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—— Abstract

Confluence is a key property of rewriting calculi that guarantees uniqueness of normal-forms
when they exist. Metaconfluence is even more general, and guarantees confluence on open/meta
terms, i.e. terms with holes, called metavariables that can be filled up with other (open/meta)
terms. The difficulty to deal with open terms comes from the fact that the structure of metaterms

is only partially known, so that some reduction rules became blocked by the metavariables. In
this work, we establish metaconfluence for a family of calculi with explicit substitutions (ES)
that enjoy preservation of strong-normalization (PSN) and that act at a distance. For that, we
first extend the notion of reduction on metaterms in such a way that explicit substitutions are
never structurally moved, i.e. they also act at a distance on metaterms. The resulting reduction
relations are still rewriting systems, i.e. they do not include equational axioms, thus providing
for the first time an interesting family of A-calculi with explicit substitutions that enjoy both
PSN and metaconfluence without requiring sophisticated notions of reduction modulo a set of
equations.
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1 Introduction

Confluence is a key property of rewriting calculi that guarantees determinism of computa-
tions [9]. In confluent calculi, different reduction sequences starting at the same term always
converge. When terms are enriched with metavariables, used to denote unknown parts of
incomplete proofs/programs, we talk instead about metaconfluence, which in general does
not follow directly from confluence.

In this paper we study metaconfluence of A-calculi with explicit substitutions (ES), which
are extensions of the A-calculus being able to internalize the substitution operation [1, 20,
17, 13, 4]. Such calculi are used to refine/implement the notion of S-reduction in functional
languages like Ocaml and Haskell, and proof-assistants like Coq, Isabelle, AProlog and PVS.
Metaterms are notably introduced in this framework to implement higher-order unification
and matching [16, 15, 8, 14] in proof-assistants. Indeed, a logical computational language
based on higher-order resolution might be implemented using a calculus in which higher-order
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unification can be treated in a natural way through the use of metavariables. Surprisingly,
metaconfluence does not follows directly from confluence. Indeed, when the ES operator
is propagated w.r.t. the structure of (meta)terms, then metavariables naturally block such
propagations. The problem can be illustrated in terms of the following (simplified) rewriting
system (we assume no capture of free variables holds):

Aty = t[z/u) Az.t)[y/u] — Ax.tly/u]
(tv)[y/u] —  tly/ulvly/u] ty/u] — t, if y does not occur free in ¢

which generates the following diverging reduction sequences on metaterms:

tly/ullz/v] « ((Az.t)v)[y/u] = tlx/v]ly/u]

where y does not occur free in v, — denotes the contextual closure of — and — the reflexive-
transitive closure of —. Thus, there exist many A-calculi with ES that are confluent but not
metaconfluent. Some of them, as for example, Ao [1] and As [19], were extended respectively
to Aoy [12] and As. [20] in order to regain metaconfluence. Nevertheless, these extended
calculi do not enjoy PSN [25, 18], thus showing the fragility of such rewriting systems.
Another solution was adopted by calculi with ES inspired from linear logic proof-nets [28],
such as Aes [21] and Aex [22]. Metaconfluence is recovered in these calculi by adding to the
rewriting systems an equational axiom for commutation of independent substitutions:

tly/ullz/v] ~ tlz/v]ly/u]

where x (resp. y) does not occur free in u (resp. v). The resulting reduction calculi turned out
to have very good properties, in particular, metaconfluence and PSN can live together [22].
However, equational reasoning becomes unavoidable, and even if commutation of independent
substitutions is obtained for free when A-terms are represented by proof-nets, this is not the
case in classical implementations which use algebraic A-terms.

In this paper we give a solution to this problem by pushing further the ES paradigm
inspired from Linear-Logic Proof-Nets. In particular, there are nowadays several calculi, also
inspired from Linear-Logic Proof-Nets, that are based on the idea that the ES operation
acts at a distance and does not need to be percolated over the structure of terms. Typical
examples of such calculi are the linear substitution (or Milner’s) calculus and the structural
lambda-calculus (see resp. [26] and [4]), that belong to this new paradigm and have been
successfully used for different applications such as implicit complexity [7], the theory of
abstract standardization [3], or abstract machines [2].

We prove metaconfluence for a family of calculi with ES that act at a distance, namely the
substitution calculus [5], the linear substitution calculus [26] and the structural A-calculus [4].
The resulting reduction systems are still simple rewriting systems, i.e. they do not include
equational axioms. The key of our solution relies on a new notion of substitution that
propagates/applies only those that are affecting real variables, by keeping fixed the ones
affecting metavariables. For instance, if Y, denotes a metavariable in a context having only the
free variable z, then, according to our new notion of metasubstitution, the term (Y, z)[z/u]
reduces to (Y, w)[z/u] and not to Y,[z/u]u (which was the solution adopted in [24, 27]).
The idea is that the real variable = of the metaterm Y, x can be substituted by w, as usual,
but the substitution [z/u] remains fixed in its place and does not percolate the application,
it must be delayed because of the metavariable Y,. This notion of metasubstitution turns
out to be essential in the development of the results we show in this paper.

To establish metaconfluence for our three calculi, we use the Hindley-Rosen Theorem [10],
which states that if two confluent rewriting systems commute then their union is also
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confluent. To do so, each rewriting system we treat in this paper is split into two rewriting
systems, say R and §. We then show that R and § alone are confluent. Finally, we show that
R strongly commutes with §, i.e. Vg, t1,t2, if tg —x t1 and tg —+5 to, g s.t. t1 —5 t3 and
to —x t3 (i.e. ty =g t3 or ty = t3). Since strongly commutation implies commutation [9],
then we are done by Hindley-Rosen Theorem.

We thus provide an interesting set of A-calculi with ES that act at a distance, which
enjoy both PSN and metaconfluence without requiring sophisticated notions of reduction
modulo a set of equations. Moreover, in contrast to available proofs of metaconfluence in the
literature [12, 20, 27, 24], which are non-trivial, our approach just needs a simple reasoning

about commutation of reductions, a standard notion used in abstract reduction systems [11].

2 Common Syntax for Terms

Explicit substitutions calculi with names are built over a simple grammar which is an
extension of that of the A-calculus:

tus=x|tu| Azt | tlx/u] (1)

The symbol z is called a wvariable, Ax.t an abstraction, t u an application and t[z/u] a
term with an explicit substitution (ES) [z/u], i.e. a substitution waiting to be applied. The
abstraction Az.t and the ES t[z/u] both bind z in ¢. The notions of free and bound variables
are defined as usual, in particular, fv(t[x/u]) := £v(t) \ {z} U fv(u), fv(dz.t) := £v(t) \ {z},
bv(t[z/u]) :=bv(t) U{z} Ubv(u) and bv(Az.t) := bv(t) U {z}. We work with the standard
notion of a-conversion i.e. the bound variables can be renamed in order to avoid clashes
with the free ones. Thus, terms are always considered modulo a-equivalence, i.e. we work
on a-equivalence classes of terms. We use |t|, to denote the number of free occurrences of
the variable x in the term t. When [t|, = n > 2, we write ¢, for the non-deterministic
replacement of i (1 < i < n — 1) free occurrences of z in ¢ by a fresh variable y. Thus
for example, given u = (z 2)[z/z], we have |u|, = 2 so that only one replacement of z in u
can be done to construct u,,y, which then denotes either (y z)[z/x] or (x z)[z/y] but not
(y 2)[z/y]. Contexts are defined as usual, i.e. they are given by the following grammar:

C:=0|Ct|tC | x.C| Clz/t] | t[z/C)]

We write C[t] for the term obtained by replacing the hole O of C' by ¢, thus e.g. (Oy)[z] = zy
and (A\z.0)[z] = Az.x. We write Cu] when the free variables of u are not captured by the
context C, thus for example, C[z] denotes the term zy if C = Oy, and Ay.z, if C = Az.0.

Substitutions are (finite) functions from variables to terms. We denote a non-empty
substitution o by {z1/u1,...,2,/uy} (n > 1) and the empty substitution by Id. The domain
of the substitution o is given by dom(c) := {z | o(z) # z}. The set var(o) is given by
Ugedon(o)EV(0(2)). The application of a substitution o to a term ¢ is defined by induction
on the structure of terms as follows:

xo = o(x) if x € dom(o) (ANyt)o = Ayto if y ¢ var(o)
yo =y if y ¢ dom(o) tly/ulo = toly/uc] ify ¢ var(o)
(tw)o = (to)(uo)

Here it should be stressed that the third and fourth rules are conceived modulo a-conversion.

Thus for example (A\y.x){z/y} = Az.y. Remark that t{z/u} =t if © ¢ fv(¢).
We now present the reduction rules of three calculi with ES acting at a distance that
are based on grammar (1). The first one, known as the substitution calculus, splits the

non-terminating S-rule of the A-calculus into two terminating rules dB and s (see Fig. 1).
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Axt)Lu e tlz/u]l
t[z/u] —s  tH{z/u}

Figure 1 The substitution calculus for terms.

(Axt)Lu e tlr/ulL
Cle]fz/u] s Clu][z/u]
t[z/u] —y if |[t]l, =0

Figure 2 The linear substitution calculus for terms.

Axt)Lu e tlz/ull
t

[/u] e tale/ully/u] if [t > 1
t[z/u] —q  tH{a/u} if |t], =1
t[z/u] et if |t|l, =0

Figure 3 The structural substitution calculus for terms.

The L symbol appearing in the dB-rule, also called distant Beta, denotes a (possibly empty)
list of substitutions of the form [z1/t1][x2/ts] ... [2n/tn] (n > 0) ! The resulting reduction
relation, obtained by the contextual closure of the rewriting rules, is written —»_, .

The second calculus (see Fig. 2) is known as the linear substitution calculus. Rule 4
(resp. +>15) comes from the structural A-calculus [4] (resp. Milner’s calculus [26]), while —
belongs to both calculi. The calculus performs partial substitution in the sense that only one
free variable occurrence is substituted at a time. This partial substitution, performed by
means of the 1s-rule (for linear substitution), is non-deterministic, ¢.e. 1s randomly chooses
the free variable occurrence of x to be substituted by u. The resulting reduction relation,
obtained by the contextual closure of the rewriting rules, is written —,,,, -

The third calculus (see Fig. 3) is the structural A-calculus [4]. The dB-rule triggers
computation. The c-rule duplicates ES which affect a term ¢,
some non-deterministic replacement of a non-empty subset of the free occurrences of the

denoting, as defined above,

variable x in t by a fresh variable y. Metasubstitution on variables is only performed by
the d-rule where the variables have only one single occurrence in the term. The resulting
reduction relation, obtained by the contextual closure of the rewriting rules, is written —_,_.

In what follows we denote by —,. (resp. —,) the contextual (resp. reflexive-transitive)
closure of each rewriting rule —, (resp. reduction relation —,.), for r € {dB, s,1s,w, c,d}
introduced before. For each calculus, the reduction relation associated to its substitution
calculus, 7.e. generated by all its rewriting rules except +—4p, are defined by —s:=—»_, \ —as;
sub =P A | —raB AN —gpri=—r)
to be confluent on terms (resp. metaterms) iff for all terms (resp. metaterms) tg,t1, to, if

.. \ —ap respectively. A reduction relation — is said
to —»x t1 and ty —x t2, there exists a term (resp. metaterm) t3 s.t. t1 - t3 and ty —»x t3.
Here are some examples of reduction sequences from the term ¢t = (A\z.zz)y:
In )\sub : t —ap (xm)[w/y] —s Yy
In Migws : ¢ —as (22)[2/y] —1s (2y)[2/y] =15 (vY)[2/Y] = yy
I Aser =t —=ap (22)[2/y] —c (22)[2/y][2"/y] —a (y2')[2" /Y] —a vy

! Formally, the list L is a context generated by the grammar O | L[z /t].
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All the calculi presented above, let us write R, enjoy good properties, specially: (sim-
ulation) every fB-reduction step in the A-calculus can be performed in R, (confluence) all
divergent reduction sequences in R can be closed and (preservation of 5-strong normalization)
every f(-strongly normalizing A-term is also R-strongly normalizing.

3 Common Syntax for MetaTerms

We now extend the grammar of terms to metaterms by adding metavariables which denote
incomplete proofs/programs in higher-order theories. In particular, metavariables are used
in higher-order unification to denote unkown partial solutions to be instantiated by the
unification procedure [15, 8, 14]. We use X to denote a metavariable with free variables in
the set A. The grammar (1) introduced in Sec. 2 is then extended as follows:

tbus=x|Xa |t u| Azt tlx/u] (2)

We also extend the notation |t|, to metaterms, thus e.g. |(yX,)[z/Z,]|, = 3. We distinguish
between free meta and real variables. They are both defined by induction as follows.

fm(z) = 0 fr(z) = {z}

fm(Xa) = A fr(Xa) = 0

fm(tu = fm(t) Ufm(u) fr(tu = fr(t) Ufr(u)
fm(Az.t) = fm(¢)\ {z} fr(Azt) = fr(t)\ {z}
fm(tfz/u]) = £fm(t)\ {z} U fm(u) fr(tfz/u]) = fr(t)\{z}Ufr(u)

Thus for example, given t = (X, 12)[x/Yy] we have fm(t) = {y} and fr(t) = {z}. The
set of free variables of a metaterm is given by fv(t) := fm(t) U fr(t). We extend the
non-deterministic operation _( | y introduced in Sec. 2 to metaterms as expected.

For each A-calculus in this paper, the metaconfluence proof uses the termination property
of the corresponding substitution subcalculus. The first substitution calculus, given by
the reduction relation —g, is trivially terminating. In order to prove termination of the
substitution subcalculus —1g4p:=—15 U —y we use a decreasing measure based on the notion
of multiplicity [24]. Indeed, the size of a metaterm is recursively defined as follows:

sz(x) =sz(Xa) = 1 sz(t u)
sz(Az.t) = sz(t) sz(t[z/u])

sz(t) + sz(u)
sz(t) + sz(u) - (1 +ml,(t))

where m1,(¢), the multiplicity of the variable  in the metaterm ¢, is defined by:

ml,(¢):=0 if z ¢ £fv(t), otherwise
ml,(z) =ml, (XaA) = 1 ml,(t u) = ml,(¢) +ml,(u)
ml, (Ay.t) = mly(t) mly(tly/u]) = mly(t)+mly(w)- (1+mly(t))

We have for example sz((z z)[z/Ay.y]) =5, sz((z 2)[x/Ay.y][z/Ay.y]) = 6 and
sz((z 2)[z/x x][x/Ay.y]) = 15. Observe that sz(t) > 1 and m1,(t) > 0. Moreover, x ¢ fv(t)
implies m1,(¢) = 0. It is easy to extend these measures to contexts by adding sz(d) = 0 and
ml,(0) =0.

While this measure is decreasing for lsub, i.e. t —>1gpp t' implies sz(t) > sz(¢') (see
Sec. 4.1 for details), this is not the case for the subcalculus —g4r:=—>c U —q U —. Thus
for example, (z x)[z/u] —¢ (z 2)[z/u][z/u] but sz((x z)[z/u]) < sz((z 2)[z/u][z/u]). We
then introduce another measure (cf. [4]) which will be used in Sec. 4.3 to show that —g¢,
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terminates. In what follows [ | denotes the empty multiset, LI the multiset union and
n-lay,...,a,] the multiset [n-ay,...,n-ay,].
The multimeasure of a metaterm ¢, written jm(t), is a multiset of integers defined as:

jm(t) U jm(u)
[P ()] U jm(t) U max(L, Py (£)) - jm(u)

jm(z) = jn(Xa) =[] jm(t w)

jm(Az.t) = ju(t) jm(t[z/ul)
where P, (t) denotes the potential multiplicity of the variable x in the term ¢ and is
recursively defined on a-equivalence classes of ¢ as follows: P, (t) := 0 if « ¢ fv(t), otherwise

(7)) =Pp(Xp) = 1
+(Ay.t) == P.(t)

2(t w) =

«(tly/ul) =

Note that in the second case, necessarily x € A. Thus for example, jn((z z)[z/Ay.y]) = [2];
Jn((z 2)[z/Ay-yllz/ry-y]) = [1,1] and ju((z 2)[z/z z][z/Xy.y]) = [4,2].

2(t) + Pz (u)

P P P
P P P, (t) + max(1,Py(t)) - Px(u)

4 Metaconfluence

This section is devoted to the proofs of metaconfluence of our three calculi. We start by
extending the notion of metasubstitution introduced in Sec. 2 to metaterms. A first approach,
already used in [23] for the Aex-calculus, is obtained by adding to the metasubstitution
operation on terms the following case :

Xalz/u] fzeA
Xa otherwise.

xafo/u) = { @

Nevertheless, if one naively uses this specification to extend the s-rule to metaterms, ter-
mination is lost as the following example shows: Xy, [z/u] =Xy {r/u} = Xy [z/u]—s . ..
This can be recovered by simply restricting the form of the metaterms ¢ on the left-hand
side of the s-rule to those that are not metavariables affected by ES (as done for example
in [24]). However, even with this restriction, confluence fails:

Xz lz/ully/v] « Ay Xgyy)[z/u] voraeX ey [y/v][z/u]

One can then add equations between metaterms to allow permutation of independent
substitutions (cf. [21]) in order to close this divergent diagram. But then equational reasoning
becomes necessary to deal with the resulting reduction system (a reduction system modulo);
this could be particularly problematic from an implementation point of view.

In this paper we present another approach where no additional equations are necessary
to guarantee metaconfluence. We start by extending the notion of metasubstitution to
metaterms as follows. The (capture-free) fixed metasubstitution of z by the metaterm u
in the metaterm ¢, written ¢[x/u], is given by:

_ [ He/udle/ul, i o € £n(t)
tlz/u] := { tz/ul, if x ¢ fm(t)

where the operation _{{ /_} is defined as follows: t{x/u} :=1t if x ¢ £r(¢), otherwise

afa/u} =y Ayv)fz/up:=ry.vfz/u} (x#y &y ¢ tv(u));

(to)f{a/ul :=t{z/ufv{z/ul; tly/vl{z/v} =t{z/u}ly/vfz/u}] (z#y &y ¢ fv(u)).
Thus for example, (A\y.2Xy1)[z/y] = (A2.yXi5)[z/y]. Remark that renaming of the
bound variable y was done to avoid capture of free variables. The real free occurrence of x
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(Axt)Lu g tlz/u]l
t[z/u] —s  tlz/u]  ifx ¢ fm(t) or x € £fr(t)

Figure 4 The substitution calculus for metaterms.

(At)Lu g t[z/u]l

tlx/ul ety l/ully/u] it > 1

t[z/u] e tlx/u] if [t| =1 and x ¢ fm(t)
t[z/u] e if |t|,=0

Figure 5 The structural lambda calculus for metaterms.

was substituted by y, however, the ES [z/y] remains fixed in the resulting term since it is
affecting a metavariable with scope x.

The above definition is a key notion of this work: it is able to capture metasubstitution
on terms, but it is compatible with metaterms. Formally, the metasubstitution _[_/_]
is splited into two complementary notions of substitution: the ES _[ /], which is fixed
whenever there is a metavariable with scope in the domain of this substitution; and the
implicit substitution _{_/_}} on terms, that only acts on real variables.

We can now reformulate the first and the third A-calculi presented before by using fixed
metasubstitution [z/u]] on metaterms instead of {z/u} on terms. The resulting reduction
relations are shown in Fig. 4 and Fig. 5, respectively. In the case of the linear substitution
calculus, since the reduction relation on terms does not use metasubstitution, we can keep
exactly the same rewriting rules in Fig. 2 to specify reduction on metaterms. In the three
cases, the resulting reduction systems on metaterms are conservative w.r.t. their respective
reduction notions on terms.

4.1 The Substitution Calculus enjoys MetaConfluence

This section presents the metaconfluence proof for the substitution calculus. We start
by stating some useful properties concerning the notion of metasubstitution that will be
important in the rest of this section.

» Lemma 1. Let t,u,v be metaterms. If x # y and x ¢ £v(v) then t{z/u}{y/v} =
HHy/vifz/ufy/v}} and tfz/u]{y/v} = tfy/v}x/ufy/v}]-

Proof. The first statement is by induction on ¢ and the second one uses the first one. <«

The next lemma states that the substitution calculus on metaterms is stable w.r.t. the
new notion of metasubstitution.

» Lemma 2 (Stability). Let t,u be metaterms. Let r € {dB,s}.
Ift =, ¢, then t{x/u} —, t'{x/u} and tfz/u] —, t'[x/u].
Ifu =, o, then t{x/u} —, t{z/u'} and t[z/u] —, t[z/u'].

Proof.
The first statement is by induction on t—_, ¢’ using Lem. 1. The second one uses the
first one.
The first statement is by induction on u—_, v’ and the second one by using the first
one. <
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The stability properties are necessary to prove that the reduction systems —4p and —
strongly commutes.

» Theorem 3 (Strong Commutation). Vtg,t1,te, if to —s t1 and tg —>ap to, Its s.t. t1 —ap t3
and t2 —:>S t3.

Proof. By induction on the reduction relation. We only show here the key cases:

tlx/u] —stfz/u] tlz/u] =st]z/u] (Ax.t)Lu—s(Az.t')Lu
JaB laB (Lem. 2) JaB $qp(Lem. 2) laB JaB
t'x/u]l—=st' [x/u] tlz/u']—st[x/u] t[z/u]L —5 t'[x/u]L

(Az.t)Lu—s(Az.t)L'u  (Az.t)Lu—s(Ax.t)lu’  (Az.t)Ly[y/v]Lou—rs(Az.t)Lg [y/v]Lau
las las las las lae laz
tlz/ull —5 tlz/ull’  tlz/u]ll = tlz/W'|IL tlx/u]ly[y/v]le —s tlx/u]lq[y/v]Lla

We can now conclude metaconfluence of the substitution calculus as follows:

» Corollary 4. The reduction relation —»_, is confluent on metaterms.

sub

Proof. Let —,_,:=—ap U —s. Both —45 and — ¢, are trivially confluent. They commute
(Theorem 3). We conclude by the Hindley-Rosen Theorem [10] introduced in Sec 1. <

4.2 The Linear Substitution Calculus enjoys MetaConfluence

In this section we prove metaconfluence for the linear substitution calculus. As in the previous
section, we first prove that the systems —4p and —15y strongly commute, where, as defined
in Sec. 3 we have —1gup:=—15 U —y.

» Theorem 5 (Strong Commutation). Vtg,t1,ta, if to —>1swp t1 and to —ap ta, Itz s.L.
t1 —as t3 and ta —>1euw t3.

Proof. By induction on the reduction relations, then, for the base cases, by case analysis of
overlapping local divergences. Most of the cases are straightforward, we only show here the
more interesting ones.

Clallz/u] =15 Clulz/u]  (Az.Cly])Laly/v]Leu—1s(Az.Clo])Li[y/v]Lou
~LdB \l/dB ~LdB idB
C'[a]fx/u]=1sC [u][z/u]  Cly][x/u]Lls[y/v]Le =16 Clv][x/ulli[y/v]Ls

Clx][x/u] =1s Clu][x/u] (Az.t)Li[y/v]Lou—ry(Ax.t)LiLou
laz tap lap laz
Clallz/w|=nsCluz/w] tlz/ullily/v]Le =y tlz/u]LiLo

(Az.t)L11[z/Cly]]L12[y/v]Lou—r1s (Ax.t)L11[2/C[v]]L12]y/v]Lou
lap laz
tle /ulLia[z/Clyl|La2[y/v]Le —1s tz/ullii[z/Clv]|L12ly/v]Le

<

The next goal is to establish confluence of the subsystem —;4,. For that we first need
to establish termination, that can be proved using some intermediate auxiliary results.
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» Lemma 6. Let x # y and assume y ¢ £v(v). Then ml,(Cy]) + ml,(Cly]) - ml,(v) =
ml,(Clv]) + mly(Cv]) - mlz(v).

Proof. By induction on C. <

The following lemma states compatibility of —1gyp W.r.t m1,(-).
» Lemma 7 (Compatibility). For all x, t and t', such that t —1u ', m1,(t) > ml,(¢).

Proof. The proof is by induction on the reduction relation. We show the base cases, since
the inductive cases are straightfoward:

Case C[z][z/u] —1s Clu][z/u]: m1,(C[z][z/u]) > ml,(Clu][z/u]) if and only if m1,(C[z]) +
ml,(C[z]) - m1l,(u) > ml,(Clu]) + m1,(Clu]) - m1,(u), which holds by Lem. 6, since z ¢ fv(u).
Actually, in this case the equality holds.

Case t[z/u] =y t: ml,(t[z/u]) = ml,(¢) + ml,(u) + ml,(¢) - ml,(u) > ml,(¢). <

» Lemma 8. Let x # y such that x,y ¢ fv(v). Then nl,(C[z]) > ml,(Cv]) and
1, (Cla]) = m1, (C[e]).

Proof. The proof is by simultaneous induction on C'. |

» Lemma 9. The system —1uwp 15 terminating on metaterms.

Proof. We show that ¢t =15y ¢’ implies sz(t) > sz(t') so that —15yp is necessarily terminating,.
The proof is by induction on ¢t —14y, ' and uses Lem. 7 and Lem. 8. |

» Lemma 10. The reduction relations —qg and —1gup are confluent.

Proof. As noticed before the relation —gp is trivially confluent. Since —;gyp is terminating
on metaterms (Lem. 9), in order to conclude confluence it is enough to verify joinability
of all critical pairs. The sole critical peak is built overlapping the ls-rule with itself:
Clul[z/u] 1s < Clz][x/u] = tlx/u] = C'[x][z/u] —1s C'[u][x/u]. In other words, ¢t can
be written as D[z, ], where D’ is a two-hole context. Then, the critical peak is joinable:
D'[u, ] [x/u] =15 D'[u, u][z/u] 15 < D[z, u][z/u]. <

We can now conclude metaconfluence for the linear substitution calculus as follows:

» Corollary 11. The reduction relation —»,_, is confluent on metaterms.

Proof. Let —),.,:=—ap U —1sup- Since both —4p and —15y are confluent (Lem 10) and
strongly commute (Theorem 5), their union is confluent using the Hindley-Rosen Theorem [10]
introduced in Sec. 1. <

4.3 The Structural Lambda Calculus enjoys MetaConfluence

In this section we prove metaconfluence for the structural lambda calculus. As in the previous
section, we first prove that the systems —4p and —g4p strongly commute, where, as defined
in Sec. 3, we have —gipi=—c U —q U —y.

» Theorem 12 (Strong Commutation). Vtg,t1,ta, if to —str t1 and to —ap ta, Itz s.L.
tl —»4B t3 and t2 %Zstr tg.
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Proof. By induction on the reduction relations. We only show here the diagrams of the more
interesting cases.

Az t)Lyy/v]lau  —y  (Az.t)LiLlou (Az.t)Li[y/v]Leu  —a  (Az.t)Liy/v]Leu

las las las JaB
tlz/ulli[y/v]Le  —v  t[z/u]LiLle tlz/ulLi[y/v]lLe  —q  tlx/u]Li[y/v]Le
tle/u] =ty lz/ully/u] tlz/u]  —c  tymle/ully/u]
las tap laB laB
tle/u'] = tyle/uly/u] tafu]l —e tiymlr/ully/u]

(Azt)Lify/v]lou —c  (Az)Liy,,n [y/v][y'/v]Lou
las lan
o/dlaly/olle —e  tlo/ulls /ol folla

The subtle point here is that in the last two diagrams we need to choose the replacement

t'(ylz) (vesp. (t[z/u]L1),,,)) according to that we used for ¢,y (resp. ((Az.t)L1),,n). <

The next goal is to establish confluence of the subsystem —g¢,. For that we first need to

establish termination, that can be proved using some intermediate auxiliary results.

» Lemma 13. Ifz ¢ fv(u) and x # y, then P, (¢t) = P, (t[y/u]).

Proof. The hypothesis implies P, (u) = 0. Moreover, we can easily prove by induction on ¢
that P, (t{y/ul}) = P.(t), if z ¢ fv(u) and 2 # y. We then consider all the possible cases for

tly/u].

1. Ify € tu(t) and y € £r(t), then Py (t[y/u]) = Po(t{y/u}y/u]) = P.(t{y/u}) = P.(t);
2. Ify ¢ fm(t) and y € £r(t), then P, (t[y/u]) = P (t{y/u}) = P, (1);

3. Iy € ta(t) and y ¢ £x(), then Py (ty/u]) = Pu(tly/u)) = Pu(tfy/u}) = P.(t);

4. If y ¢ fv(t), then P, (t[y/u]) = P.(t). |

The following properties hold for metaterms. The proofs can be done by simple structural

induction, where the metavariable case is straightforward and the other cases are in [6].

» Lemma 14. Let t be a metaterm. Then

1.

|t]x < Pu(t).

2. If x ¢ fv(u) then P, (t) = P, (t[y/ul).
3. If x,y, z are pairwise distinct and z ¢ £v(t) then Py (t) = Py(try2))-
4. Ify & fu(t) and t' =ty then Py(t) = Py(t') + Py(t').

» Lemma 15. If |t|, = 1 then P, (t{y/u}) < P,(t) + Py(t) - Py(u).

Proof. By induction on ¢. <

» Lemma 16. If |t|, = 1 and = ¢ fm(t) then jm(t[x/u]) 3 jm(tfz/u]).

Proof. By induction on t using Lem. 13 and Lem. 14. |

» Lemma 17. Let t,t' be metaterms. If t —gpr t' then P, (t) > Pi(t).

Proof. By induction on ¢t —¢¢, t' using Lem. 15 and Lem. 14. |

» Lemma 18. The reduction relation —g¢r s terminating on metaterms.

Proof. By induction on ¢ —¢¢, t' using Lem. 16 and Lem. 17. <
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» Lemma 19. The reduction relations =gy and —gg are confluent.

Proof. The reduction relation —4, is terminating on metaterms (Lem. 18), and do not have
critical pairs because its rules are mutually exclusive. Therefore, —g¢, is confluent. |

Metaconfluence of the structural substitution calculus is then obtained as follows:

» Corollary 20. The reduction relation —y__ is confluent on metaterms.

str

Proof. Let — ), :=—ap U —str. Both —gp and —4¢, are confluent (Lem. 19) and strongly

commute (Theorem 12), therefore their union is confluent by the Hindley-Rosen Theorem [10]
introduced in Sec. 1. |

5 Conclusion

We define reduction for metaterms for three calculi with explicit substitutions that act at a
distance, namely the substitution calculus, the linear substitution calculus and the structural
lambda calculus. This is done by defining a subtle notion of metasubstitution, which is
completely fixed for metavariables. In contrast to other specifications of A-calculi with ES on
metaterms, our resulting reduction systems do not contain equations, so that their equational
theories are simple enough to be treated with simple rewriting techniques. In particular, our
proofs of (meta)confluence can be achieved by using the well-known Hindley-Rosen Theorem.

As mentioned before, metaconfluence is an essential property of calculi with ES used to
implement higher-order unification (HOU) procedures [15, 8]. Indeed, such algorithms need
to compare typed metaterms in (7-long) normal form, which are unique by metaconfluence.
They then generate new metavariables in order to denote partial solutions that need again
to be in (n-long) normal form in order to recursively apply the algorithm. As future work,
we want to investigate higher-order unification (HOU) procedures based on calculi acting
at a distance. We believe that the simplicity and applicability of such calculi can lead to
unification procedures that are simpler than already known unification procedures based on
other ES calculi [15, 8.
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