
Vertex Exponential Algorithms for Connected
f -Factors
Geevarghese Philip1 and M. S. Ramanujan2

1 Max-Planck-Institut für Informatik
gphilip@mpi-inf.mpg.de

2 University of Bergen
ramanujan.sridharan@ii.uib.no

Abstract
Given a graph G and a function f : V (G) → [|V (G)|], an f -factor is a subgraph H of G such
that degH(v) = f(v) for every vertex v ∈ V (G); we say that H is a connected f -factor if, in
addition, the subgraph H is connected. Tutte (1954) showed that one can check whether a given
graph has a specified f -factor in polynomial time. However, detecting a connected f -factor is
NP-complete, even when f is a constant function – a foremost example is the problem of checking
whether a graph has a Hamiltonian cycle; here f is a function which maps every vertex to 2. The
current best algorithm for this latter problem is due to Björklund (FOCS 2010), and runs in
randomized O∗(1.657n) time (The O∗() notation hides polynomial factors). This was the first
superpolynomial improvement, in nearly fifty years, over the previous best algorithm of Bellman,
Held and Karp (1962) which checks for a Hamiltonian cycle in deterministic O(2nn2) time.

In this paper we present the first vertex-exponential algorithms for the more general problem
of finding a connected f -factor. Our first result is a randomized algorithm which, given a graph
G on n vertices and a function f : V (G) → [n], checks whether G has a connected f -factor in
O∗(2n) time. We then extend our result to the case when f is a mapping from V (G) to {0, 1} and
the degree of every vertex v in the subgraph H is required to be f(v)(mod 2). This generalizes
the problem of checking whether a graph has an Eulerian subgraph; this is a connected subgraph
whose degrees are all even (f(v) ≡ 0). Furthermore, we show that the min-cost editing and
edge-weighted versions of these problems can be solved in randomized O∗(2n) time as long as the
costs/weights are bounded polynomially in n.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics, G.2.2 Graph Theory

Keywords and phrases Exact Exponential Time Algorithms, f-Factors

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.61

1 Introduction

The problem of testing whether an input graph has a Hamiltonian cycle – a simple cycle which
passes through all vertices of the graph – is one of Karp’s original list of 21 NP-complete
problems [13], and is one of the most fundamental and well-studied problems in computational
complexity. The current best algorithm for this problem is due to Björklund (FOCS 2010),
and runs in randomized O∗(1.657n) time(The O∗() notation hides polynomial factors.) [2].
This was the first superpolynomial improvement in nearly fifty years, over the previous best
algorithm of Bellman [1], and Held and Karp [12] which checks for a Hamiltonian cycle in
deterministic O(2nn2) time.

Another fundamental graph problem is that of deciding whether a given graph contains
a regular subgraph. This problem was first stated by Garey and Johnson [9] who asked if

© Geevarghese Philip and M. S. Ramanujan;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 61–71

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.61
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

62 Vertex Exponential Algorithms for Connected f-Factors

testing the presence of a 3-regular subgraph in a given graph is NP-complete. This was shown
to be NP-complete in a proof atrributed to Chvátal [9]. However, testing if a graph has a
spanning r-regular subgraph is known to be polynomial time solvable by an application of
Tutte’s f -factor theorem [20], although testing for a connected spanning r-regular subgraph
clearly generalizes Hamiltonicity.

Given a graph G and a function f : V (G) → [|V (G)|], an f -factor of G is a subgraph
H of G such that degH(v) = f(v) for every vertex v ∈ V (G); we say that H is a connected
f -factor if, in addition, the subgraph H is connected. Tutte [20] showed that one can check
whether a given graph has a specified f -factor in polynomial time. Lovász [14, 15] extended
this result to general f -factors, where the function f maps each vertex to a list of numbers.
Lovász and Cournéjols [4] gave a complete characterization of the complexity of the general
f -factor problem.

In this paper we study the problem of finding connected f -factors in a given graph. Our
main motivation in investigating this problem is the fact that it generalizes the problem of
testing for a Hamiltonian cycle in a graph, and also the more general problem of testing for
regular connected spanning subgraphs.

Our results and techniques. Although the existence of a connected f -factor in a graph
withm m edges can trivially be tested in time O∗(2m), it was not known whether it is possible
to solve this problem in time which is single-exponential in the number of vertices (a vertex-
exponential algorithm) of the graph. In this paper we present the first vertex-exponential
algorithms to find a connected f -factor in a given graph. In fact, we give a vertex-exponential
algorithm for the editing version of this problem, which is much more general than the
problem of simply finding a connected f -factor. More formally, in this problem, which we
call Min-Cost Edge Editing to f-factor (Min-Cost EFF), the input consists of a
graph G, a function f : V (G)→ [n], a cost function c on the edges and non-edges of G, and a
target cost c?. The objective is to check if there is a sequence of non-edge additions and edge
deletions with a total cost at most c? such that the resulting graph is a connected f -factor.
This problem generalizes the problem of finding a connected f -factor in a graph, even with
the additional restriction that the edge costs are bounded polynomially in the size of V (G).

Our main result is a randomized algorithm which, given an instance (G, f, c, c?) of Min-
Cost EFF where c({v, w}) is bounded by a polynomial in |V (G)| for every v, w ∈ E(G),
solves it in time O∗(2n).

I Theorem 1. There is a randomized algorithm that, given an instance (G, c, c?) of Min-
Cost Edge Editing to f-factor with the cost function c being bounded by a polynomial
in |V (G)|, runs in time O∗(2|V (G)|) and either returns a solution or correctly (with high
probability) concludes that one does not exist.

We then extend this result to a “parity version” Connected parity f-factor of the
problem where, given a graph G and a function f where where f is a mapping from V (G) to
{0, 1}, the objective is to check if G has a connected spanning subgraph H where the degree
of every vertex v in the subgraph H is f(v) (mod 2).

I Theorem 2. There is a randomized algorithm that, given an instance (G, f) of Connected
parity f-factor where |V (G)| = n, runs in time O∗(2n) and either returns a solution or
correctly (with high probability) concludes that one does not exist.

This generalizes the problem of checking whether a graph has an Eulerian subgraph; this
is a connected subgraph whose degrees are all even (f(v) ≡ 0). As our third major result

G. Philip and M. S. Ramanujan 63

we show that the edge-weighted versions of finding connected (parity) f -factors can also be
solved in randomized O∗(2n) time as long as the weights are bounded polynomially in n.

The main technical ingredients in our solutions for each of these problems have the same
flavour: For each problem, we transform the input graph into an auxiliary graph in such a
way that the connected solutions which we seek correspond, in a certain sense, to the set of
perfect matchings of the auxiliary graph. Our algorithms rely on the notion of Tutte matrices
of graphs and related algebraic techniques – introduced by Lovász [16] and recently used
in [2, 6, 21, 11] – to phrase our problems in terms of looking for “non-zero” monomials of
certain polynomials. To solve these latter problems we test whether the polynomials are
identically zero over certain fields. The randomization in our algorithm arises from this final
step of polynomial identity testing.

Related work. Moser and Thilikos [18] and Mathieson and Szeider [17] initiated the study of
the parameterized complexity of editing a given graph to obtain a graph that satisfies certain
specified degree constraints. Mathieson and Szeider in particular described an auxiliary graph
where perfect matchings captured the editing solutions in the same flavor of Tutte’s auxiliary
graph capturing f -factors via perfect matchings. More recently Golovach has studied the
parameterized complexity of editing to connected graphs under degree constraints [10]. Cai
and Yang [3], Cygan et al. [5] and Fomin and Golovach [8] have all studied the parameterized
complexity of deleting edges to obtain subgraphs with parity constraints on the degrees.

Organization of the rest of the paper. In Section 2 we describe our notation and some
preliminary results. In Section 3 we take up the edge-editing version of our problem, Min-
Cost Edge Editing to f-factor, and prove Theorem 1. In Section 4 we take up the parity
version Connected parity f-factor and prove Theorem 2. We conclude in Section 5.

2 Preliminaries

We follow the graph notation and terminology of Diestel [7]. For a positive integer n we
use [n] to denote the set {1, 2, . . . , n}. We use Aij to denote the element in the ith row
and jth column of a matrix A. A subgraph H of a graph G is a spanning subgraph of G if
V (G) = V (H). We use degG(v) to denote the degree of a vertex v in graph G and NG(v)
to denote the neighbourhood of v in G; we omit the subscript when there is no scope for
ambiguity. For a subset S ⊆ V (G) of the vertex set of a graph G we use G[S] to denote the
subgraph induced by the set S and G− S to denote the subgraph G[V (G) \ S]. For a subset
S of vertices, we denote by E(G)[S, V (G) \ S] the edges of G with an end point each in S
and V (G) \ S. If F is a set of edges in a graph G, then we use V (F) to denote the set of all
vertices which form end-points of the edges in F . A matching in a graph G is any set M of
edges in G such that no two edges of M have an end-point in common, and a matching M
of G is a perfect matching if V (M) = V (G). Let w : E(G)→ Z be function which assigns
integer weights to the edges of a graph G. The weight of a subgraph H of G is then the sum∑
e∈E(H) w(e).
When we refer to expanded forms of succinct representations (such as summations and

determinants) of polynomials, we use the term naïve expansion (or summation) to denote
that expanded form of the polynomial which is obtained by merely writing out the operations
indicated by the succinct representation. We use the term simplified expansion to denote the
expanded form of the polynomial which results after we apply all possible simplifications
(such as cancellations) to a naïve expansion. We call a monomial m which has a non-zero

FSTTCS 2014

64 Vertex Exponential Algorithms for Connected f-Factors

coefficient in a simplified expansion of a polynomial P , a surviving monomial of P in the
simplified expansion.

I Definition 3. (Tutte matrix) The Tutte matrix of a graph G with n vertices is an n× n
skew-symmetric matrix T over the set {xij |1 ≤ i < j ≤ |V (G)|} of indeterminates whose
(i, j)th element is defined to be

T (i, j) =

xij if {i, j} ∈ E(G) and i < j

−xji if {i, j} ∈ E(G) and i > j

0 otherwise

We use T (G) to denote the Tutte matrix of graph G. We say that the variable xij is the
label of edge {i, j} ∈ E(G).

The following basic facts about the Tutte matrix T (G) of a graph G are well-known.
When evaluated over any field of characteristic two, the determinant and the permanent of
the matrix T (G) (indeed, of any matrix) coincide:

det T (G) = perm(T (G)) =
∑
σ∈Sn

n∏
i=1
T (G)(i, σ(i)), (1)

where Sn is the set of all permutations of [n]. Moreover, there is a one-to-one correspond-
ence between the set of all perfect matchings of the graph G and the surviving monomials in
the above expression for det T (G) when its simplified expansion is computed over any field
of characteristic two:

I Proposition 1. [16] If M = {(i1, j1), (i2, j2), . . . , (i`, j`)} is a perfect matching of a graph
G, then the product

∏
(ik,jk)∈M xikjk

appears as a surviving monomial in the sum on the
right-hand side of Equation 1 when this sum is expanded and simplified over any field
of characteristic two. Conversely, each surviving monomial in a simplified expansion of
this sum over a field of characteristic two is of the form

∏
(ik,jk)∈M xikjk

where M =
{(i1, j1), (i2, j2), . . . , (i`, j`)} is a perfect matching of G. In particular, det T (G) is identically
zero when expanded and simplified over a field of characteristic two if and only if graph G
does not have a perfect matching.

I Lemma 4. (Schwartz-Zippel)[19, 22] Let P (x1, . . . , xn) be a multivariate polynomial of
degree at most d over a field F such that P is not identically zero. Furthermore, let r1, . . . , rn
be chosen uniformly at random from F. Then, Prob[P (r1, . . . , rn) = 0] ≤ d

|F| .

We also require the following well-known interpolation lemma.

I Lemma 5. Let P (x) be a univariate polynomial of degree r over a field of size at least
r + 1. Then, given r + 1 evaluations of P (x), the polynomial can be determined in time
polynomial in r.

3 Editing to f-factors

The problem we study in this section is Edge Editing to f-factor. The formal definition
of this problem is as follows.

Edge Editing to f-factor
Input: Graph G = (V,E), function f : V → N, k.
Question: Can G be converted to a connected f -factor with at most k edge deletions

and additions?

G. Philip and M. S. Ramanujan 65

A set of k edge additions and deletions is referred to as a k-editing. For a given graph G,
if G−S1 +S2 is an f -factor where S1 is a set of edges of G and S2 is a set of non-edges, then
we refer to (S1, S2) as an `-editing of G to an f -factor, where ` = |S1 ∪S2|. It is easy to show
that Editing to Connected f-factor where f = 2 is a generalization of Hamiltonicity
(see for example [10]).

We begin with the following observation which relates local editing of subgraphs of G to
f -factors on the one hand and the global editing of G to an f -factor on the other. We then
subsequently define an auxiliary graph where perfect matchings capture editings to f -factors
(see [17]).

I Observation 1. Let G be a graph, let f : V → N, and let S ⊆ V (G). Suppose the subgraphs
G[S] and G− S have `1 and `2-editing to f -factors (S, F1) and ((V (G) \ S), F2) respectively
and let `3 be the number of edges in the set E(G)[S, V (G) \ S]. Then, the union of the two
editings along with the deletion of the edges in E(G)[S, V (G) \ S] is an (`1 + `2 + `3)-editing
to the disconnected f-factor (V (G), F1] F2). Similarly, let (S1, S2) be an editing of G to
an f-factor H = (V (G), F) and C be the union of some connected components of H. Let
S′1 = S1 ∩

(
V (C)

2
)
and S′2 = S2 ∩

(
V (C)

2
)
. Then, (S′1, S′2) is an editing to the f -factor C of the

induced subgraph G[V (C)].

I Definition 6 (Editing f -Blowup). Let G be a graph and let f : V (G) → N be such that
f(v) ≤ deg(v) for each v ∈ V (G). Let H be a graph and w be a weight function on the edges
of H defined as follows
1. For each vertex v of G, we add a vertex set A(v) of size f(v) to H.
2. For each edge e = {v, w} of G we add to H vertices ve and we and edges (u, ve) for every

u ∈ A(v) and (we, u) for every u ∈ A(w). We assign weight 0 to all these edges. Finally,
we add the edge (ve, we) and set w(ve, we) = 2.

3. For each non-edge ē = {v, w} of G we add to H vertices vē and wē and edges (u, vē) for
every u ∈ A(v) and (wē, u) for every u ∈ A(w). We assign weight 1 to each of these edges.
Finally, we add the edge (vē, wē) and set w(vē, wē) = 0.

This completes the construction. The graph H along with the weight function w : E(H)→
{0, 1, 2} is called the editing f-blowup of graph G. We use Ef (G) to denote the editing
f -blowup of G. We omit the subscript when there is no scope for ambiguity.

I Definition 7 (Induced Editing f -blowup). For a subset S ⊆ V (G), we define the editing
f -blowup of G induced by S as follows. Let the editing f -blowup of G be (H,w). Begin
with the graph H and for every edge e = (v, w) ∈ E(G) such that v ∈ S and w /∈ S, delete
the vertices ve and we. Similarly, for every non-edge ē = (v, w) /∈ E(G) such that v ∈ S and
w /∈ S, delete the vertices vē and wē. Let the graph H ′ be the union of those connected
components of the resulting graph which contain the vertex sets A(v) for vertices v ∈ S.
Then, the pair (H ′, w) is called the editing f -blowup of G induced by the set S and is denoted
by Ef (G)[S].

The construction of the editing f -blowup of G can be informally described as taking
the complete graph on V (G), making f(v) “equivalent copies” of every vertex v ∈ V (G),
replacing every edge and non-edge of G by a path of length 3, and assigning weight 2 to
the “middle” edge of the paths corresponding to an edge of G, assigning weight 1 to the
“end” edges of the path corresponding to a non-edge of G and weight 0 to all other edges.
Similarly, the construction of the editing f -blowup of G induced by a subset S ⊆ V (G) can
be described analogously starting with the graph G[S].

We now prove a lemma (see also [17]) which gives an equivalence between editings to
f -factors and perfect matchings in the editing f -blowup.

FSTTCS 2014

66 Vertex Exponential Algorithms for Connected f-Factors

I Lemma 8. A graph G has an `-editing to an f -factor with ` ≤ k if and only if the editing
f -blowup of G, (H,w), has a perfect matching of weight at most 2k.

Proof. Let (Sx, Sy) be an editing to an f -factor (V (G), F) of G such that |Sx ∪ Sy| ≤ k,
where F = (E(G) \ Sx) ∪ Sy. We now define the following matching M in H. For every
pair (v, w) ∈

(
V
2
)
\ F , if e = (v, w) ∈ E(G) then we add the edge (ve, we) to M and if

ē = (v, w) /∈ E(G) then we add the edge (vē, wē) to M . For every edge (v, w) ∈ F , if
e = (v, w) ∈ E(G) then we add the edges (u, ve) and (u′, we) to M where u and u′ are two
vertices in A(v) and A(w) respectively such that they are as yet unsaturated by M . Similarly,
for every edge (v, w) ∈ F , if ē = (v, w) /∈ E(G) then we add the edges (u, vē) and (u′, wē)
to M where u and u′ are two vertices in A(v) and A(w) respectively such that they are as
yet unsaturated by M . Since |A(v)| = f(v) for every v ∈ V (G), M indeed saturates the
sets A(v) for every v ∈ V (G) and therefore is a perfect matching. We now consider the
weight of M . Clearly, E(G) \ F = Sx and the weight contributed to M by the edges of H
corresponding these edges is 2|Sx|. Similarly, the weight contributed to M by the edges of H
corresponding to those in Sy = F \ E(G) is 2|Sy|. Therefore, w(M) ≤ 2k. This completes
the proof of the forward direction.

Conversely, suppose thatH has a perfect matchingM of weight at most 2k. Let Sx = {e =
(v, w)|(v, w) ∈ E(G) ∧ (ve, we) ∈ M} and Sy = {ē = (v, w)|(v, w) /∈ E(G) ∧ (vē, wē) /∈ M}.
Observe that for every ē = (v, w) ∈ Sy, there is a vertex u ∈ A(v) and u′ ∈ A(w) such that
(u, vē),(u′, wē) ∈ M . This is because the vertex vē (wē) has exactly one neighbor disjoint
from A(v) (respectively A(w)) and by assumption, (vē, wē) /∈ M . Since each edge of the
form (u, vē) (where u ∈ A(v)) has weight 1 and occurs in M along with an edge (u′, wē)
of weight 1 (with ē = (v, w)), we conclude that 2|Sx ∪ Sy| = w(M) ≤ 2k. We now claim
that (V (G), F) is an f -factor, where F = (E(G) \ Sx) ∪ Sy. Let MA be all those edges of M
incident on

⋃
v∈V (G)A(v). Starting from H, we define a subgraph H ′ of G as follows. For

each v ∈ V (G), we identify all vertices A(v) in H. We then contract every edge in MA. It is
easy to see that the resulting graph is indeed an f -factor of G. Furthermore, by definition,
the edges in MA are precisely those corresponding to the edges in F . This completes the
proof of the lemma. J

Having established the relation between perfect matchings in the f -blowup and editings
to f -factors, we now recall the definition of a “weighted” Tutte matrix (see for example [11])
which allows us to handle edge weights as this will be crucially required to encode the size of
the editings.

I Definition 9. (Weighted Tutte matrix) The Weighted Tutte matrix of a graph G with n
vertices and a weight function w : E(G)→ Z is an n× n skew-symmetric matrix T over the
set {xij |1 ≤ i < j ≤ |V (G)|} ∪ {z} of indeterminates whose (i, j)th element is defined to be

T (i, j) =

xijz

w(i,j) if (i, j) ∈ E(G) and i < j

−xjizw(i,j) if (i, j) ∈ E(G) and i > j

0 otherwise

We use Tz(G) to denote the Weighted Tutte matrix of graph G.

The following proposition is analogous to Proposition 1 and the proof is identical.

I Proposition 2. If M = {(i1, j1), (i2, j2), . . . , (i`, j`)} is a perfect matching of a graph G
with a weight function w on its edges, then the product (

∏
(ik,jk)∈M xikjk

) · zΣ(ik,jk)∈Mw(ik,jk)

appears as a surviving monomial in the sum on the right-hand side of Equation 1 when

G. Philip and M. S. Ramanujan 67

applied to Tz(G) (instead of T (G)) and the sum is expanded and simplified over any field of
characteristic two. Conversely, each surviving monomial in a simplified expansion of this
sum over a field of characteristic two is of the form (

∏
(ik,jk)∈M xikjk

) · zΣ(ik,jk)∈Mw(ik,jk)

where M = {(i1, j1), (i2, j2), . . . , (i`, j`)} is a perfect matching of G. In particular, det Tz(G)
is identically zero when expanded and simplified over a field of characteristic two if and only
if graph G does not have a perfect matching.

I Definition 10. With every set S ⊆ V (G), we associate a specific monomial mS which is
defined to be the product taken over all e = (v, w) ∈ E(G)[S, V (G)\S] of the terms xijzw(i,j)

where {i, j} = {ve, we} and over all ē = (v, w) ∈ E(Ḡ)[S, V (G) \ S] of the terms xijzw(i,j)

where {i, j} = {vē, wē}, where the terms ve, we, vē, wē are as in Definition 6 of the editing
f -blowup E(G) of G. If S = V (G), then we set mS = 1.

In the spirit of [6], we now fix an arbitrary vertex v? of G and define a polynomial P (x̄, z)
over the indeterminates from the weighted Tutte matrix Tz(E(G)) of the f -blowup of G, as
follows:

P (x̄, z) =
∑

S⊆V (G) ; v?∈S

(det Tz(E(G)[S])) · (det Tz(E(G)[V (G) \ S])) ·mS , (2)

where if a graph H has no vertices or edges then we set det T (H) = 1. In the sequel we use
F to denote an arbitrary field of characteristic two. Observe that P (x̄, z) can be rewritten as∑r
i=0Qi(x̄) · zi where r is an upper bound on the degree of z in any term of the polynomial

P (x̄, z). We refer to the polynomial Qi(x̄) as the coefficient of zi in P (x̄, z). Furthermore,
every monomial m in the naïve expansion of Qi(x̄) is also referred to as a coefficient of zi.

I Definition 11. We say that an editing (S1, S2) of G to an f -factor (V (G), F) contributes
a monomial xi1j1 . . . xirjr

to the naïve expansion of the right-hand side of Equation 2 if and
only if the following conditions hold.

For every e = (v, w) ∈ F ∩ E(G) (ē = (v, w) ∈ F \ E(G)), there is a u ∈ A(v), u′ ∈ A(w)
and 1 ≤ p, q ≤ r such that {u, ve} = {ip, jp} and {u′, we} = {iq, jq} (respectively
{u, vē} = {ip, jp} and {u′, wē} = {iq, jq}).
For every e = (v, w) ∈ E(G) \ F (ē = (v, w) /∈ E(G) ∩ F), there is a 1 ≤ p ≤ r such that
{ve, we} = {ip, jp} (respectively {vē, wē} = {ip, jp}).
For every 1 ≤ p, q ≤ r, if {u, ve} = {ip, jp} and {u′, we} = {iq, jq} for some e ∈
F ∩ E(G)(respectively {u, vē} = {ip, jp} and {u′, wē} = {iq, jq} for some ē ∈ F \ E(G)),
then e (respectively ē) is in F .
For every 1 ≤ p ≤ r, if {ip, jp} = {ve, we} for some e ∈ E(G) ({ip, jp} = {vē, wē} for
some ē /∈ E(G)), then e (respectively ē) is not in F .
For every S ⊆ V (G) containing v?, such that S is a union of the vertex sets of (some)
connected components of (V (G), F), there is a pair of monomials m1 and m2 such that m1
is a surviving monomial in the simplified expansion of det T (E(G)[S]), m2 is a surviving
monomial in the simplified expansion of det T (E(G)[V (G) \ S]), and m1 · m2 · mS =
xi1j1 . . . xirjr

· zΣr
k=1w(ik,jk).

Having set up the required notation, we now state the main lemma which allows us to
show that monomials contributed by “undesirable editings” do not survive in the simplified
expansion of the right hand side of Equation 2.

I Lemma 12. Let G be a graph and (S1, S2) be an `-editing of G to an f -factor (V (G), F).
Then,

FSTTCS 2014

68 Vertex Exponential Algorithms for Connected f-Factors

1. All monomials contributed by (S1, S2) are coefficients of z2` in the naïve expansion of the
right-hand side of Equation 2.

2. If (V (G), F) is a disconnected f -factor of G then every monomial contributed by (S1, S2)
occurs an even number of times in the polynomial Q2`(x̄) in the naïve expansion of the
right-hand side of Equation 2.

3. If (V (G), F) is a connected f-factor of G, then every monomial contributed by (S1, S2)
occurs exactly once in the polynomial Q2`(x̄) in the naïve expansion of the right-hand side
of Equation 2.

As a consequence of the above lemma, we prove the following.

I Lemma 13. The coefficient of z2` in the naïve expansion of P (x̄, z) is not identically zero
over F if and only if G has an `-editing to a connected f -factor.

Proof. Observe that as a consequence of Proposition 2 combined with the proof of Lemma
8, we have that each surviving monomial in the naïve expansion of the right-hand side of
Equation 2 is contributed by some editing to an f -factor of the graph G.

By this observation, every monomial which is a coefficient of z2` is contributed by an
`-editing to an f -factor and by Lemma 12, we have that every monomial contributed by this
editing occurs an even number of times if and only if the resulting f -factor is disconnected.
This completes the proof of the lemma. J

We now prove the main result of this section by giving an algorithm for editing to
connected f -factors.

I Theorem 14. There is a randomized algorithm that, given an instance (G, k) of Editing
to f-factor, runs in time O∗(2|V (G)|) and either returns a solution or correctly (with high
probability) concludes that one does not exist.

Proof. Observe that the total degree of the polynomial P (x̄, z) is bounded by n2 + 2
(
n
2
)

+
2
(
n
2
)
≤ 3n2, where the sum of the first two terms is an upper bound on the number of vertices

in the editing f -blowup which gives a bound on the degree of a monomial in P (x̄, z) due to
x̄ and the third term is a bound on the degree of a monomial due to z. We select values for
the variables in x̄ uniformly at random from a field F of characteristic 2 and size at least
3nd for some fixed d ≥ 5. Having fixed this instantiation of the variables in x̄, we select
r = 2

(
n
2
)

+ 1 values for z from the field F and evaluate the polynomial P (x̄, z) for each of
these r instantiations and return Yes if and only if for some ` ≤ 2k, the coefficient of z` is
non-zero in the univariate polynomial R(z) obtained by evaluating P (x̄, z) at the randomly
selected points for x̄. The r evaluations of the polynomial can be done in time O∗(2n) by
determinant computation and testing for a z` with non-zero coefficient in R(z) can be done
in polynomial time by interpolation (Lemma 5). This proves the stated bound on the running
time of the algorithm. Therefore, it only remains to prove the correctness of the algorithm.

Suppose that (S1, S2) is a p-editing to a connected f -factor for some p ≤ k. Then, by
Lemma 13, we have that the coefficient of z2p, Q2p(x̄), is not identically zero over F . By
the Schwartz-Zippel Lemma, we have that since Q2p(x̄) is not identically zero, then with
probability at least 1− 1

n3 the evaluation of Q2p(x̄) at the randomly chosen points results in
a non-zero value, implying that the coefficient of z2p is non-zero in the polynomial R(z). By
the union bound, the probability that the coefficient of z` is “erroneously” zero in R(z) for
every 1 ≤ ` ≤ 2k is at most 2k

n3 ≤ 1
n . Therefore, if G has a p-editing to a connected f -factor

with p ≤ k, then with probability at least 1 − 1
n , we will detect the presence of such an

editing. This completes the proof of the theorem. J

G. Philip and M. S. Ramanujan 69

Finally, we note that if we are also given costs on the edges of the graph that are bounded
polynomially in n, then we can also solve the version of the problem where costs are placed on
the editing operations, in the same asymptotic running time with the only change appearing
in the choice of the field from which x̄ is instantiated at random. More precisely, we have
the following theorem.

I Theorem 1. There is a randomized algorithm that, given an instance (G, c, c?) of Min-
Cost Edge Editing to f-factor with the cost function c being bounded by a polynomial
in V (G), runs in time O∗(2|V (G)|) and either returns a solution or correctly (with high
probability) concludes that one does not exist.

The problem of finding a connected f -factor in a given graph is special case of Min-Cost
Edge Editing to f-factor and hence we have the following corollary.

I Corollary 15. There is a randomized algorithm that, given an instance (G, f) of Con-
nected f-factor where |V (G)| = n, runs in time O∗(2n) and either returns a solution or
correctly (with high probability) concludes that one does not exist.

4 Parity f-factors

In this section we extend our approach to handle the parity version. Most of the proof is
identical to the arguments in the previous section, and so we focus on defining the new kind of
f -blowup which we need, and a description of the corresponding matching characterization.

I Definition 16. Given a graph G and a function f : V (G) → {0, 1}, a parity f-factor
of graph G is a spanning subgraph H of G in which every vertex v has degree exactly
f(v) (mod 2). A connected parity f -factor of G is such a connected subgraph H of G.

I Definition 17 (Parity f -Blowup). Let G be a graph and let f : V (G)→ {0, 1}. Let H be
a graph defined as follows
1. For each vertex v of G, we add a vertex set A(v) which has size deg(v) if deg(v) ≡

f(v) (mod 2) and size deg(v)− 1 otherwise.
2. For each edge e = {v, w} of G we add vertices ve and we and edges (u, ve) for every

u ∈ A(v) and (we, u) for every u ∈ A(w). Finally, we add the edge (ve, we).
3. For each v such that f(v) = 0, we choose an arbitrary pair of vertices av and a′v in A(v)

and make a clique on the rest of the vertices of A(v). For each v such that f(v) = 1, we
choose an arbitrary vertex av in A(v) and make a clique on the rest of the vertices of
A(v).

This completes the construction. The graph H is called the parity f -blowup of graph G. We
use Pf (G) to denote the parity f -blowup of G . We omit the subscript when there is no
scope for ambiguity.

I Definition 18 (Induced Parity f -blowup). For a subset S ⊆ V (G), we define the parity
f -blowup of G induced by S as follows. Let the parity f -blowup of G be H. Begin with
the graph H and for every edge e = (v, w) ∈ E(G) such that v ∈ S and w /∈ S, delete the
vertices ve and we. Let the union of connected components of the resulting graph containing
the vertices of the set S be the graph H ′. Then, the graph H ′ is called the parity f -blowup
of G induced by the set S and is denoted by Pf (G)[S].

I Lemma 19. A graph G has a parity f -factor if and only if the parity f -blowup of G has a
perfect matching.

FSTTCS 2014

70 Vertex Exponential Algorithms for Connected f-Factors

Proof. Suppose that G has a parity f -factor (V (G), F). We now define a matching M in
the parity f -blowup of G as follows. For every e ∈ E(G) \ F , we add the edge (ve, we) to
M . For every edge (v, w) ∈ F , we add the edges (u, ve) and (u′, we) to M where u and u′
are two vertices in A(v) and A(w) respectively such that they are as yet unsaturated by M .
However, if either of av or a′v is unsaturated at this point, we chose to saturate one of these
and similarly for aw and a′w.

Since |A(v)| ≡ f(v) (mod 2) and |A(v)| ≥ deg(v)−1 for every v ∈ V (G), we conclude that
M saturates B(v) vertices from the set A(v) for every v ∈ V (G), where B(v) ≡ f(v) (mod 2).
Furthermore, since (V (G), F) is a parity f -factor, {av, a′v} ⊆ B(v) for every v. The only
unsaturated vertices in H at this point are the vertices in A(v) \B(v) for every v ∈ V (G).
However, since B(v) ≡ f(v) (mod 2), we have that B(v) ≡ |A(v)| (mod 2), implying that
|A(v) \B(v)| ≡ 0 (mod 2). Since {av, a′v} ⊆ B(v) for every v, the subgraph H[A(v) \B(v)]
is an even-sized clique and therefore we pick an arbitrary perfect matching in this clique and
add it to M to get a perfect matching.

Conversely, suppose that M is a perfect matching of H. We define the set F as follows.
For every e = (v, w) ∈ E(G) such that (ve, we) /∈M , we add the edge (v, w) to F . It can be
argued along similar lines as before that (V (G), F) is indeed a parity f -factor of G. This
completes the proof of the lemma. J

Given the above definition of f -blowups and the structural lemma “equating” parity
f -factors to perfect matchings in the f -blowup, the proof of the following theorem is identical
to the proof of Theorem 14.

I Theorem 2. There is a randomized algorithm that, given an instance (G, f) of Connected
parity f-factor where |V (G)| = n, runs in time O∗(2n) and either returns a solution or
correctly (with high probability) concludes that one does not exist.

I Corollary 20. There is a randomized algorithm that, given a graph G, |V (G)| = n, runs
in time O∗(2n) and either returns a connected Eulerian subgraph of G with the maximum
(or minimum) number of edges, or correctly (with high probability) concludes that one does
not exist.

5 Conclusion

In this paper we studied certain generalizations of the well-studied NP-hard problems
Hamiltonicity and Max/Min-Eulerian Subgraph. We gaveO∗(2n) time randomized algorithms
for the problems of finding connected f -factors in a graph, minimum editing to obtain a
connected f -factor and finding a connected parity f -factor. The most natural direction
forward in this line of research would be towards obtaining a deterministic vertex exponential
algorithm as well as algorithms that handle super-polynomial weights.

References
1 Richard Bellman. Dynamic programming treatment of the travelling salesman problem.

Journal of the Association of Computing Machinery, 9(1):61–63, 1962.
2 Andreas Björklund. Determinant sums for undirected hamiltonicity. In FOCS, pages 173–

182, 2010.
3 Leizhen Cai and Boting Yang. Parameterized complexity of even/odd subgraph problems.

J. Discrete Algorithms, 9(3):231–240, 2011.
4 Gérard Cornuéjols. General factors of graphs. J. Comb. Theory, Ser. B, 45(2):185–198,

1988.

G. Philip and M. S. Ramanujan 71

5 Marek Cygan, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Ildikó Schlotter. Para-
meterized complexity of eulerian deletion problems. Algorithmica, 68(1):41–61, 2014.

6 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M.M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In FOCS, pages 150–159, 2011.

7 Reinhard Diestel. Graph Theory. Springer-Verlag, Heidelberg, 3rd edition, 2005.
8 Fedor V. Fomin and Petr A. Golovach. Parameterized complexity of connected even/odd

subgraph problems. J. Comput. Syst. Sci., 80(1):157–179, 2014.
9 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman & Co., New York, NY, USA, 1979.
10 Petr A. Golovach. Editing to a connected graph of given degrees. CoRR, abs/1308.1802,

2013.
11 Gregory Gutin, Magnus Wahlström, and Anders Yeo. Parameterized rural postman and

conjoining bipartite matching problems. CoRR, abs/1308.2599, 2013.
12 Michael Held and Richard M. Karp. A dynamic programming approach to sequencing

problems. Journal of the Society for Industrial and Applied Mathematics, 10(1):196–210,
1962.

13 Richard M. Karp. Reducibility Among Combinatorial Problems. In Proceedings of a sym-
posium on the Complexity of Computer Computations, held March 20–22, 1972, at the IBM
Thomas J. Watson Research Center, Yorktown Heights, New York, The IBM Research Sym-
posia Series, pages 85–103. Plenum Press, New York, 1972.

14 László Lovász. The factorization of graphs. Combinatorial Structures and Their Applica-
tions, pages 243–246, 1970.

15 László Lovász. The factorization of graphs. ii. Acta Mathematica Academiae Scientiarum
Hungarica, 23(1–2):223–246, 1972.

16 László Lovász. On determinants, matchings, and random algorithms. In L. Budach, editor,
Fundamentals of Computation Theory FCT’79, pages 565–574, Berlin, 1979. Akademie-
Verlag.

17 Luke Mathieson and Stefan Szeider. Editing graphs to satisfy degree constraints: A para-
meterized approach. J. Comput. Syst. Sci., 78(1):179–191, 2012.

18 Hannes Moser and Dimitrios M. Thilikos. Parameterized complexity of finding regular
induced subgraphs. J. Discrete Algorithms, pages 181–190, 2009.

19 J.T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4):701–717, October 1980.

20 William Thomas Tutte. A short proof of the factor theorem for finite graphs. Canadian
Journal of Mathematics, 6:347–352, 1954.

21 Magnus Wahlström. Abusing the tutte matrix: An algebraic instance compression for the
k-set-cycle problem. In STACS, pages 341–352, 2013.

22 Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and Algebraic
Computation, volume 72, pages 216–226, 1979.

FSTTCS 2014

	Introduction
	Preliminaries
	Editing to f-factors
	Parity f-factors
	Conclusion

