 |= ϕ, is inductively defined as follows:
〈⇀,σ〉 |= u→ v iff uσ ⇀ vσ,
〈⇀,σ〉 |= ϕ ∧ ϕ′ iff 〈⇀,σ〉 |= ϕ and 〈⇀,σ〉 |= ϕ′, and
〈⇀,σ〉 |= ϕ⇒ ϕ′ iff 〈⇀,σ〉 |= ϕ implies 〈⇀,σ〉 |= ϕ′.

Note that a sequence of conditions u1 → v1; · · · ;un → vn is regarded as conjunction
u1 → v1 ∧ · · · ∧ un → vn. The reflexive transitive closure of a relation ⇀ is denoted by ∗

⇀.
The k-level reduction −→(k)

R of R is inductively defined as follows:
−→(0)
R = ∅, and

−→(j)
R = −→(j−1)

R ∪ {(C[lσ], C[rσ]) | l→ r ⇐ c ∈ R, C ∈ T (F ∪ {�},V),
σ is a substitution, 〈 ∗−→(j−1)

R , σ〉 |= c} for j > 0 .
The reduction −→R is defined as

⋃
k≥0 −→

(k)
R .

The constructor-based reduction −→c R of a CTRS R [16] can be defined in the same way
as the ordinary reduction of a CTRS except that matching substitutions are restricted to
constructor substitutions. Note that −→c R ⊆ −→R.

3 Inverse Problem of Program Transformation

A program transformation is a procedure to generate another program from a given program
and its main purpose is to improve execution efficiency of programs. On the other hand, the
inverse of a program transformation is not a function, since program transformations are not
one-to-one in general. The notion of the inverse of a program transformation is captured as
an inverse image of a program under the transformation.

1 The class of pure-constructor systems is the same as the class of normalized TRSs in [1].

WPTE’14

30 Inverse Unfold Problem and Its Heuristic Solving

Unfold:
R1 = R∪ {ρ : l→ r ⇐ c;u→ v; d}

R ∪ {lσ → rσ ⇐ cσ; c′σ; dσ | ρ′ : l′ → r′ ⇐ c′ ∈ R1,

Var(ρ) ∩ Var(ρ′) = ∅, σ = mgu({u ∼ l′, v ∼ r′})}

Fold: If ρ′ : l′ → r′ ⇐ c′ ∈ R,

R∪ {ρ : l→ r ⇐ c; c′σ; d}

R ∪ {l→ r ⇐ c; l′σ → r′σ; d}

Note that
1. transformations are performed by applying the transformation rules above in the direction

from top to bottom,
2. each substitution σ above is restricted to a constructor substitution,
3. each rewrite rule ρ′ above should be renamed so that Var(ρ) ∩ Var(ρ′) = ∅ holds, and
4. we sometimes say “Unfold ρ by ρ′” and “Fold ρ by ρ′” in applying the transformation rules

above.

Figure 1 Unfold/Fold Transformation Rules.

In this section, we formalize the inverse problem of an one-step program transformation
by regarding it as a relation over programs. For example, an one-step transformation T that
converts a program R1 into R2 is a relation T with R1 T R2.

The inverse problem of an one-step program transformation is formalized as follows.

I Definition 3.1. Given a transformation T and a program R1, the inverse T problem (T−1

problem) determines whether or not there exists a program R0 such that R0 T R1 holds. If
there exists such R0, we write R1 T

−1 R0, which means that transformation T−1 is equals
to inverse relation of T . R0 is called a solution of T−1 problem for R1.

4 Inverse Unfold Problem

In the rest of the paper, we focus on Unfold−1 problem, where we use Unfold/Fold trans-
formation rules [14] on deterministic pure-constructor CTRSs. The definitions of those
transformation rules are shown in Figure 1. Remark that a CTRS obtained by applying
Unfold is equivalent to the original one, but a CTRS obtained by applying Fold, which is a
derived rule of the one in [14], is not equivalent in general. More details on the correctness
of Unfold/Fold transformations on pure-constructor systems are discussed in [14].

We revisit the examples in Section 1. Rmult and Rmult1 in the following example are
pure-constructor CTRSs equivalent to R1 and R2 in Section 1, respectively.

I Example 4.1. We obtain a CTRS Rmult1 by applying Unfold rule to the second rewrite
rule of Rmult using its own two rewrite rules.

Rmult =
{

mult(0, y)→ 0
mult(s(x), y)→ v ⇐mult(x, y)→ z; add(z, y)→ v

}

Rmult1 =


mult(0, y)→ 0
mult(s(0), y)→ v ⇐add(0, y)→ v

mult(s2(x), y)→ v⇐mult(x, y)→ z; add(z, y)→ w; add(w, y)→ v



M. Nagashima, T. Kato, M. Sakai, and N. Nishida 31

Unfold−1 problem can be regarded as an instance of Definition 3.1 i.e. a decision problem
that determines, for a given CTRS R1, whether or not there exists a program R0, from
which R1 is obtained by Unfold rule (R0 Unfold R1).

I Example 4.2. A solution of Unfold−1 problem for CTRS Rmult1 is CTRS Rmult because
Rmult Unfold Rmult1 holds in Example 4.1.

Program transformations are usually demanded to preserve the meaning of programs.
In case of Example 4.1, the two functions mult defined in Rmult and Rmult1 are required to
derive the same normal forms if the same ground terms are given in the arguments. This
preservation property is known as the combination of properties Simulation soundness and
simulation completeness.

These properties for program transformation on pure-constructor systems are defined as
follows [14].

I Definition 4.3. A transformation T over CTRSs is simulation sound if and only if s ∗−→c R2
t

implies s ∗−→c R1
t for any CTRSs R1, R2 such that R1 T R2, and for any s, t ∈ T (DR1 ∪ C).

I Definition 4.4. A transformation T over CTRSs is simulation complete if and only
if s ∗−→c R1

t implies s ∗−→c R2
t for any CTRSs R1, R2 such that R1 T R2, and for any

s, t ∈ T (DR1 ∪ C).

In T−1 problem, even if transformation T is simulation sound and complete, T−1 is not
so in general. A sufficient condition for the simulation soundness and completeness of the
inverse problem is easily shown as follows.

I Theorem 4.5. If a transformation T is simulation sound and complete, and T introduce
no new defined symbol, T−1 is also simulation sound and complete.

Proof. Let R1, R2 be CTRSs such that R1 T
−1 R2. Suppose s, t ∈ T (DR1 ∪ C). By the

definition of T−1 problem, R2 T R1 holds. Since T introduce no new defined symbol, i.e.,
DR1 = DR2 , it follows that s, t ∈ T (DR2 ∪ C). Combined this with T ’s simulation soundness
and completeness, (s ∗−→c R1

t implies s ∗−→c R2
t) and (s ∗−→c R2

t implies s ∗−→c R1
t) hold. J

Unfold rule in Figure 1 is simulation sound and complete [14], and introduces no new
defined symbol. Thus, Theorem 4.5 derives the following corollary.

I Corollary 4.6. Unfold−1 is simulation sound and complete.

This corollary guarantees both CTRSs before and after Unfold−1 have the same rewrite
relation.

5 Heuristics for Solving Inverse Unfold Problem

We propose a heuristic procedure for solving Unfold−1 problems, which is shown in Figure 2.
In this procedure, we generate a divergent sequence of rewrite rules by applying Unfold/Fold
rules in Figure 1 from a given CTRS R1 (Step 1–4), generalize rules in the sequence by the
difference matching [3] (Step 5) to obtain a solution candidate CTRS R2 for the Unfold−1

problem. In Step 4 and 5, the simulation soundness and completeness are not necessarily
preserved. Therefore, Step 6 is necessary in order to confirm that the obtained CTRS R2 is
a solution, where R2 preserves the behavior of R1 by Corollary 4.6. Remark that in Step 2,
“Unfolding” (I)-labelled rule by (b0)-, (b1)- and (I)-labelled rules yields (Ib0)-, (Ib1)- and
(I2)-labelled rules, for example.

WPTE’14

32 Inverse Unfold Problem and Its Heuristic Solving

Step 1 Give the labels (b0), (b1), . . . to each rule for a base case of the target function
in the given CTRS R1 in order of argument size. Similarly, give the label (I) to the
rule for the induction case.

Step 2 Unfold (In)-labelled1) rule by all rules including itself. Attach each resulted rule
the label obtained by concatenating the label of Unfolded rule and that of Unfolding
rule in this order.

Step 3 Again, do (Step 2) l times2).
Step 4 Fold each (Inbm)-labelled rule by (Inbm−1)-labelled rule in lexicographically

descending order of (n,m). In an exceptional case, each (Inb0)-labelled rule is
“Fold”ed by (In−1bmax(m))-labelled rule. The each label of generated rules is (Inbm)′,
respectively.

Step 5 Generalize rules in the divergent sequence generated in (Step 4) by the difference
matching [3] to obtain a solution candidate CTRS R2.

Step 6 If R2 Unfold R1 is satisfied, R2 is a solution of Unfold−1 problem for R1.

1) In denotes
n︷ ︸︸ ︷

I · · · I.
2) l is a given fixed number.

Figure 2 Heuristic procedure for Unfold−1 problem.

I Example 5.1. We solve Unfold−1 problem for Rmult1 in Example 4.1 by applying the
heuristic procedure in Figure 2.
Step 1: First, we give labels to rewrite rules in Rmult1.

Rmult1 =


mult(0, y)→ 0 (b0)
mult(s(0), y)→ v ⇐add(0, y)→ v (b1)
mult(s2(x), y)→ v⇐mult(x, y)→ z; add(z, y)→ w; add(w, y)→ v (I)


Step 2: Next, we “Unfold” (I)-labelled rule by (b0)-, (b1)- and (I)-labelled rules, which
yields the following CTRS Rmult2.

Rmult2 =



mult(0, y)→ 0 (b0)
mult(s(0), y)→ v ⇐add(0, y)→ v (b1)
mult(s2(0), y)→ v⇐add(0, y)→ w; add(w, y)→ v (Ib0)
mult(s3(0), y)→ v⇐add(0, y)→ w2; add(w2, y)→ w; add(w, y)→ v (Ib1)
mult(s4(x), y)→ v⇐mult(x, y)→ z;

add(z, y)→ w3; add(w3, y)→ w2;
add(w2, y)→ w; add(w, y)→ v (I2)


Step 3: Again, we “Unfold” (I2)-labelled rule in Rmult2 by the rules with the labels from
(b0) through (I2), which yields the following CTRS Rmult3.

Rmult3 =



mult(0, y)→ 0 (b0)
mult(s(0), y)→ v ⇐add(0, y)→ v (b1)
mult(s2(0), y)→ v⇐add(0, y)→ w; add(w, y)→ v (Ib0)
mult(s3(0), y)→ v⇐add(0, y)→ w2; add(w2, y)→ w; add(w, y)→ v (Ib1)
mult(s4(0), y)→ v⇐add(0, y)→ w3; · · · ; add(w, y)→ v (I2b0)
mult(s5(0), y)→ v⇐add(0, y)→ w4; · · · ; add(w, y)→ v (I2b1)
mult(s6(0), y)→ v⇐add(0, y)→ w5; · · · ; add(w, y)→ v (I3b0)
mult(s7(0), y)→ v⇐add(0, y)→ w6; · · · ; add(w, y)→ v (I3b1)
mult(s8(x), y)→ v⇐mult(x, y)→ z;

add(z, y)→ w7; · · · ; add(w, y)→ v (I4)



M. Nagashima, T. Kato, M. Sakai, and N. Nishida 33

Table 1 Examples of heuristic procedure in Figure 2.

Given CTRS Solution CTRS add(0, y)→ y

add(s(0), y)→ s(y)
add(s2(x), y)→ s2(z)⇐ add(x, y)→ z

 –
mult(0, y)→ 0
mult(s(0), y)→ v ⇐add(0, y)→ v

mult(s2(x), y)→ v⇐mult(x, y)→ z;
add(z, y)→ w;
add(w, y)→ v


 mult(0, y)→ 0

mult(s(x), y)→ v⇐mult(x, y)→ z;
add(z, y)→ v




rev([])→ []
rev(x1 : [])→ zs⇐ app([], x1 : [])→ zs

rev(x1 : x2 : xs)→ zs

⇐ rev(xs)→ zs2;
app(zs2, x2 : [])→ zs1;
app(zs1, x1 : [])→ zs


rev([])→ []

rev(x : xs)→ zs⇐rev(xs)→ zs1;
app(zs1, x : [])→ zs




frev([], ys)→ ys

frev(x : [], ys)→ x : ys
frev(x1 : x2 : xs, ys)→ zs

⇐ frev(xs, x2 : x1 : ys)→ zs

 –

Step 4: We “Fold” (I3b1)-labelled rule by (I3b0)-labelled rule, which yields a rule
“mult(s7(0), y)→ v ⇐ mult(s6(0), y)→ w, add(w, y)→ v”. Similarly, the rules with the labels
from (I3b0) through (Ib0) are “Folded” by the rules with the labels from (I2b1) through
(b1), respectively. We get the following CTRS Rmult3′ .

Rmult3′ =



mult(0, y)→ 0 (b0)
mult(s(0), y)→ v ⇐add(0, y)→ v (b1)
mult(s(s(0)), y)→ v ⇐mult(s(0), y)→ w; add(w, y)→ v (Ib0)′
mult(s(s2(0)), y)→ v⇐mult(s2(0), y)→ w; add(w, y)→ v (Ib1)′
mult(s(s3(0)), y)→ v⇐mult(s3(0), y)→ w; add(w, y)→ v (I2b0)′
mult(s(s4(0)), y)→ v⇐mult(s4(0), y)→ w; add(w, y)→ v (I2b1)′
mult(s(s5(0)), y)→ v⇐mult(s5(0), y)→ w; add(w, y)→ v (I3b0)′
mult(s(s6(0)), y)→ v⇐mult(s6(0), y)→ w; add(w, y)→ v (I3b1)′
mult(s8(x), y)→ v ⇐mult(x, y)→ z;

add(z, y)→ w7; · · · ; add(w, y)→ v (I4)


Step 5: Generalize the divergent rules in Rmult3′ with the labels from (Ib0)′ through
(I3b1)′ by the difference matching, which yields a rule “mult(s(x), y) → v ⇐ mult(x, y) →
w, add(w, y)→ v”. Now Rmult is obtained as a solution candidate of the Unfold−1 problem
for Rmult1.
Step 6: It is confirmed that Rmult Unfold Rmult1. Thus Rmult is certainly a solution.

Table 1 shows the results obtained by applying the procedure in Figure 2 by hand to four
problems: addition of two natural numbers, multiplication of two natural numbers, reverse
of a list and fast reverse of a list. Here, ‘–’ in the table shows that the procedure failed to
solve Unfold−1 for the problem.

WPTE’14

34 Inverse Unfold Problem and Its Heuristic Solving

6 Heuristics Introducing Identity Function

Consider the first CTRS Radd1 in Table 1, for which the procedure in Section 5 fails.

Radd1 =


add(0, y)→ y

add(s(0), y)→ s(y)
add(s2(x), y)→ s2(z)⇐ add(x, y)→ z

 .

The following CTRS is obtained from Radd1 as an intermediate result by the heuristic
procedure in Figure 2; applying Step 1 to Step 3 (Step 3 twice):

R′ =



add(0, y)→ y (b0)
add(s(0), y)→ s(y) (b1)
add(s2(0), y)→ s2(y) (Ib0)
add(s3(0), y)→ s3(y) (Ib1)
add(s4(0), y)→ s4(y) (I2b0)
add(s5(0), y)→ s5(y) (I2b1)
add(s6(0), y)→ s6(y) (I3b0)
add(s7(0), y)→ s7(y) (I3b1)
add(s8(x), y)→ s8(z)⇐ add(x, y)→ z (I4)



.

Then any applications of Fold rule in Step 4 are impossible, because all rules with the labels
from (b0) through (I3b1) have no conditional part, which are necessary in applying Fold rule.
If the second rule of Radd1 were of the form

add(s(0), y)→ z ⇐ add(0, y)→ z,

then the transformation would be successful. Since the former is obtained by simplifying the
latter, this means that some necessary information in the conditional part may be lost by
a simplification. One possibility to avoid this issue is recovering the information from the
simpler rule such as the former. It is, however, difficult to find a clue. Instead of recovering
the conditional part directly, we adopt an alternative that inserts a condition with transparent
function id, which is identity function defined by

id(x)→ x.

We introduce a conditional part with the identity function to make each right-hand side of
body parts is a variable. The CTRS Radd1 is transformed into the following CTRS:

Radd1′ =


add(0, y)→ y

add(s(0), y)→ w ⇐id(s(y))→ w

add(s2(x), y)→ w⇐add(x, y)→ z; id(s(z))→ w1; id(s(w1))→ w

 .

This process is formalized as the following procedure.

I Procedure 6.1 (id attachment). The id-attached rule of a pure-constructor rule ρ : l →
r ⇐ c is constructed as follows.
1. If r 6∈ V, then convert ρ into ρ′ : l→ z ⇐ c; id(r)→ z. Otherwise, let ρ′ be ρ itself.
2. Replace a condition in ρ′ of the form id(g(t1, . . . , ti, . . . , tn))→ v such that ti 6∈ V with

id(ti)→ zi; id(g(t1, . . . , zi, . . . , tn))→ v

M. Nagashima, T. Kato, M. Sakai, and N. Nishida 35

Step 0 Apply Procedure 6.1 to each rule in the given CTRS R1.
Step 1 Give labels to each rule in the same way as Figure 2 (Step 1).
Step 2 Unfold rules in the same way as Figure 2 (Step 2). For each “Unfolded” rule,

apply Procedure 6.1 to the generated rule.
Step 3–6 Do each step in the same way as Figure 2.

Figure 3 Modified heuristic procedure for Unfold−1 problem.

3. Repeat 2 until it can not be applicable.
Note that variables z and zi above must be fresh.

Actually, this procedure must be applied after each Unfolding application during Step 2–3 in
Figure 2 because conditions of the generated rule may disappear by Unfolding. The modified
heuristics we propose is summarized in Figure 3.

I Example 6.2. We solve Unfold−1 problem for Radd1 applying the modified heuristic
procedure.
Step 0: As described above, we obtain Radd1′ by Step 0.
Step 1–3: As a result of Step 1–3, we obtain

Radd2 =



add(0, y)→ y (b0)
add(s(0), y)→ w ⇐ id(s(y))→ w (b1)
add(s2(0), y)→ w ⇐ id(s(y))→ w1; id(s(w1))→ w (Ib0)
add(s3(0), y)→ w ⇐ id(s(y))→ w2; id(s(w2))→ w1; id(s(w1))→ w (Ib1)
add(s4(0), y)→ w ⇐ id(s(y))→ w3; id(s(w3))→ w2; · · · ; id(s(w1))→ w (I2b0)
add(s5(0), y)→ w ⇐ id(s(y))→ w4; id(s(w4))→ w3; · · · ; id(s(w1))→ w (I2b1)
add(s6(0), y)→ w ⇐ id(s(y))→ w5; id(s(w5))→ w4; · · · ; id(s(w1))→ w (I3b0)
add(s7(0), y)→ w ⇐ id(s(y))→ w6; id(s(w6))→ w5; · · · ; id(s(w1))→ w (I3b1)
add(s8(x), y)→ w ⇐ add(x, y)→ z; id(s(z))→ w7; · · · ; id(s(w1))→ w; (I4)



.

Step 4: Fold transformations in Step 4 create the following rules.

Radd2′ =



add(0, y)→ y (b0)
add(s(0), y)→ w ⇐ id(s(y))→ w (b1)
add(s(s(0)), y)→ w ⇐ add(s(0), y)→ w1; id(s(w1))→ w (Ib0)′

add(s(s2(0)), y)→ w ⇐ add(s2(0), y)→ w1; id(s(w1))→ w; (Ib1)′

add(s(s3(0)), y)→ w ⇐ add(s3(0), y)→ w1; id(s(w1))→ w (I2b0)′

add(s(s4(0)), y)→ w ⇐ add(s4(0), y)→ w1; id(s(w1))→ w (I2b1)′

add(s(s5(0)), y)→ w ⇐ add(s5(0), y)→ w1; id(s(w1))→ w (I3b0)′

add(s(s6(0)), y)→ w ⇐ add(s6(0), y)→ w1; id(s(w1))→ w (I3b1)′

add(s8(x), y)→ w ⇐ add(x, y)→ z; id(s(z))→ w7; · · · ;
id(s(w1))→ w; (I4)



.

Step 5: Generalize the divergent rules in Radd2′ with the labels from (Ib0)′ through (I3b1)′ by
the difference matching, which yields a rule “add(s(x), y)→ w ⇐ add(x, y)→ w1; id(s(w1))→
w”, which is equal to “add(s(x), y)→ s(w1)⇐ add(x, y)→ w1”. So a solution candidate of

WPTE’14

36 Inverse Unfold Problem and Its Heuristic Solving

Table 2 Examples of the modified heuristic procedure in Figure 3.

Given CTRS Solution CTRS add(0, y)→ y

add(s(0), y)→ s(y)
add(s2(x), y)→ s2(z)⇐ add(x, y)→ z


{

add(0, y)→ y

add(s(x), y)→ s(z)⇐ add(x, y)→ z

}


frev([], ys)→ ys

frev(x : [], ys)→ x : ys
frev(x1 : x2 : xs, ys)→ zs

⇐ frev(xs, x2 : x1 : ys)→ zs


frev([], ys)→ ys

frev(x : xs, ys)→ zs

⇐ frev(xs, x : ys)→ zs



Unfold−1 problem for Radd1 is

Radd =
{

add(0, y)→ y

add(s(x), y)→ s(z)⇐ add(x, y)→ z

}
.

Step 6: It is confirmed that Radd Unfold Radd1. Thus Radd is certainly a solution.

Table 2 shows the results by applying the modified heuristics to the failed problems in
Table 1.

7 Application

In this section, we show an example induced from the program inversion[10, 15, 16, 17, 18].
Consider the following TRS Rrev′ , which defines a fast reverse function of a list:

Rrev′ =


reverse(xs)→ frev(xs, [])
frev([], ys)→ ys

frev(x : [], ys)→ x : ys
frev(x1 : x2 : xs, ys)→ frev(xs, x2 : x1 : ys)

 .

Note that the definition of frev is convertible to an equivalent pure-constructor CTRS in the
second column of Table 2. For TRS Rrev′ , a program inversion tool repius 2 produces the
following CTRS:

Rinvrev′ =


inv-reverse(ys)→ tp1(xs)⇐ tinv-frev([], ys)→ tp2(xs, []),
inv-reverse(x : ys)→ tp1(xs)⇐ tinv-frev(x : [], ys)→ tp2(xs, []),
tinv-frev(xs, [])→ tp2(xs, []),
tinv-frev(xs, x2 : x1 : ys)→ tinv-frev(x1 : x2 : xs, ys).

 ,

where tp1(·) and tp2(·, ·) are constructors introduced by repius for representing 1-tuple and
2-tuple, respectively. The function inv-reverse in Rinvrev′ works as the inversion of frev, but
non-determinacy in computation is necessary to obtain the expected results; the first rule
should be applied to an odd-length list and the second rule to even-length list.

Next, we consider the following definition of frev, which is the solution CTRS in Table 2.

Rrev =


reverse(xs)→ frev(xs, []),
frev([], ys)→ ys,

frev(x : xs, ys)→ frev(xs, x : ys)

 .

2 http://www.trs.cm.is.nagoya-u.ac.jp/repius/

http://www.trs.cm.is.nagoya-u.ac.jp/repius/

M. Nagashima, T. Kato, M. Sakai, and N. Nishida 37

For this TRS, repius produces the following CTRS:

Rinvrev =


inv-reverse(ys)→ tp1(xs)⇐ tinv-frev([], ys)→ tp2(xs, [])
tinv-frev(xs, [])→ tp2(xs, [])
tinv-frev(xs, x : ys)→ tinv-frev(x : xs, ys)

 .

The CTRS Rinvrev is left-linear and non-overlapping and hence non-determinacy is not
necessary any more.

8 Conclusion

In this paper, we formalized the inverse problem of an one-step program transformation,
and focused on inverse Unfold problem, which is simulation sound and complete. For this
problem, we proposed a heuristic procedure and its improvement with the identity function.
Using these heuristics, we have also shown some successful examples and an application
example on program inversion.

As mentioned in Section 1, we used pure-constructor systems as a platform because of
the firmness of the structure of the rules. However, the heuristics proposed in this paper may
be modified for the general TRSs and unfoldings for them. Moreover, in that framework, id
symbol in Section 6 might not be necessary. It is also interesting to consider this issue.

We should address the following future tasks.
Target: So far, the scope of heuristic solvings in this paper is limited to functions whose

arguments consist of simple list-like data structures. Tree-like data structures and mutual
recursive functions will be considered as targets. We should open the class of CTRSs in
which our heuristics succeeds.

Completeness: We will find a subclass for which the heuristic procedure is complete; the
procedure can always find a solution if it exists.

Mechanization: In our heuristics, there are multiple choices which rules to be unfolded/folded.
Strategies to narrow down the options for automation is promising.

Acknowledgements. We would like to thank the anonymous referees for their corrections
and valuable comments.

References
1 Jesús Manuel Almendros-Jiménez and Germán Vidal. Automatic partial inversion of in-

ductively sequential functions. In Zoltán Horváth, Viktória Zsók, and Andrew Butterfield,
editors, Proc. of 18th International Symposium on Implementation and Application of Func-
tional Languages, volume 4449 of Lecture Notes in Computer Science, pages 253–270, 2007.

2 Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

3 David Basin and Toby Walsh. Difference matching. In Deepak Kapur, editor, 11th Inter-
national Conference on Automated Deduction, volume 607 of Lecture Notes in Computer
Science, pages 295–309. Springer, 1992.

4 N. Bensaou and Irène Guessarian. Transforming constraint logic programs. Theoretical
Computer Science, 206(1-2):81–125, 1998.

5 Jan A. Bergstra and Jan Willem Klop. Conditional rewrite rules: Confluence and termin-
ation. Journal of Computer and System Sciences, 32(3):323–362, 1986.

6 Rod M. Burstall and John Darlington. A transformation system for developing recursive
programs. Journal of the ACM, 24(1):44–67, 1977.

WPTE’14

38 Inverse Unfold Problem and Its Heuristic Solving

7 Sandro Etalle and Maurizio Gabbrielli. Transformations of CLP modules. Theoretical
Computer Science, 166(1-2):101–146, 1996.

8 Fabio Fioravanti, Alberto Pettorossi, and Maurizio Proietti. Transformation rules for locally
stratified constraint logic programs. In Maurice Bruynooghe and Kung-Kiu Lau, editors,
Program Development in Computational Logic, volume 3049 of Lecture Notes in Computer
Science, pages 77–89. Springer, 2004.

9 Harald Ganzinger. Order-sorted completion: The many-sorted way. Theoretical Computer
Science, 89(1):3–32, 1991.

10 Robert Glück and Masahiko Kawabe. A method for automatic program inversion based on
LR(0) parsing. Fundamenta Informmaticae, 66(4):367–395, 2005.

11 Tadashi Kanamori and Kenji Horiuchi. Construction of logic programs based on general-
ized unfold/fold rules. In Jean-Louis Lassez, editor, Proceedings of the 4th International
Conference on Logic Programming, pages 744–768, 1987.

12 Michael J. Maher. A transformation system for deductive database modules with perfect
model semantics. Theoretical Computer Science, 110(2):377–403, 1993.

13 Aart Middeldorp and Erik Hamoen. Completeness results for basic narrowing. Applicable
Algebra in Engineering, Communication and Computing, 5:213–253, 1994.

14 Masanori Nagashima, Masahiko Sakai, and Toshiki Sakabe. Determinization of conditional
term rewriting systems. Theoretical Computer Science, 464:72–89, 2012.

15 Naoki Nishida, Masahiko Sakai, and Toshiki Sakabe. Partial inversion of constructor term
rewriting systems. In Jürgen Giesl, editor, Proc. of the 16th Int’l Conf. on Rewriting
Techniques and Applications, volume 3467 of LNCS, pages 264–278. Springer, 2005.

16 Naoki Nishida and Germán Vidal. Program inversion for tail recursive functions. In Man-
fred Schmidt-Schauß, editor, Proceedings of the 22nd International Conference on Rewrit-
ing Techniques and Applications, volume 10 of LIPIcs, pages 283–298. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2011.

17 Naoki Nishida and Germán Vidal. Computing more specific versions of conditional rewrit-
ing systems. In Elvira Albert, editor, Revised Selected Papers of the 22nd International
Symposium on Logic-Based, volume 7844 of Lecture Notes in Computer Science, pages
137–154, 2013.

18 Minami Niwa, Naoki Nishida, and Masahiko Sakai. Extending matching operation in
grammar program for program inversion. In Elvira Albert, editor, Informal Proceedings of
the 22nd International Symposium on Logic-Based Program Synthesis and Transformation
(LOPSTR 2012), pages 130–139, 2012.

19 Enno Ohlebusch. Advanced Topics in Term Rewriting. Springer-Verlag, 2002.
20 Alberto Pettorossi, Maurizio Proietti, and Valerio Senni. Constraint-based correctness

proofs for logic program transformations. Formal Aspects of Computing, 24(4–6):569–594,
2012.

21 Abhik Roychoudhury, K. Narayan Kumar, C.R. Ramakrishnan, and I.V. Ramakrishnan.
Beyond Tamaki-Sato style unfold/fold transformations for normal logic programs. Inter-
national Journal of Foundations of Computer Science, 13(3):387–403, 2002.

22 Abhik Roychoudhury, K. Narayan Kumar, C.R. Ramakrishnan, and I.V. Ramakrishnan.
An unfold/fold transformation framework for definite logic programs. ACM Transactions
on Programming Languages and Systems, 26(3):464–509, 2004.

23 David Sands. Total correctness by local improvement in the transformation of functional
programs. ACM Trans. on Programming Languages and Systems, 18(2):175–234, 1996.

24 Taisuke Sato. Equivalence-preserving first-order unfold/fold transformation systems. The-
oretical Computer Science, 105(1):57–84, 1992.

25 Hirohisa Seki. Unfold/fold transformation of general logic programs for the well-founded
semantics. Journal of Logic Programming, 16(1):5–23, 1993.

	Introduction
	Preliminaries
	Inverse Problem of Program Transformation
	Inverse Unfold Problem
	Heuristics for Solving Inverse Unfold Problem
	Heuristics Introducing Identity Function
	Application
	Conclusion

