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Abstract
The present work investigates inductive inference from the perspective of reverse mathematics.
Reverse mathematics is a framework which relates the proof strength of theorems and axioms
throughout many areas of mathematics in an interdisciplinary way. The present work looks at
basic notions of learnability including Angluin’s tell-tale condition and its variants for learning in
the limit and for conservative learning. Furthermore, the more general criterion of partial learning
is investigated. These notions are studied in the reverse mathematics context for uniformly and
weakly represented families of languages. The results are stated in terms of axioms referring to
domination and induction strength.
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1 Introduction

It is standard practice in mathematics to use known theorems to prove others. In these
cases it can often be observed that some theorem T seems to be “stronger” than another
theorem U in the sense that T allows proving U easily, but not vice versa. In the 1970s,
Friedman [11] proposed a framework that formalises this intuition and allows gauging the
different strengths of theorems that can be found in classical mathematics.

The general idea is to assume only a subset of the axioms of second order arithmetic,
which by itself is too weak to prove the theorems in question, and then to analyse whether
one theorem implies the other over this weak base system. Of course, if we want to exactly
determine the strength of a mathematical theorem T with regards to logical implication, then
we need to look in both directions: which theorems are implied by T and which imply T?
As all of mathematics is ultimately founded on axioms, it is a natural next step to extend
this study to the relation between axioms and theorems, and to wonder what axioms are
exactly equivalent to a given theorem T , that is, imply T and are implied by T .

This “inverted” approach – where one uses theorems to prove axioms instead of the other
way around – explains the name of this field of study: reverse mathematics. The subject has
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developed well since its inception, in particular thanks to many substantial contributions
made by Simpson and his students [19]. The methodology of reverse mathematics has been
applied to many fields of classical mathematics, for example, to group theory, to vector
algebra, to analysis, and – especially in recent years – to combinatorics, including Ramsey
theory and related fields. We refer to the books of Hirschfeldt [14] and Simpson [19] which
are convenient resources for the topic and give many references.

In the practice of reverse mathematics we will look at proper subsets of the axioms of
second order arithmetic and will investigate the properties of possible models of these axiom
sets. Such a model will be of the form (M,+, ·, <, 0, 1,S), where M is a (not necessarily
standard) model of the natural numbers and S is a class of subsets of M . The minimal
axiom system over which we will work is called RCA0. Informally speaking, the axioms of
this system guarantee that S contains at least all recursive sets and is closed under join and
Turing reduction. Furthermore, the axioms ensure that the system satisfies Σ1-induction
with parameters from S; in particular, even in nonstandard models of RCA0 all numbers of
the form maxi<n f(i) exist for all functions f ∈ S.

More precisely, RCA0 postulates that (M,+, <, ·, 0, 1) behaves sufficiently similar to the
natural numbers, in the following sense, and that S satisfies the following closure properties:

The ordering < is linear, transitive and antireflexive and has 0 as the least element;
The successor mapping x 7→ x+ 1 satisfies that x < x+ 1 and x < y ⇔ x+ 1 < y + 1 as
well as that 0 is the only number x which is not equal to y + 1 for some other number y;
The addition + is inductively defined from the successor by x+ 0 = x and x+ (y + 1) =
(x+ y) + 1;
The ordering < is definable from + by x < y ⇔ ∃z [x+ z + 1 = y];
The multiplication is inductively defined from the addition by x · 0 = 0 and x · (y + 1) =
(x · y) + x;
The second order model satisfies Σ1-induction, that is, if I ⊆M is defined by a Σ1-formula
using parameters from S and satisfies for all e the implication [∀d < e (d ∈ I)]⇒ e ∈ I
then I is equal to M ;
The set S contains ∅ and all sets which are recursive in the model (M,+, <, ·, 0, 1);
The second order model is a Turing ideal, that is, if I, J ∈ S then I ⊕J = {i+ i : i ∈ I}∪
{j+ j+ 1: j ∈ J} is also a member of S and, furthermore, if I ∈ S and J can be obtained
from I by both a Σ1-definition and a Π1-definition then J ∈ S.

Note that the last statement ensures that S is closed under join and Turing reducibility.
The model which contains exactly the recursive sets is called the minimal model of RCA0.

Of course there are many models of RCA0 that are much richer than the minimal model. In
particular if M is the standard model of natural numbers, then there is also the model where
S is the power set of M ; for nonstandard models, the power-set of M cannot be a model as
it fails the induction axiom. There also exist many intermediate models between those two
extremes. When M is the standard model of the natural numbers, then (M,+, ·, <, 0, 1,S)
is called an ω-model and due to their well-behavedness (compared to nonstandard models),
they are better understood than nonstandard models in reverse mathematics. However,
various complicated results in reverse mathematics were only obtained through the use of
nonstandard models [8, 9].

As we will show in this article, many results in inductive inference relate to the following
three axioms from reverse mathematics:

The axiom DOM which says that for every weakly represented family of functions in S
(defined below) there exists a function in S growing faster than all members of the family;
The axiom ACA0 which says that the class S is closed under Turing jump;
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The axiom IΣ2 which postulates that every Σ2 set I definable using parameters from S
satisfies the induction axiom: if ∀e [[∀d < e [d ∈ I]]⇒ e ∈ I] then I = M .

Note that IΣ2 is satisfied for all standard models of the natural numbers; however, if M is a
nonstandard model, assuming IΣ2 is a nontrivial constraint. By identifying a function with
its graph we can also informally talk about the functions from M to M that exist in the
model (that is, whose graphs are in S).

In an informal way, we will often think of the sets in S as being the recursive sets, even for
sets that are not recursive in the classical sense of recursion theory. This seemingly strange
fact can be understood as follows: Often in the reverse mathematics context we wonder
whether a certain object exists in a model, or what additional axiom – say, for example,
comprehension for Σ0

2 formulas – is needed to ensure its existence. We are then allowed
to apply these additional axioms relative to any object X already existing in the model,
no matter if X is recursive in the classical sense. That is, as soon as we know that X is
guaranteed to exist in S, we are allowed to take advantage of it, so for our purposes it is as
good as recursive.

In this article we propose to apply the methodology of reverse mathematics to the field of
inductive inference. We would like to point out that articles by de Brecht and Yamamoto [5]
and by Hayashi [13] pursue the same idea, but in ways that differ from our approach and
from each other. We proceed with defining central notions and analysing basic results of the
field of inductive inference [1, 2, 3, 6, 7, 12, 15, 17, 21]. We will in particular study Angluin’s
tell-tale condition for learnability and related results. In this context the notion of finiteness
of a set is of high importance as Angluin’s tell-tale sets are finite. We point out that in the
reverse mathematics setting some care is required with regard to this, as the universe M of
the model S may be nonstandard. We therefore fix the term “finite” for a subset of M to
mean that the subset of M has an upper bound and “infinite” to mean that no such bound
exists. Furthermore, it should be noted that “finite sets” are always considered to be “finite
sets contained in S” and that they are precisely those sets E for which there is a member
e ∈M with e =

∑
d∈E 2d.

Furthermore, we use Cantor’s pairing function 〈x, y〉 = (x+ y) · (x+ y + 1)/2 + y and
extend it appropriately to triples and quadruples and so on. Now we code a family of
sets {Ae}e∈M using a single set A by defining x ∈ Ae ⇔ 〈e, x〉 ∈ A. Such families of sets
are called uniformly represented families. Similarly one can define a uniformly represented
family of functions by Fe(x) = F (〈e, x〉) using one representation function. This notion was
generalised to the notion of weakly represented families of functions as follows [18]. Assume
that a representation set A ∈ S satisfies the following conditions on quadruples:

For all e, x, y, z, y′, z′: If 〈e, x, y, z〉, 〈e, x, y′, z′〉 ∈ A then y = y′ and z = z′;
If 〈e, x, y, z〉 ∈ A and x′ < x then there exist y′ and z′ such that 〈e, x′, y′, z′〉 ∈ A and
〈e, x′, y′, z′〉 < 〈e, x, y, z〉.

The intention behind the second condition is to ensure that the coding quadruples for each
function appear in the family in order ascending in the function argument x, even if the
function is not monotone; for this purpose we use the fourth component of the quadruples as
padding parameter. The first condition ensures that for each e, x there is at most one code
defining Fe(x). An index is invalid if there is some x where Fe(x) is not defined. Hence the
set D = {e : ∀x∃y, z [〈e, x, y, z〉 ∈ A]} is the index set of functions in the weakly represented
family and for e ∈ D, Fe(x) is the unique y such that 〈e, x, y, z〉 ∈ A for some z. The
family {Fe}e∈D is called the weakly represented family defined by A and every function Fe,
e ∈ D, is a function in the given second order model (M,+, ·, <, 0, 1,S). Furthermore, in
the case that all functions Fe in the family are {0, 1}-valued, they can also be viewed as the
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characteristic functions of a weakly represented family of sets and might be denoted with Ae

rather than Fe. Note that Dzhafarov and Mummert [10] have considered the more general
concept of enumerated families of sets.

In some of the proofs in this article we will make statements of the form “Ae(x) can
be retrieved from A in time less than s.” By this we mean that the code number c =
〈e, x,Ae(x), z〉 ∈ A is bounded by s. The intuition of time is explained by the fact that Ae(x)
or the padding parameter z could be very large, so that it will depend on c how far we need
to search in A to determine the function value Ae(x) for a given x.

In the reverse mathematics setting, we will of course only work with representation sets A
as above that exist in the given model of second order arithmetic S. In the case of uniformly
represented families then also their index set D as above must exist in S. But note the
important fact that for families that are only weakly represented, this will typically not be
the case, that is, D is usually not required to exist in S, only A always exists in S. For
this reason, we need to be careful in this article when working with families of functions,
because a learner (which has to be a function in S from finite sequences of elements of
M ∪ {#} to M) may conjecture members of M that are not members of D, as at the time
of the conjecture it cannot know whether a particular member of M is a valid index or not.
Note that weakly represented families can be much more general than uniformly represented
families; for example, for a fixed member A ∈ S, the family of all A-recursive functions is
weakly representable but in general not uniformly representable.

We now turn to the more formal notations from learning theory. Note that the families
defined above correspond to the classes of possible learning targets in learning theory. The
general scenario is that one possible learning target is presented to the learner in an infinite
sequence of data and the learner has to identify which of the possible targets the data is
from. Such a data presentation is called a text. We define the notion of a text in a way that
is compatible with reverse mathematics, that is, in such a way that when M is equal to the
standard natural numbers the definition coincides with the traditional one, but in the case of
nonstandard models they may differ.

I Definition 1. A text for a set A ∈ S is a function T : M → M ∪ {#} in S such that
{T (n) : n ∈M ∧ T (n) 6= #} = A. We call # the pause symbol. Without loss of generality we
assume that T (x) ∈ {0, 1, . . . , x} ∪ {#}.

The pause symbol “#” is a padding symbol that carries no information and is useful to
give a text for empty set. Again as usual we will write M∗ for the set of finite sequences
over M ∪ {#}. These can be thought of as the prefixes of texts. Take note that the word
“finite” needs to be understood in the reverse mathematics sense discussed above. M∗ can
be represented by some canonical indexing, where each finite sequence σ is represented by
the canonical index of the set {〈x, 0〉 : σ(x) = #} ∪ {〈x, y + 1〉 : σ(x) = y}. One can prove by
induction over a text that such canonical indices exist for every prefix of a text.

I Definition 2 (Angluin [2]; Gold [12]; Osherson, Stob and Weinstein [17]). Let {Ae}e∈D be
a uniformly or weakly represented family and let {Be}e∈E be a hypothesis space such that
{Ae}e∈D ⊆ {Be}e∈E. A learner is a function L : M∗ →M , where the elements of M∗ are
represented by canonical indices.

A learner L learns in the limit a family {Ae}e∈D if for every e ∈ D and every text T for Ae

the learner outputs a sequence of hypotheses en = L(T (0) . . . T (n)) such that, for some n, for
all m ≥ n, each hypothesis em is equal to em+1 and em ∈ E and Bem

= Ae.
A conservative learner never makes an unjustified mind change. So if n < m and en 6= em

then either en /∈ E or there exists k ≤ m with T (k) ∈M −Ben
. Conservative learning then

requires learning in the limit by a conservative learner.
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A learner partially learns the family {Ae}e∈D if for every e ∈ D and every text T for Ae

the learner outputs a sequence of hypotheses as above such that there is exactly one d with
∀m ∃n > m [d = en] and, furthermore, this d satisfies d ∈ E and Bd = Ae.

Note that often Be = Ae for all e and E = D, that is, the original family is used as hypothesis
space. The intuition for learning in the limit is that when a learner learns a family, its output
should converge to an index of the member of the family that the given text corresponds to.
If invalid texts are presented to the learner, it may output numbers that are not actually in
the set D of valid indices. Partial learning is a more general learning notion which, in the
classical setting, allows learning the family of all r.e. sets.

Due to space constraints the proofs of most of the results in this article have been omitted.

2 Angluin’s Condition

Angluin [2] gave a fundamental condition for the learnability of so-called indexed families of
sets. These are families of sets such that there exists a computable two-place function F
which on input (e, x) outputs 1 if x ∈ Le and 0 if x 6∈ Le. As F works for all e, the closest
equivalent to indexed families in the area of reverse mathematics are uniformly represented
families. Angluin’s condition (also called Angluin’s tell-tale condition/criterion) says that one
can learn an indexed family from positive data in the limit if and only if one can enumerate
for each member Ae of the family a finite tell-tale subset Be of Ae such that there is no
other member Ad of the family with Be ⊆ Ad ⊂ Ae. In reverse mathematics, it is difficult to
handle finite sets, therefore one mostly represents them by canonical indices. However, for
the tell-tale sets it is sufficient to consider bounds (called tell-tale bounds) be for each Ae

such that there is no Ad with Ae ∩ {0, 1, . . . , be} ⊆ Ad ⊂ Ae.

I Definition 3. Let a weakly represented family {Ae}e∈D with index set D be given:
1. The family satisfies Angluin’s condition in general iff for each e ∈ D there is a bound be

such that there is no d ∈ D with Ae ∩ {0, 1, . . . , be} ⊆ Ad ⊂ Ae;
2. The family satisfies Angluin’s condition in the limit iff there is a two-place function g ∈ S

such that for every e ∈ D the values g(〈e, 0〉), g(〈e, 1〉), . . . approximate from below a bound
be such that there is no d ∈ D with Ae ∩ {0, 1, . . . , be} ⊆ Ad ⊂ Ae;

3. The family satisfies Angluin’s condition effectively iff there is a function g ∈ S such that
for all e ∈ D we have that there is no d ∈ D with Ae ∩ {0, 1, . . . , g(e)} ⊆ Ad ⊂ Ae.

To avoid confusion we point out the informal use of the word “effectively” in the third
item, which needs to be understood as “g ∈ S.”

Blum and Blum [3] established the existence of so-called locking-sequences; that is,
whenever a learner learns a language X there is a finite sequence of elements in X such that,
after having processed this sequence, the learner conjectures a hypothesis which will not be
changed on any subsequent data drawn from X ∪ {#}. Blum and Blum’s proof can easily
be modified to carry over to the reverse mathematics setting; it then proves the following
statement.

I Theorem 4. RCA0 proves the following: Suppose a weakly represented family {Ae}e∈D

and a learner L are given such that for every e ∈ D and every text T for Ae, L converges
on T to an index d ∈ D with Ad = Ae. Then, there is a procedure which for every index
e ∈ M converges in the limit to a finite sequence (represented by a code); in the case that
e ∈ D, this sequence is a locking sequence for Ae.
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This existence of locking-sequences then shows that every weakly represented family
which is learnable in the limit must satisfy Angluin’s tell-tale condition with a general bound:
the bound is simply the largest element contained in the locking sequence. Section 3 will
address the question of which of the above variants of Angluin’s tell-tale condition is sufficient
for learning all weakly represented families satisfying it. The axiom DOM will be identified
as necessary and sufficient for this.

In Section 4 we will then follow Angluin’s approach more closely and investigate uniformly
represented families which, as mentioned before, are the closest equivalent in reverse mathem-
atics to the indexed families that Angluin studied. The difference is that Angluin’s families
are actually uniformly recursive, while our uniformly represented families are only uniformly
recursive relative to the parameter A representing them. This corresponds to the paradigm
described above that in the reverse mathematics context often all sets in S are treated as
if they were recursive. As we will show, for uniformly represented families, the degree of
effectiveness of the bound in Angluin’s condition is crucial. Section 5 then looks at sufficient
criteria for learning from the classical theory and shows that in reverse mathematics they
work for uniformly represented families as well. However, for weakly represented families we
will again require the axiom DOM. In Section 6 we will study partial learning.

3 Learnability of Weakly Represented Families

As mentioned above, the counterpart of the indexed families studied by Angluin are the
uniformly represented families in reverse mathematics. So it is not surprising that to prove
similar results for families that are represented in a less accessible way, such as weakly
represented families, we will need an additional assumption on the second order model. This
assumption is the axiom DOM which will turn out to be equivalent to saying that every
weakly represented family satisfying Angluin’s condition is learnable in the limit. The axiom
DOM says that every weakly represented family of functions is dominated by a single function
in S. Note that Adleman and Blum [1] showed that one can learn all classes of graphs of
recursive functions (which all satisfy Angluin’s condition) iff one has access to a dominating
function as an oracle. The axiom DOM now enforces that for every weakly represented
family of functions there is such a dominating function in S; this function can therefore be
used by the learner (which also has to be an object in S).

I Theorem 5. Over RCA0, the following conditions are equivalent:
1. The axiom DOM holds, that is, for every weakly represented family {Fe}e∈D of functions

there is a function f ∈ S dominating this family in the sense that ∀e ∈ D ∃x ∀y > x

[Fe(y) < f(y)];
2. The index set of every weakly represented family can be approximated in the limit;
3. Every weakly represented family satisfying Angluin’s condition effectively can be learnt in

the limit;
4. Every weakly represented family satisfying Angluin’s condition in the limit can be learnt

in the limit;
5. Every weakly represented family satisfying Angluin’s condition generally can be learnt in

the limit.

Proof. 1 ⇒ 2: Let {Fe}e∈D be a weakly represented family with representation set A. Then
the set of the functions Ge for e ∈ M which assign to x the minimum tuple (if it exists)
〈e, x, y, z〉 ∈ A also forms a weakly represented family, and Ge is total iff e ∈ D. Thus the
index set of this weakly represented family is also D.
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By assumption there is a function f dominating all {Ge}e∈D. Now it holds that e ∈ D
if and only if, for almost all numbers x, there are pairwise distinct elements of the form
〈e, 0, y0, z0〉, . . . , 〈e, x, yx, zx〉 ∈ A ∩ {0, 1, . . . , f(x)}. This is because on one hand, if e ∈ D,
the existence of these elements below f(x) follows from the fact that f dominates Ge. On
the other hand, if e /∈ D, then there exists an x such that A does not contain any element of
the form 〈e, x, ·, ·〉, so in particular there is no sequence as above.

Now one defines a function g by letting g(e, x) = 1 iff there are elements of the form
〈e, 0, y0, z0〉, . . . , 〈e, x, yx, zx〉 ∈ A∩ {0, 1, . . . , f(x)}, and g(e, x) = 0 otherwise. Then we have
that g(e, x) converges to 1 exactly when e ∈ D and g(e, x) converges to 0 exactly when e /∈ D,
so g is as needed.

2 ⇒ 1: Assume that a weakly represented family {Fe}e∈D has an index set D which is
approximated by g in the limit and has the representation set A. Then one can construct
the following function f :

f(x) = min{t : ∀e ≤ x [∃u, y, z ≤ t (g(e, u+ x) = 0 ∨ 〈e, x, y, z〉 ∈ A)]}.

This function f is total, as for all indices e either a stage u+ x is found with g(e, u+ x) = 0
or some value 〈e, x, y, z〉 is retrieved from A.

The minimum is taken over only finitely many conditions (in the square brackets) and for
every condition individually the minimal t can be computed from e and x (using the same
parameter set in the second order model as for the computation of A). Therefore, using
Σ1-induction, f(x) exists as the maximum over the t’s that are minimal for the individual
conditions (for each e ≤ x). Note that the “+x” in the definition of f ensures that wrong
behaviour of g during the first finitely many approximation stages is ignored in the limit.

The function f dominates each function Fe with e ∈ D, as for that function there is a
large enough x ≥ e with g(e, u+ x) = 1 for all u and therefore f(x′) ≥ Fe(x′) for all x′ ≥ x.

1 and 2 ⇒ 5: Let {Ae}e∈D be a weakly represented family satisfying Angluin’s tell-tale
condition generally. Furthermore, by the second condition there is a function g ∈ S such
that, if e ∈ D then limx g(e, x) = 1 else limx g(e, x) = 0. Now define for each e and bound b
a function Ge,b such that Ge,b(x) is the first t ≥ x found such that for each d ≤ x at least
one of the following three conditions applies:

We have g(d, u+ x) = 0 or g(e, u+ x) = 0 for some u ≤ t;
There is a number x′ ≤ t such that Ad(x′) and Ae(x′) can be retrieved from the
representation set within time t and either x′ ∈ Ad −Ae or x′ ∈ Ae −Ad ∧ x′ ≤ b;
The values of Ad and Ae up to x have been retrieved from the representation set within
time t and Ad(x′) = Ae(x′) for all x′ ≤ x.

These three conditions search for either e not being a valid index, or d not being a valid
index, or x′ witnessing that Ad is not a subset of Ae, or x′ being an element of the tell-tale
set of Ae that is not in Ad, or Ad being equal to Ae up to x. Note that the function Ge,b is
total for those b which are valid bounds for Fe; thus the index set of the family {Ge,b}(e,b)∈D′

is the set of all (e, b) such that either e /∈ D or b is a valid general bound for Angluin’s
condition with respect to Ae. Now there is a function f dominating all the Ge,b in the
weakly represented family. Note that whenever Ge,b is in this family then so is Ge,b+1 and
Ge,b(x) ≥ Ge,b+1(x) for all x.

Without loss of generality one can assume that any number x does not appear in the
text earlier than at stage x – this is achieved by inserting pause symbols into the text at all
places where needed. Let (e0, b0), (e1, b1), . . . be a sequence of pairs in which each pair of
index and bound appears infinitely often. The learner has the initial counter value 0, the
initial hypothesis e0 and initial bound b0. Assume that after processing s items, the learner
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has the counter n, the previous hypothesis en and the bound bn. To determine whether an
update to these parameters is needed, the learner now checks whether they satisfy all of the
following conditions:

We have g(en, u+ s) = 1 for all u ≤ f(s) and all values Aen
(x) for x ≤ s can be retrieved

from the representation set within time f(s);
It holds that Gen,bn(s) is defined within f(s) steps;
All data x with x ≤ bn ∧ x ∈ Aen have been observed in the text so far;
No datum x with x /∈ Aen has been observed in the text so far.

If (en, bn) satisfies all these conditions then the learner keeps the counter n, hypothesis en

and the bound bn, else the learner changes the counter to n+ 1, the hypothesis to en+1 and
the bound to bn+1. Assume that the learner converges to an incorrect hypothesis en or a
hypothesis with an incorrect bound bn, then one of the following happens at some future
stage s eventually:

It holds that g(en, u+ s) = 0 for some u ≤ f(s) (in the case that en is not a valid index);
Gen,bn(s) is not defined (in the case that the bound bn is invalid and that there is a d ≤ s
inside D discovered with Ae ∩ {0, 1, . . . , bn} ⊆ Ad ⊂ Ae);
Not all data in Ae ∩ {0, 1, . . . , bn} have shown up in the text or some datum outside Ae

has shown up in the text (in the case that the index and the bound are valid but that
the hypothesis is not the correct one).

All these conditions imply that the hypothesis will be updated to en+1 (and the bound
to bn+1) in contradiction to the assumption. The next possibility is that the learner would
infinitely often have a counter value n such that (en, bn) is some fixed correct pair (e, b). As
the function f dominates Ge,b, it holds for all sufficiently large s where the current (en, bn)
is equal to (e, b) that all four conditions from the above update test are satisfied and that
therefore the current (en, bn) will be kept and n will not be incremented. So the learner
indeed converges to the correct hypothesis e. As the function h from s to the n currently
processed is increasing and grows each step at most by one and is a member of S, this function
h is either eventually constant or has range M ; hence the above two cases (converging to a
wrong hypothesis or taking one correct hypothesis infinitely often) are exhaustive and the
learner is correct.

5 ⇒ 4 ⇒ 3. This follows from the definition.
3 ⇒ 2. Let {Fe}e∈D be any weakly represented family of functions (as represented by

the set F ∈ S). Now define a new weakly represented family A〈e,s〉 of sets such that A〈e,0〉 =
{〈e, x〉 : x ∈ M} in case that e ∈ D and let 〈e, 0〉 be an invalid index in case that e /∈ D.
Let A〈e,s+1〉 = {〈e, x〉 : x ≤ s} in case that s = max {〈e, u, y, z〉 ∈ F : u, y, z ∈M} and let
〈e, s+ 1〉 be an invalid index otherwise. Note that for each e, there is a unique s such that
〈e, s〉 is a valid index: we denote the corresponding unique A〈e,s〉 as Ae.

Assume now that this weakly represented family is learnable in the limit. Then, uniformly
in e, there is a text Te which contains all the pairs 〈e, x〉 such that for some 〈e, u, y, z〉 ≥ x,
〈e, u, y, z〉 ∈ F . This text Te is a text for Ae. The learner converges on Te to some index d
in the limit. By simulating the learner one can make a function g such that

limt→∞ g(e, t) converges to 0 in the case that the learner converges on the text Te to an
index d for a set which does not contain 〈e, x〉 for some x ∈M ,
limt→∞ g(e, t) converges to 1 in the case that the learner converges on the text Te to an
index d for a set containing 〈e, x〉 for each x ∈M .

The first case occurs iff Ae = A〈e,s+1〉 for some s and the second case occurs iff Ae = A〈e,0〉.
Here the first case coincides with e /∈ D and the second with e ∈ D. Thus g is correct. J
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One might ask whether the necessity of DOM in this context is due to the difficulty
of finding indices in weakly represented families rather than the difficulty of learning the
languages. Therefore one might be inclined to choose a more comprehensive but somehow
easier hypothesis space. However, in the proof of Theorem 5 (3 ⇒ 2) we only check whether
the learner converges to an index of a set not containing some pair 〈e, x〉. As this is a property
of the set, and not of its index, the choice of hypothesis space is not crucial for the proof.

Raghavan, Stephan and Zhang [18] investigate the strength of DOM. They show that
under RCA0 and IΣ2, DOM implies COH but not vice versa. This result is the counterpart
to the recursion-theoretic result that every high Turing degree contains a cohesive set.
Furthermore, for ω-models, there are also connections to set-theoretically motivated axioms.
For example, DOM is true iff MAD is false [18]. Here MAD is the statement that there exists
a maximal almost disjoint family, that is, a weakly represented family of sets {Ae}e∈D such
that (i) for all d, e ∈ D with d 6= e, Ad ∩Ae is finite, and (ii) for every infinite B ∈ S there
is an e such that B ∩Ae is infinite. It is also known that DOM does not imply WKL0, the
statement that every infinite binary tree in S has an infinite branch in S.

4 Uniformly Represented Families

We now show that Angluin’s classical theorem also applies for uniformly represented families
in the framework of reverse mathematics.

I Theorem 6. Over RCA0, a uniformly represented family is learnable in the limit if and
only if it satisfies Angluin’s condition in the limit.

One might ask when a learner exists in the case of general bounds in place of limit bounds.

I Theorem 7. Over RCA0, DOM holds iff every uniformly represented family satisfying
Angluin’s condition with a general bound is learnable in the limit.

Angluin [2] introduced the notion of conservative learning by requiring that a conservative
learner only makes a mind change (that is, updates its hypothesis) if some datum observed
so far is not contained in the previously conjectured set. Conservative learners do, therefore,
never overgeneralise the language to be learnt. Thus before a conservative learner conjectures
some language X it needs to ensure that there is no proper subset of X in the family being
learnt that could explain the data observed so far. This requirement enforces the effective
version of Angluin’s condition and may require that the learner use a different hypothesis
space than the family to be learnt. Such a hypothesis space is itself a family which needs to
contain all sets from the family to be learnt but possibly also other sets.

I Theorem 8. Over RCA0, a uniformly represented family {Ce}e∈M is conservatively
learnable using some hypothesis space {Ae}e∈M if and only if {Ce}e∈M is contained in some
uniformly represented family {Be}e∈M (possibly different from {Ae}e∈M ) which satisfies
Angluin’s condition effectively.

One might also ask in which cases every uniformly represented family satisfying Angluin’s
bound only in general is conservatively learnable. By Theorem 8 this only happens when
for every uniformly represented family it is equivalent whether it satisfies Angluin’s bound
in general or effectively. This then allows coding the halting problem into such a family,
and one obtains the following corollary. Finally, over ACA0, the index set D of any weakly
represented family is in S; so the result carries over to weakly represented families.

I Corollary 9. Over RCA0, the following statements are equivalent:
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1. ACA0 (that is, every set arithmetically definable from parameters in S is also in S and,
in particular, S is closed under the Turing jump);

2. Every uniformly represented family satisfying Angluin’s tell-tale condition with a general
bound is conservatively learnable;

3. Every weakly represented family satisfying Angluin’s tell-tale condition with a general
bound is conservatively learnable.

5 Sufficient Criteria

Angluin [2] looked at sufficient criteria for learning. In the reverse mathematics setting, all
these criteria can be proven to be sufficient over RCA0 for uniformly represented families;
for weakly represented families, the additional axiom DOM is again needed and sufficient to
build the learners. The first of these criteria considered is finite thickness.

I Theorem 10. Say that a family {Ae}e∈D has finite thickness if and only if every x ∈M
is contained in only finitely many Ae, that is, for every x ∈M there is a bound b such that
for all e > b, either e /∈ D or x /∈ Ae or Ae = Ad for some d ≤ b.
1. Over RCA0, every uniformly represented family which has finite thickness is learnable in

the limit.
2. Over RCA0, DOM is equivalent to the statement that every weakly represented family

which has finite thickness is learnable in the limit.

The property of finite thickness has been strengthened to finite elasticity [20]. Finite
elasticity mainly says that one cannot construct a text which in each step makes a concept
inconsistent that was consistent before. Abstracting from the requirement that this happens
in every step, one can also formulate this the other way round: A family has finite elasticity
if and only if for every text there is a prefix of the text such that every concept inconstent
with the full text is also inconsistent with this prefix.

I Theorem 11. Say that a family {Ae}e∈D has finite elasticity if and only if for every
T : M → M ∪ {#} in S there is a prefix σ � T such that for all e ∈ D, range(σ) ⊆ Ae ⇒
range(T ) ⊆ Ae.
1. Over RCA0, every uniformly represented family which has finite elasticity is learnable in

the limit.
2. Over RCA0, DOM is equivalent to the statement that every weakly represented family

which has finite elasticity is learnable in the limit.

Note that finite elasticity is only a sufficient criterion. For example the learnable class of
all sets of the form {0, 1, . . . , e} with e ∈M does not have finite elasticity.

Kobayashi [4, 16] considered another sufficient learnability criterion which is a further
strengthening of the property of finite elasticity: A class is learnable if for every language Ae

there is a finite subset E such that E ⊆ Ad ⇒ Ae ⊆ Ad for all other languages Ad in the
class. This learnability condition was proven in the context of indexed families and holds
without any effectivity requirement on finding this finite subset. One can carry it over to
uniformly represented and weakly represented families as follows.

I Theorem 12. Say that a family {Ae}e∈D admits characteristic subsets if and only if for all
e ∈ D exists b ∈M such that for all d ∈ D we have Ae∩{0, 1, . . . , b} ⊆ Ad ⇒ Ae ⊆ Ad.
1. Over RCA0, every uniformly represented family which admits characteristic subsets is

learnable in the limit.
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2. Over RCA0, DOM is equivalent to the statement that every weakly represented family
which admits characteristic subsets is learnable in the limit.

Note that admitting characteristic subsets is a stronger property than Angluin’s tell-tale
criterion, as the former condition enforces Ae ∩ {0, 1, ..., b} ⊆ Ad ⇒ Ae ⊆ Ad while Angluin’s
tell-tale criterion merely enforces Ae ∩ {0, 1, ..., b} ⊆ Ad ⇒ Ad 6⊂ Ae.

6 Partial Learning

Osherson, Stob and Weinstein [17] introduced the notion of partial learning where to be
successful a learner is required to output one correct hypothesis infinitely often and all
other hypotheses at most finitely often. This fundamental concept allows to learn all classes
of r.e. languages, provided that the hypothesis space permits padding. Our proofs of the
corresponding results in reverse mathematics depend on the axiom IΣ2 which, for example,
proves that every set in a weakly represented family has a least index. It is unknown whether
this is an inherent requirement for obtaining the statements, or one more involved arguments
could dispense with.

I Theorem 13. Over RCA0, a weakly represented family {Ad}d∈D is partially learnable if
and only if there is a further weakly represented family {Be}e∈E such that

for all d ∈ D there is exactly one e ∈ E with Be = Ad and
all e ∈ E are in D and satisfy Ae = Be.

That is, {Be}e∈E is a trimmed version of {Ad}d∈D containing exactly one index for each
set.

I Theorem 14. Over RCA0, every uniformly represented family is partially learnable.

I Theorem 15. Over RCA0 and IΣ2, for every weakly represented family {Ae}e∈D, there is
a partial learner using the weakly represented family {B〈e,b〉}e∈D,b∈M with B〈e,b〉 = Ae for
all e ∈ D, b ∈M as hypothesis space.

Proof. Let a weakly represented family {Ae}e∈D be given, let A be its representation set
and let X ∈ S. Now consider the Σ2 index set

I = {e : ∃x ∀y, z [〈e, x, y, z〉 /∈ A ∨ y 6= X(x)]}

consisting of the e’s which are not indices of X in {Ae}e∈D. In the case that X does not
have a minimal index, the index set I satisfies for all e the property (∀d < e [d ∈ I] ⇒ e ∈ I)
and then X does not have any index in the weakly represented family. Given the minimal
index e of a member of the family, one can define for d < e the uniform Σ2 singletons

Ud = {min{x : Ad(x) is not defined or Ad(x) 6= Ae(x)}}.

Let be be the least upper bound on all numbers appearing in some Ud, with d < e. Now one
defines the partial learner as follows: A hypothesis 〈e, b〉 is output at least n times if and
only if there is s ≥ n such that the following conditions are satisfied:

Ae(0), Ae(1), . . . , Ae(n) can be retrieved from A in time s;
There is no d < e such that for all x ≤ b the descriptions of Ad(x) and Ae(x) can be
retrieved from A in time s and such that Ad(x) = Ae(x);
For all b′ < b there is a d < e such that for all x ≤ b′ the descriptions of Ad(x) and Ae(x)
can be retrieved from A in time s and such that Ad(x) = Ae(x).
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One can verify that on a text for a member X of the weakly represented family, exactly one
pair 〈e, b〉 is output infinitely often and this is given by the least index e of X and the least
bound b such that all d < e satisfy that either Ad(b) is not defined or there is x ≤ b with
Ae(x) 6= Ad(x). Thus the family is partially learnt by the given learner. J

The previous result establishes that, over RCA0 and IΣ2, every member of a weakly
represented family has a least index. This assumption is an essential ingredient of the learning
algorithm and is equivalent to IΣ2 over RCA0.

I Proposition 16. Over RCA0, the axiom IΣ2 is equivalent to the statement that in every
weakly represented family, all its members have a minimal index.

Proof. The sufficiency of IΣ2 was already shown in Theorem 15. For the necessity assume
that IΣ2 is not satisfied. Then there is a Σ2 set I which is a proper subset of M and satisfies
for all e that [(∀d < e : d ∈ I) ⇒ e ∈ I]. As the set is Σ2, there is a ternary {0, 1}-valued
function g ∈ S such that e ∈ I ⇔ ∃n ∈ M ∀m ∈ M [g(e, n,m) = 1]. Now define a weakly
represented family such that every member of it is equal to M and its description A contains,
for each e, inductively the pairs 〈e, n, 1, zn〉 with z0 = 0 and zn+1 = zn +m for the least m
such that g(e, n,m) = 0. Now consider an arbitrary e.

If there is a least n such that zn+1 is not defined then g(e, n,m) = 1 for all m and e ∈ I.
If there is no least n with the property that zn+1 is not defined then consider the Σ1 set
J ={n : zn+1 is defined} and use Σ1-induction to show that J = M . It follows that all zn

are defined and thus for all n exists an m = zn+1 − zn with g(e, n,m) = 0. Hence e /∈ I.
It follows that the complement of I is the index set of the so constructed weakly represented
family and this index set does not contain a minimal element by the choice of I. However,
the index set contains only indices of the unique member M of the family, contradiction. J

I Theorem 17. Over RCA0, IΣ2 and DOM, every weakly uniform family can be partially
learnt using the family itself as hypothesis space.

Proof. Given a weakly represented family {Ae}e∈D with representation set A, one can
consider the weakly represented family of functions {Ge}e∈D such that for each e ∈ D and
x ∈ M , Ge(x) is the unique tuple of the form 〈e, x, y, z〉 ∈ A defining Ae(x). The family
of these Ge is dominated by some function f ∈ S. Now, the learner outputs an index e at
least n times iff there is an m ≥ n and an s ≥ f(m) such that the following conditions are
met:
1. Ae(0), Ae(1), . . . , Ae(m) can be retrieved within time f(m) from A;
2. There is no d < e such that Ad(0), Ad(1), . . . , Ad(m) can be retrieved within time f(m)

from A and such that Ad(0) = Ae(0), Ad(1) = Ae(1), . . . , Ad(m) = Ae(m);
3. All numbers x ≤ m with Ae(x) = 1 have occurred within the first s members of the text;
4. No number x ≤ m with Ae(x) = 0 has occurred within the first s members of the text.

The assumptions are sufficient to prove that this partial learner indeed succeeds to
partially learn the languages in the family; note that the first two conditions together with f
being a dominating function enforce that only minimal indices – whose existence is ensured
by IΣ2 – are output infinitely often and that the last two conditions enforce that a minimal
index is output infinitely often iff it is correct. J
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