
Standardization of a Call-By-Value
Lambda-Calculus∗

Giulio Guerrieri1, Luca Paolini2, and Simona Ronchi Della Rocca2

1 Laboratoire PPS, UMR 7126, Université Paris Diderot, Sorbonne Paris Cité
75205 Paris, France
giulio.guerrieri@pps.univ-paris-diderot.fr

2 Dipartimento di Informatica, Università degli Studi di Torino
Corso Svizzera 185, Torino, Italy
{paolini,ronchi}@di.unito.it

Abstract
We study an extension of Plotkin’s call-by-value lambda-calculus by means of two commutation
rules (sigma-reductions). Recently, it has been proved that this extended calculus provides
elegant characterizations of many semantic properties, as for example solvability. We prove
a standardization theorem for this calculus by generalizing Takahashi’s approach of parallel
reductions. The standardization property allows us to prove that our calculus is conservative
with respect to the Plotkin’s one. In particular, we show that the notion of solvability for this
calculus coincides with that for Plotkin’s call-by-value lambda-calculus.

1998 ACM Subject Classification D.3.1 Formal Definitions and Theory, F.3.2 Semantics of
Programming Language, F.4.1 Mathematical Logic

Keywords and phrases standardization, sequentialization, lambda-calculus, sigma-reduction, par-
allel reduction, call-by-value, head reduction, internal reduction, solvability, potential valuability,
observational equivalence

Digital Object Identifier 10.4230/LIPIcs.TLCA.2015.211

1 Introduction

The λv-calculus (λv for short) has been introduced by Plotkin in [15], in order to give a formal
account of the call-by-value evaluation, which is the most commonly used parameter passing
policy for programming languages. λv shares the syntax with the classical, call-by-name,
λ-calculus (λ for short), but its reduction rule, βv, is a restriction of β, firing only in case the
argument is a value (i.e., a variable or an abstraction). While βv is enough for evaluation, it
turned out to be too weak to study operational properties of terms. For example, in λ, the
β-reduction is sufficient to characterize solvability and (using extensionality) separability,
but, in order to characterize similar properties for λv, it has been necessary to introduce
different notions of reduction unsuitable for a correct call-by-value evaluation (see [13, 14]):
this is disappointing and requires complex reasoning. In this paper we study λσv , the extension
of λv proposed in [3]. It keeps the λv (and λ) syntax and it adds to the βv-reduction two
commutation rules, called σ1 and σ3, which unblock βv-redexes that are hidden by the
“hyper-sequential structure” of terms. It is well-known (see [14, 1]) that in λv there are
normal forms that are unsolvable, e.g. (λyx.xx)(zz)(λx.xx). The more evident benefit of λσv

∗ This work was partially supported by LINTEL TO_Call1_2012_0085, i.e. a Research Project funded
by the “Compagnia di San Paolo”.

© Giulio Guerrieri, Luca Paolini, and Simona Ronchi Della Rocca;
licensed under Creative Commons License CC-BY

13th International Conference on Typed Lambda Calculi and Applications (TLCA’15).
Editor: Thorsten Altenkirch; pp. 211–225

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TLCA.2015.211
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

212 Standardization of a Call-By-Value Lambda-Calculus

is that the commutation rules make all normal forms solvable (indeed (λyx.xx)(zz)(λx.xx)
is not a λσv normal form). More generally, the so obtained language, allows us to characterize
operational properties, like solvability and potential valuability, in an internal and elegant
way (see [3]). In this paper we prove a standardization property in λσv , and some of its
consequences, namely its soundness with respect to the semantics of λv.

Let us recall the notion of standardization, which has been first studied in the ordinary
λ-calculus (see, for example [5, 8, 2]). A reduction sequence is standard if its redexes are
ordered in a given way, and the corresponding standardization theorem establishes that every
reduction sequence can constructively be transformed into a standard one. Standardization
is a key tool to grasp the way in which reductions work, that sheds some light on redexes
relationships and their dependencies. It is useful for characterization of semantic properties
through reduction strategies (the proof of operational semantics adequacy is a typical use).

In the λv setting standardization theorems have been proved by Plotkin [15], Paolini and
Ronchi Della Rocca [14, 12] and Crary [4]. The definition of standard sequence of reductions
considered by Plotkin and Crary coincides, and it imposes a partial order on redexes, while
Paolini and Ronchi Della Rocca define a total order on them. All these proofs are developed
by using the notion of parallel reduction introduced by Tait and Martin-Löf (see Takahashi
[17] for details and interesting technical improvements). We emphasize that this method
does not involve the notion of residual of a redex, on which many classical proofs for the
λ-calculus are based (see for example [8, 2]). As in [15, 17, 14, 4], we use a suitable notion
of parallel reduction for developing our standardization theorem for λσv . In particular we
consider two groups of redexes, head βv-redexes and head σ-redexes (putting together σ1 and
σ3), and we induce a total order on head redexes of the two groups, without imposing any
order on head σ-redexes themselves. More precisely, when σ-redexes are missing, this notion
of standardization coincides with that presented in [14]. Moreover, we show that it is not
possible to strengthen our standardization by (locally) ordering σ1-reduction to σ3-reduction
(or viceversa).

As usual, our standardization proof is based on a sequentialization result: inner reductions
can always be postponed after the head ones, for a non-standard definition of head reduction.
Sequentialization has interesting consequences: it allows us to prove that fundamental opera-
tional properties in λσv , like observational equivalence, potential valuability and solvability, are
conservative with respect to the corresponding notions of λv. This fully justifies the project
in [3] where λσv has been introduced as a tool for studying the operational behaviour of λv.

Other variants of λv have been introduced in the literature for modeling the call-by-value
computation. We would like to cite here at least the contributions of Moggi [10], Felleisen
and Sabry [16], Maraist et al. [9], Herbelin and Zimmerman [7], Accattoli and Paolini [1]. All
these proposals are based on the introduction of new constructs to the syntax of λv, so the
comparison between them is not easy with respect to syntactical properties (some detailed
comparison is given in [1]). We point out that the calculi introduced in [10, 16, 9, 7] present
some variants of our σ1 and/or σ3 rules, often in a setting with explicit substitutions.

Outline. In Section 2 we introduce the language λσv and its operational behaviour; in
Section 3 the sequentialization property is proved; Section 4 contains the main result, i.e.,
standardization ; in Section 5 some conservativity results with respect to Plotkin’s λv-calculus
are proved. Section 6 concludes the paper, with some hints for future work.

G. Guerrieri, L. Paolini, and S. Ronchi Della Rocca 213

2 The call-by-value lambda calculus with sigma-rules

In this section we present λσv , a call-by-value λ-calculus introduced in [3] that adds two σ-reduc-
tion rules to pure (i.e. without constants) call-by-value λ-calculus defined by Plotkin in [15].

The syntax of terms of λσv [3] is the same as the one of ordinary λ-calculus and Plotkin’s
call-by-value λ-calculus λv [15] (without constants). Given a countable set V of variables
(denoted by x, y, z, . . .), the sets Λ of terms and Λv of values are defined by mutual induction:

(Λv) V,U ::= x | λx.M values
(Λ) M,N,L ::= V | MN terms

Clearly, Λv ⊆ Λ. All terms are considered up to α-conversion. The set of free variables of a
termM is denoted by fv(M). Given V1, . . . , Vn ∈ Λv and pairwise distinct variables x1, . . . , xn,
M{V1/x1, . . . , Vn/xn} denotes the term obtained by the capture-avoiding simultaneous sub-
stitution of Vi for each free occurrence of xi in the term M (for all 1 ≤ i ≤ n). Note that, for
all V, V1, . . . , Vn ∈ Λv and pairwise distinct variables x1, . . . , xn, V {V1/x1, . . . , Vn/xn} ∈ Λv.

Contexts (with exactly one hole L·M), denoted by C, are defined as usual via the grammar:

C ::= L·M | λx.C | CM | MC .

We use CLMM for the term obtained by the capture-allowing substitution of the term M for
the hole L·M in the context C.

I Notation. From now on, we set I = λx.x and ∆ = λx.xx.

The reduction rules of λσv consist of Plotkin’s βv-reduction rule, introduced in [15], and
two simple commutation rules called σ1 and σ3, studied in [3].

I Definition 1 (Reduction rules). We define the following binary relations on Λ (for any
M,N,L ∈ Λ and any V ∈ Λv):

(λx.M)V 7→βv
M{V/x}

(λx.M)NL 7→σ1 (λx.ML)N with x /∈ fv(L)
V ((λx.L)N) 7→σ3 (λx.V L)N with x /∈ fv(V).

For any r ∈ {βv, σ1, σ3}, if M 7→r M
′ then M is a r-redex and M ′ is its r-contractum. In

this sense, a term of the shape (λx.M)N (for any M,N ∈ Λ) is a β-redex.
We set 7→σ = 7→σ1 ∪ 7→σ3 and 7→v = 7→βv

∪ 7→σ.

The side conditions on 7→σ1 and 7→σ3 in Definition 1 can be always fulfilled by α-renaming.
Obviously, any βv-redex is a β-redex but the converse does not hold: (λx.z)(yI) is a

β-redex but not a βv-redex. Redexes of different kind may overlap: for example, the term
∆I∆ is a σ1-redex and it contains the βv-redex ∆I; the term ∆(I∆)(xI) is a σ1-redex and it
contains the σ3-redex ∆(I∆), which contains in turn the βv-redex I∆.

According to the Girard’s call-by-value “boring” translation (·)v of terms into Intuitionistic
Multiplicative Exponential Linear Logic proof-nets, defined by (A⇒ B)v = !Av (!Bv (see
[6]), the images under (·)v of a σ1-redex (resp. σ3-redex) and its contractum are equal modulo
some “bureaucratic” steps of cut-elimination.

I Notation. Let R be a binary relation on Λ. We denote by R∗ (resp. R+; R=) the
reflexive-transitive (resp. transitive; reflexive) closure of R.

TLCA’15

214 Standardization of a Call-By-Value Lambda-Calculus

I Definition 2 (Reductions). Let r ∈ {βv, σ1, σ3, σ, v}.
The r-reduction →r is the contextual closure of 7→r, i.e. M →r M

′ iff there is a context C
and N,N ′ ∈ Λ such that M = CLNM, M ′ = CLN ′M and N 7→r N

′.
The r-equivalence =r is the reflexive-transitive and symmetric closure of →r.
Let M be a term: M is r-normal if there is no term N such that M →r N ; M is

r-normalizable if there is a r-normal term N such that M →∗r N ; M is strongly r-normalizing
if there is no sequence (Ni)i∈N such that M = N0 and Ni →r Ni+1 for any i ∈ N. Finally,
→r is strongly normalizing if every N ∈ Λ is strongly r-normalizing.

Patently, →σ (→v and →βv
(→v.

I Remark 3. For any r ∈ {βv, σ1, σ3, σ, v} (resp. r ∈ {σ1, σ3, σ}), values are closed under r-
reduction (resp. r-expansion): for any V ∈ Λv, if V →r M (resp.M →r V) thenM ∈ Λv; more
precisely, V = λx.N and M = λx.N ′ for some N,N ′ ∈ Λ with N →r N

′ (resp. N ′ →r N).

I Proposition 4 (See [3]). The σ-reduction is confluent and strongly normalizing. The
v-reduction is confluent.

The λσv -calculus, λσv for short, is the set Λ of terms endowed with the v-reduction →v.
The set Λ endowed with the βv-reduction →βv

is the λv-calculus (λv for short), i.e. the
Plotkin’s call-by-value λ-calculus [15] (without constants), which is thus a sub-calculus of λσv .

I Example 5. M = (λy.∆)(xI)∆→σ1 (λy.∆∆)(xI)→βv
(λy.∆∆)(xI)→βv

. . . and N =
∆((λy.∆)(xI))→σ3 (λy.∆∆)(xI)→βv (λy.∆∆)(xI)→βv . . . are the only possible v-reduction
paths fromM andN respectively: M andN are not v-normalizable, andM =v N . Meanwhile,
M and N are βv-normal and different, hence M 6=βv N (by confluence of →βv , see [15]).

Informally, σ-rules unblock βv-redexes which are hidden by the “hyper-sequential structure”
of terms. This approach is alternative to the one in [1] where hidden βv-redexes are reduced
using rules acting at a distance (through explicit substitutions). It can be shown that the
call-by-value λ-calculus with explicit substitution introduced in [1] can be embedded in λσv .

3 Sequentialization

In this section we aim to prove a sequentialization theorem (Theorem 22) for the λσv -calculus
by adapting Takahashi’s method [17, 4] based on parallel reductions.

I Notation. From now on, we always assume that V, V ′ ∈ Λv.

Note that the generic form of a term is VM1 . . .Mm for some m ∈ N (in particular, values are
obtained when m = 0). The sequentialization result is based on a partitioning of v-reduction
between head and internal reduction.

I Definition 6 (Head βv-reduction). We define inductively the head βv-reduction
h→βv

by
the following rules (m ∈ N in both rules):

βv

(λx.M)VM1 . . .Mm
h→βv M{V/x}M1 . . .Mm

N
h→βv N

′
right

V NM1 . . .Mm
h→βv V N

′M1 . . .Mm

The head βv-reduction
h→βv reduces exactly the same redexes (see also [13]) as the “left

reduction” defined in [15, p. 136] for λv and called “evaluation” in [16, 4]. If N h→βv
N ′ then

N ′ is obtained from N by reducing the leftmost-outermost βv-redex, not in the scope of a λ:
thus, the head βv-reduction is deterministic (i.e., it is a partial function from Λ to Λ) and
does not reduce values.

G. Guerrieri, L. Paolini, and S. Ronchi Della Rocca 215

I Definition 7 (Head σ-reduction). We define inductively the head σ-reduction h→σ by the
following rules (m ∈ N in all the rules, x /∈ fv(L) in the rule σ1, x /∈ fv(V) in the rule σ3):

σ1

(λx.M)NLM1 . . .Mm
h→σ (λx.ML)NM1 . . .Mm

N
h→σ N

′
right

V NM1 . . .Mm
h→σ V N

′M1 . . .Mm

σ3

V ((λx.L)N)M1 . . .Mm
h→σ (λx.V L)NM1 . . .Mm

The head (v-)reduction is h→v = h→βv ∪
h→σ. The internal (v-)reduction is int→v =→vr

h→v.

Notice that 7→βv
(h→βv

(→βv
and 7→σ (

h→σ (→σ and 7→v (
h→v (→v. Values are nor-

mal forms for the head reduction, but the converse does not hold: xI /∈ Λv is head-normal.
Informally, if N h→σ N ′ then N ′ is obtained from N by reducing “one of the left-

most” σ1- or σ3-redexes, not in the scope of a λ: in general, a term may contain sev-
eral head σ1- and σ3-redexes. Indeed, differently from h→βv

, the head σ-reduction h→σ

is not deterministic, for example the leftmost-outermost σ1- and σ3-redexes may overlap:
if M = (λy.y′)(∆(xI))I then M

h→σ (λy.y′I)(∆(xI)) = N1 by applying the rule σ1 and
M

h→σ (λz.(λy.y′)(zz))(xI)I=N2 by applying the rule σ3. Note that N1 contains only a
head σ3-redex and N1

h→σ (λz.(λy.y′I)(zz))(xI) = N which is normal for h→v; meanwhile N2
contains only a head σ1-redex and N2

h→σ (λz.(λy.y′)(zz)I)(xI) = N ′ which is normal for
h→v: N 6= N ′, hence the head reduction h→v is not confluent and a term may have several
head-normal forms (this example does not contradict the confluence of σ-reduction because
N ′ →σ N but by performing an internal reduction step). Later, in Corollary 26.2 we show that
if a term M has a head normal form N ∈ Λv then N is the unique head normal form of M .

I Definition 8 (Parallel reduction). We define inductively the parallel reduction ⇒ by the
following rules (x /∈ fv(L) in the rule σ1, x /∈ fv(V) in the rule σ3):

V ⇒ V ′ Mi ⇒M ′
i (m ∈ N, 0 ≤ i ≤ m)

βv

(λx.M0)VM1 . . .Mm⇒M ′
0{V ′/x}M ′

1 . . .M
′
m

N ⇒ N ′ L⇒ L′ Mi ⇒M ′
i (m∈N, 0≤ i≤m)

σ1
(λx.M0)NLM1 . . .Mm⇒(λx.M ′

0L
′)N ′M ′

1 . . .M
′
m

V ⇒ V ′ N ⇒ N ′ L⇒ L′ Mi ⇒M ′
i (m ∈ N, 1 ≤ i ≤ m)

σ3
V ((λx.L)N)M1 . . .Mm ⇒ (λx.V ′L′)N ′M ′

1 . . .M
′
m

Mi ⇒M ′
i (m ∈ N, 0 ≤ i ≤ m)

λ
(λx.M0)M1 . . .Mm ⇒ (λx.M ′

0)M ′
1 . . .M

′
m

Mi ⇒M ′
i (m ∈ N, 1 ≤ i ≤ m)

var
xM1 . . .Mm ⇒ xM ′

1 . . .M
′
m

In Definition 8 the rule var has no premises when m = 0: this is the base case of the
inductive definition of ⇒. The rules σ1 and σ3 have exactly three premises when m = 0.

Intuitively, M ⇒M ′ means that M ′ is obtained from M by reducing a number of βv-,
σ1- and σ3-redexes (existing in M) simultaneously.

I Definition 9 (Internal and strong parallel reduction). We define inductively the internal
parallel reduction int⇒ by the following rules:

N ⇒ N ′
λ

λx.N
int⇒ λx.N ′

var
x

int⇒ x
V ⇒ V ′ N

int⇒ N ′ Mi ⇒M ′
i (m ∈ N, 1 ≤ i ≤ m)

right
V NM1 . . .Mm

int⇒ V ′N ′M ′
1 . . .M

′
m

The strong parallel reduction V is defined by: M V N iff M ⇒ N and there exist
M ′,M ′′ ∈ Λ such that M h−→∗βv

M ′
h−→∗σ M ′′

int⇒ N .

Notice that the rule right for int⇒ has exactly two premises when m = 0.

TLCA’15

216 Standardization of a Call-By-Value Lambda-Calculus

I Remark 10. The relations ⇒, V and int⇒ are reflexive. The reflexivity of V follows
immediately from the reflexivity of ⇒ and int⇒. The proofs of reflexivity of ⇒ and int⇒ are
both by structural induction on a term: in the case of ⇒, recall that every term is of the
form (λx.N)M1 . . .Mm or xM1 . . .Mm for some m ∈ N and then apply the rule λ or var
respectively, together with the inductive hypothesis; in the case of int⇒, recall that every
term is of the form λx.M or x or V NM1 . . .Mm for some m ∈ N and then apply the rule λ
(together with the reflexivity of ⇒) or var or right (together with the reflexivity of ⇒ and
the inductive hypothesis) respectively.

One has int⇒(V⊆⇒ (first, prove that int⇒⊆⇒ by induction on the derivation of M int⇒M ′,
the other inclusions follow from the definition of V) and, since ⇒ is reflexive (Remark 10),

h→βv (⇒ and h→σ (⇒. Observe that ∆∆ R ∆∆ for any R ∈ {7→βv ,
h→βv ,⇒,

int⇒,V}, even
if for different reasons: for example, ∆∆ int⇒ ∆∆ by reflexivity of int⇒ (Remark 10), whereas
∆∆ h→βv

∆∆ by reducing the (leftmost-outermost) βv-redex.
Next two further remarks collect many minor properties that can be easily proved.

I Remark 11. 1. The head βv-reduction
h→βv does not reduce a value (in particular, does

not reduce under λ’s), i.e., for any M ∈ Λ and any V ∈ Λv, one has V 6 h→βv
M .

2. The head σ-reduction h→σ does neither reduce a value nor reduce to a value, i.e., for any
M ∈ Λ and any V ∈ Λv, one has V 6 h→σ M and M 6 h→σ V .

3. Variables and abstractions are preserved under int⇐ (int⇒-expansion), i.e., if M int⇒ x (resp.
M

int⇒ λx.N ′) then M = x (resp. M = λx.N for some N ∈ Λ such that N ⇒ N ′).
4. If M ⇒M ′ then λx.M R λx.M ′ for any R ∈ {⇒, int⇒,V}. Indeed, for R ∈ {⇒, int⇒} apply

the rule λ to conclude, then λx.M V λx.M ′ according to the definition of V.
5. For any V, V ′ ∈ Λv, V

int⇒ V ′ iff V ⇒ V ′. The left-to-right direction holds because int⇒⊆⇒;
conversely, assume V ⇒V ′: if V is a variable then necessarily V = V ′ and hence V int⇒ V ′

by applying the rule var for int⇒; otherwise V = λx.N for some N ∈ Λ, and then necessarily
V ′ = λx.N ′ with N ⇒ N ′, so V int⇒ V ′ by applying the rule λ for int⇒.

I Remark 12. 1. IfM ⇒M ′ and N ⇒ N ′ thenMN ⇒M ′N ′. For the proof, it is sufficient
to consider the last rule of the derivation of M ⇒M ′.

2. If R ∈ { h→βv
,

h→σ} and M R M ′, then MN R M ′N for any N ∈ Λ . For the proof, it is
sufficient to consider the last rule of the derivation of M R M ′, for any R ∈ { h→βv

,
h→σ}.

3. If M int⇒M ′ and N ⇒ N ′ where M ′ /∈ Λv, then MN
int⇒ M ′N ′: indeed, the last rule in

the derivation of M int⇒M ′ can be neither λ nor var because M ′ /∈ Λv. The hypothesis
M ′ /∈ Λv is crucial: for example, x int⇒ x and I∆⇒ ∆ but I∆ 6 int⇒ ∆ and thus x(I∆) 6 int⇒ x∆.

4. →v⊆⇒⊆→∗v . As a consequence, ⇒∗=→∗v and (by Proposition 4) ⇒ is confluent.
5. int→v⊆

int⇒⊆ int−→∗v , so
int⇒∗= int−→∗v . Thus, by Remark 11.3, variables and abstractions are

preserved under int−→∗v -expansion, i.e., if M
int−→∗v x (resp. M int−→∗v λx.N ′) then M = x (resp.

M = λx.N with N →∗v N ′).
6. For any R ∈ { h→βv ,

h→σ}, ifM R M ′ thenM{V/x} R M ′{V/x} for any V ∈ Λv. The proof
is by straightforward induction on the derivation of M R M ′ for any R ∈ { h→βv

,
h→σ}.

As expected, a basic property of parallel reduction ⇒ is the following:

I Lemma 13 (Substitution lemma for⇒). IfM⇒M ′ and V ⇒V ′ thenM{V/x}⇒M ′{V ′/x}.

Proof. By straightforward induction on the derivation of M ⇒M ′. J

The following lemma will play a crucial role in the proof of Lemmas 18-19 and shows
that the head σ-reduction h→σ can be postponed after the head βv-reduction

h→βv
.

G. Guerrieri, L. Paolini, and S. Ronchi Della Rocca 217

I Lemma 14 (Commutation of head reductions).
1. If M h→σ L

h→βv
N then there exists L′ ∈ Λ such that M h→βv

L′
h−→=
σ N .

2. If M h−→∗σ L
h−→∗βv

N then there exists L′ ∈ Λ such that M h−→∗βv
L′

h−→∗σ N .
3. If M h−→∗v M ′ then there exists N ∈ Λ such that M h−→∗βv

N
h−→∗σ M ′.

Proof. 1. By induction on the derivation of M h→σ L. Let us consider its last rule r.
If r = σ1 then M = (λx.M0)N0L0M1 . . .Mm and L = (λx.M0L0)N0M1 . . .Mm where
m ∈ N and x /∈ fv(L0). Since L h→βv N , there are only two cases:

either N0
h→βv N

′
0 and N = (λx.M0L0)N ′0M1 . . .Mm (according to the rule right for

h→βv
), then M h→βv

(λx.M0)N ′0L0M1 . . .Mm
h→σ N ;

or N0∈Λv and N=M0{N0/x}L0M1. . .Mm (by the rule βv, as x /∈ fv(L0)), so M h→βv
N .

If r = σ3 then M = V ((λx.L0)N0)M1 . . .Mm and L = (λx.V L0)N0M1 . . .Mm with
m ∈ N and x /∈ fv(V). Since L h→βv

N , there are only two cases:
either N0

h→βv N
′
0 and N = (λx.V L0)N ′0M1 . . .Mm (according to the rule right for

h→βv), then M
h→βv V ((λx.L0)N ′0)M1 . . .Mm

h→σ N ;
or N0∈Λv and N=VL0{N0/x}M1 . . .Mm (by the rule βv, as x /∈ fv(V)), so M h→βv

N .
Finally, if r = right then M = V N0M1 . . .Mm and L = V N ′0M1 . . .Mm with m ∈ N and
N0

h→σ N
′
0. By Remark 11.2, N ′0 /∈ Λv and thus, since L h→βv

N , the only possibility is
that N ′0

h→βv
N ′′0 and N = V N ′′0 M1 . . .Mm (according to the rule right for h→βv

). By
induction hypothesis, there exists N ′′′0 ∈ Λ such that N0

h→βv
N ′′′0

h−→=
σ N ′′0 . Therefore,

M
h→βv V N

′′′
0 M1 . . .Mm

h−→=
σ N .

2. Immediate consequence of Lemma 14.1, using standard techniques of rewriting theory.
3. Immediate consequence of Lemma 14.2, using standard techniques of rewriting theory.

J

We are now able to travel over again Takahashi’s method [17, 4] in our setting with βv-
and σ-reduction. The next four lemmas govern the strong parallel reduction and will be used
to prove Lemma 19.

I Lemma 15. If M VM ′ and N ⇒ N ′ and M ′ /∈ Λv , then MN VM ′N ′.

Proof. One has MN ⇒ M ′N ′ by Remark 12.1 and since M ⇒ M ′. By hypothesis, there
exist m,n ∈ N and M0, . . . ,Mm, N0, . . . , Nn such that M = M0, Mm = N0, Nn

int⇒ M ′,
Mi

h→βv Mi+1 for any 0 ≤ i < m and Nj
h→σ Nj+1 for any 0 ≤ j < n; by Remark 12.2,

MiN
h→βv

Mi+1N for any 0 ≤ i < m and NjN
h→σ Nj+1N for any 0 ≤ j < n. As M ′ /∈ Λv ,

one has NnN
int⇒M ′N ′ by Remark 12.3. Therefore, MN VM ′N ′. J

I Lemma 16. If M VM ′ and N V N ′ then MN VM ′N ′.

Proof. If M ′ /∈ Λv then MN VM ′N ′ by Lemma 15 and since N ⇒ N ′.
AssumeM ′∈Λv : MN⇒M ′N ′ by Remark 12.1, asM⇒M ′ and N⇒N ′. By hypothesis,

there are m,m′, n, n′∈ N and M0, . . . ,Mm,M
′
0, . . . ,M

′
m′ , N0, . . . , Nn, N

′
0, . . . , N

′
n′ such that:

M = M0, Mm = M ′0, M ′m′
int⇒M ′, Mi

h→βv
Mi+1 for any 0 ≤ i < m, and M ′i′

h→σ M
′
i′+1

for any 0 ≤ i′ < m′,
N = N0, Nn = N ′0, N ′n′

int⇒ N ′, Nj
h→βv

Nj+1 for any 0 ≤ j < n and N ′j′
h→σ N

′
j′+1 for

any 0 ≤ j′ < n′.
By Remark 11.3, M ′m′ ∈ Λv since M ′ ∈ Λv, therefore m′ = 0 by Remark 11.2, and thus
Mm = M ′0

int⇒ M ′ (and Mm ⇒ M ′ since int⇒⊆⇒) and Mm ∈ Λv. Using the rules right for
h→βv and h→σ, one has MmNj

h→βv MmNj+1 for any 0 ≤ j < n, and MmN
′
j′

h→σ MmN
′
j′+1

for any 0 ≤ j′ < n′. By Remark 12.2, MiN0
h→βv

Mi+1N0 for any 0 ≤ i < m. By applying

TLCA’15

218 Standardization of a Call-By-Value Lambda-Calculus

the rule right for int⇒, one has MmN
′
n′

int⇒M ′N ′. Therefore, MN = M0N0
h−→∗βv

MmN0
h−→∗βv

MmNn = MmN
′
0

h−→∗σ MmN
′
n′

int⇒M ′N ′ and hence MN VM ′N ′. J

I Lemma 17. If M int⇒M ′ and V V V ′, then M{V/x}VM ′{V ′/x}.

Proof. By Lemma 13, one has M{V/x} ⇒ M ′{V ′/x} since M ⇒ M ′ and V ⇒ V ′. We
proceed by induction on M ∈ Λ. Let us consider the last rule r of the derivation of M int⇒M ′.

If r = var then there are two cases: eitherM = x and then M{V/x}=V VV ′=M ′{V ′/x};
or M = y 6= x and then M{V/x} = y = M ′{V ′/x}, so M{V/x}VM ′{V ′/x} by Remark 10.

If r = λ then M = λy.N and M ′ = λy.N ′ with N ⇒ N ′; we can suppose without loss
of generality that y /∈ fv(V) ∪ {x}. One has N{V/x} ⇒ N ′{V ′/x} according to Lemma 13.
By applying the rule λ for int⇒, one has M{V/x} = λy.N{V/x} int⇒ λy.N ′{V ′/x} = M ′{V ′/x}
and thus M{V/x}VM ′{V ′/x}.

Finally, if r = right then M = UNM1 . . .Mm and M ′ = U ′N ′M ′1 . . .M
′
m for some

m ∈ N with U,U ′ ∈ Λv, U ⇒ U ′, N int⇒ N ′ and Mi ⇒M ′i for any 1 ≤ i ≤ m. By induction
hypothesis, U{V/x}V U ′{V ′/x} (indeed U int⇒ U ′ according to Remark 11.5) andN{V/x}V
N ′{V ′/x}. By Lemma 13, Mi{V/x} ⇒ M ′i{V ′/x} for any 1 ≤ i ≤ m. By Lemma 16,
U{V/x}N{V/x} V U ′{V ′/x}N ′{V/x} and hence, by applying Lemma 15 m times since
U ′{V ′/x}N ′{V/x} /∈ Λv, one has M{V/x} = U{V/x}N{V/x}M1{V/x} . . .Mm{V/x} V
U ′{V ′/x}N ′{V ′/x}M ′1{V ′/x} . . .M ′m{V ′/x} = M ′{V ′/x}. J

In the proof of the two next lemmas, as well as in the proof of Corollary 21 and Theorem 22,
our Lemma 14 plays a crucial role: indeed, since the head σ-reduction well interact with the
head βv-reduction, Takahashi’s method [17, 4] is still working when adding the reduction
rules σ1 and σ3 to Plotkin’s βv-reduction.

I Lemma 18 (Substitution lemma for V). IfMVM ′ and V VV ′ thenM{V/x}VM ′{V ′/x}.

Proof. By Lemma 13, one has M{V/x} ⇒ M ′{V ′/x} since M ⇒ M ′ and V ⇒ V ′. By
hypothesis, there exist m,n ∈ N and M0, . . . ,Mm, N0, . . . , Nn such that M = M0, Mm = N0,
Nn

int⇒ M ′, Mi
h→βv

Mi+1 for any 0 ≤ i < m and Nj
h→σ Nj+1 for any 0 ≤ j < n; by

Remark 12.6, Mi{V/x}
h→βv Mi+1{V/x} for any 0 ≤ i < m, and Nj{V/x}

h→σ Nj+1{V/x}
for any 0 ≤ j < n. By Lemma 17, one has Nn{V/x} V M ′{V ′/x}, thus there exist
L,N ∈ Λ such that M{V/x} h−→∗βv

N0{V/x}
h−→∗σ Nn{V/x}

h−→∗βv
N

h−→∗σ L
int⇒ M ′{V ′/x}. By

Lemma 14.2, there exists N ′ ∈ Λ such that M{V/x} h−→∗βv
N0{V/x}

h−→∗βv
N ′

h−→∗σ N
h−→∗σ L

int⇒
M ′{V ′/x}, therefore M{V/x}VM ′{V ′/x}. J

Now we are ready to prove a key lemma, which states that parallel reduction ⇒ coincides
with strong parallel reduction V (the inclusion V⊆⇒ is trivial).

I Lemma 19 (Key Lemma). If M ⇒M ′ then M VM ′.

Proof. By induction on the derivation of M ⇒M ′. Let us consider its last rule r.
If r = var then M = xM1 . . .Mm and M ′ = xM ′1 . . .M

′
m where m ∈ N and Mi ⇒ M ′i

for any 1 ≤ i ≤ m. By reflexivity of V (Remark 10), x V x. By induction hypothesis,
Mi VM ′i for any 1 ≤ i ≤ m. Therefore, M VM ′ by applying Lemma 16 m times.

If r = λ then M = (λx.M0)M1 . . .Mm and M ′ = (λx.M ′0)M ′1 . . .M ′m where m ∈ N and
Mi ⇒ M ′i for any 0 ≤ i ≤ m. By induction hypothesis, Mi V M ′i for any 1 ≤ i ≤ m.
According to Remark 11.4, λx.M0 V λx.M ′0. So M VM ′ by applying Lemma 16 m times.

If r = βv then M = (λx.M0)VM1 . . .Mm and M ′ = M ′0{V ′/x}M ′1 . . .M ′m where m ∈ N,
V ⇒ V ′ and Mi ⇒M ′i for any 0 ≤ i ≤ m. By induction hypothesis, V V V ′ and Mi VM ′i

G. Guerrieri, L. Paolini, and S. Ronchi Della Rocca 219

for any 0 ≤ i ≤ m. By applying the rule βv for h→βv
, one has M h→βv

M0{V/x}M1 . . .Mm;
moreoverM0{V/x}M1 . . .Mm VM ′ by Lemma 18 and by applying Lemma 16 m times, thus
there are L,N ∈ Λ such that M h→βv

M0{V/x}M1. . .Mm
h−→∗βv

L
h−→∗σ N

int⇒M ′. So M VM ′.
If r = σ1 then M = (λx.M0)N0L0M1 . . .Mm and M ′ = (λx.M ′0L′0)N ′0M ′1 . . .M ′m where

m ∈ N, L0 ⇒ L′0, N0 ⇒ N ′0 and Mi ⇒ M ′i for any 0 ≤ i ≤ m. By induction hypothesis,
N0 V N ′0 and Mi VM ′i for any 1 ≤ i ≤ m. By applying the rule σ1 for h→σ, one has M h→σ

(λx.M0L0)N0M1 . . .Mm. By Remark 12.1, M0L0 ⇒M ′0L
′
0 and thus λx.M0L0 V λx.M ′0L

′
0

according to Remark 11.4. So (λx.M0L0)N0M1 . . .Mm VM ′ by applying Lemma 16 m+ 1
times, hence there are L,N ∈Λ such thatM h→σ (λx.M0L0)N0M1 . . .Mm

h−→∗βv
L

h−→∗σN
int⇒M ′.

By Lemma 14.2, there is L′∈Λ such that M h−→∗βv
L′

h−→∗σ L
h−→∗σ N

int⇒M ′ and thus M VM ′.
Finally, if r = σ3 then M = V ((λx.L0)N0)M1 . . .Mm and M ′ = (λx.V ′L′0)N ′0M ′1 . . .M ′m

with m ∈ N, V ⇒ V ′, L0 ⇒ L′0, N0 ⇒ N ′0 and Mi ⇒ M ′i for any 1 ≤ i ≤ m. By induction
hypothesis, N0 V N ′0 and Mi V M ′i for any 1 ≤ i ≤ m. By the rule σ3 for h→σ, one has
M

h→σ (λx.V L0)N0M1 . . .Mm. By Remark 12.1, V L0 ⇒ V ′L′0 and thus λx.V L0 V λx.V ′L′0
according to Remark 11.4. So (λx.V L0)N0M1 . . .Mm VM ′ by applying Lemma 16 m+ 1
times, hence there are L,N ∈Λ such thatM h→σ (λx.V L0)N0M1 . . .Mm

h−→∗βv
L

h−→∗σ N
int⇒M ′.

By Lemma 14.2, there is L′∈Λ such that M h−→∗βv
L′

h−→∗σ L
h−→∗σ N

int⇒M ′, so M VM ′. J

Next Lemma 20 and Corollary 21 show that internal parallel reduction can be shifted
after head reductions.

I Lemma 20 (Postponement). If M int⇒ L and L h→βv N (resp. L h→σ N) then there exists
L′ ∈ Λ such that M h→βv

L′ (resp. M h→σ L
′) and L′ ⇒ N .

Proof. By induction on the derivation of M int⇒ L. Let us consider its last rule r.
If r = var , then M = x = L which contradicts L h→βv

N and L h→σ N by Remarks 11.1-2.
If r = λ then L = λx.L′ for some L′ ∈ Λ, which contradicts L h→βv

N and L h→σN by
Remarks 11.1-2.

Finally, if r = right then M = VM0M1 . . .Mm and L = V ′L0L1 . . . Lm where m ∈ N,
V ⇒ V ′ (so V int⇒ V ′ by Remark 11.5), M0

int⇒ L0 (thus M0 ⇒ L0 since int⇒⊆⇒) and Mi ⇒ Li
for any 1 ≤ i ≤ m.

If L h→βv
N then there are two cases, depending on the last rule r′ of the derivation of

L
h→βv

N .
If r′ = βv then V ′ = λx.N ′0, L0 ∈ Λv and N = N ′0{L0/x}L1 . . . Lm, thus M0 ∈ Λv and
V = λx.N0 with N0 ⇒ N ′0 by Remark 11.3. By Lemma 13, one has N0{M0/x} ⇒
N ′0{L0/x}. Let L′ = N0{M0/x}M1 . . .Mm: so M = (λx.N0)M0M1 . . .Mm

h→βv
L′

(apply the rule βv for h→βv
) and L′ ⇒ N by applying Remark 12.1 m times.

If r′ = right then N = V ′N0L1 . . . Lm with L0
h→βv N0. By induction hypothesis, there

exists L′0 ∈ Λ such that M0
h→βv

L′0 ⇒ N0. Let L′ = V L′0M1 . . .Mm: so M h→βv
L′

(apply the rule right for h→βv
) and L′ ⇒ N by applying Remark 12.1 m+ 1 times.

If L h→σ N then there are three cases, depending on the last rule r′ of the derivation of
L

h→σ N .
If r′ = σ1 then m > 0, V ′ = λx.N ′0 and N = (λx.N ′0L1)L0L2 . . . Lm, thus V = λx.N0
with N0 ⇒ N ′0 by Remark 11.3. Using Remarks 12.1 and 11.4, one has λx.N0M1 ⇒
λx.N ′0L1. Let L′ = (λx.N0M1)M0M2 . . .Mm: so M = (λx.N0)M0M1 . . .Mm

h→σ L
′

(apply the rule σ1 for h→σ) and L′ ⇒ N by applying Remark 12.1 m times.
If r′ = σ3 then L0 = (λx.L01)L02 and N = (λx.V ′L01)L02L1 . . . Lm. Since M0

int⇒
(λx.L01)L02, necessarily M0 = (λx.M01)M02 with M01 ⇒ L01 and M02

int⇒ L02 (so
M02 ⇒ L02). Using Remarks 12.1 and 11.4, one has λx.V M01 ⇒ λx.V ′L01. Let

TLCA’15

220 Standardization of a Call-By-Value Lambda-Calculus

L′ = (λx.V M01)M02M1 . . .Mm: therefore M = V ((λx.M01)M02)M1 . . .Mm
h→σ L

′

(apply the rule σ3 for h→σ) and L′ ⇒ N by applying Remark 12.1 m+ 1 times.
If r′ = right then N = V ′N0L1 . . . Lm with L0

h→σ N0. By induction hypothesis, there
exists L′0 ∈ Λ such that M0

h→σ L
′
0 ⇒ N0. Let L′ = V L′0M1 . . .Mm: so M h→σ L

′

(apply the rule right for h→σ) and L′ ⇒ N by applying Remark 12.1 m+ 1 times.
J

I Corollary 21. If M int⇒ L and L h→βv N (resp. L h→σ N), then there exist L′, L′′ ∈ Λ such
that M h−→+

βv
L′

h−→∗σ L′′
int⇒ N (resp. M h−→∗βv

L′
h−→∗σ L′′

int⇒ N).

Proof. Immediate by Lemma 20 and Lemma 19, applying Lemma 14.2 if L h→σ N . J

Now we obtain our first main result (Theorem 22): any v-reduction sequence can be sequen-
tialized into a head βv-reduction sequence followed by a head σ-reduction sequence, followed
by an internal reduction sequence. In ordinary λ-calculus, the well-known result correspond-
ing to our Theorem 22 says that a β-reduction sequence can be factorized in a head reduction
sequence followed by an internal reduction sequence (see for example [17, Corollary 2.6]).

I Theorem 22 (Sequentialization). If M →∗v M ′ then there exist L,N ∈ Λ such that
M

h−→∗βv
L

h−→∗σ N
int−→∗v M ′.

Proof. By Remark 12.4, M⇒∗M ′ and thus there are m ∈ N and M0, . . . ,Mm ∈ Λ such that
M = M0, Mm = M ′ and Mi ⇒Mi+1 for any 0 ≤ i < m. We prove by induction on m ∈ N
that there are L,N ∈ Λ such that M h−→∗βv

L
h−→∗σ N

int⇒∗M ′, so N int−→∗v M ′ by Remark 12.5.
If m = 0 then M = M0 = M ′ and hence we conclude by taking L = M ′ = N .
Finally, suppose m > 0. By induction hypothesis applied to M1 ⇒∗ M ′, there exist

L′, N ′ ∈ Λ such that M1
h−→∗βv

L′
h−→∗σ N ′

int⇒∗ M ′. By applying Lemma 19 to M , there
exist L0, N0 ∈ Λ such that M h−→∗βv

L0
h−→∗σ N0

int⇒M1. By applying Corollary 21 repeatedly,
there exists N ∈ Λ such that N0

h−→∗v N
int⇒ N ′ and hence M h−→∗v N

int⇒∗ M ′. According to
Lemma 14.3, there exists L ∈ Λ such that M h−→∗βv

L
h−→∗σ N

int⇒∗ M ′. J

It is worth noticing that in Definition 7 there is no distinction between head σ1- and head
σ3-reduction steps, and, according to it, the sequentialization of Theorem 22 imposes no order
between head σ-reductions. We denote by h→σ1 and h→σ3 respectively the reduction relations
→σ1 ∩

h→σ and→σ3 ∩
h→σ. So, a natural question arises: is it possible to sequentialize them?

The answer is negative, as proved by the next two counterexamples.
Let M = x((λy.z′)(zI))∆ and N = (λy.xz′∆)(zI): M h→σ3 (λy.xz′)(zI)∆ h→σ1 N , but
there exists no L such that M h−→∗σ1

L
h−→∗σ3

N . In fact M contains only a head σ3-redex
and (λy.xz′)(zI)∆ contains only a head σ1-redex
Let M = x((λy.z′)(zI)∆) and N = (λy.x(z′∆))(zI): M h→σ1 x((λy.z′∆)(zI)) h→σ3 N

but there is no L such that M h−→∗σ3
L

h−→∗σ1
N . In fact M contains only a head σ1-redex

and x((λy.z′∆)(zI)) contains only a head σ3-redex.
So, the impossibility of sequentializing a head σ-reduction sequence is due to the fact that a
head σ1-reduction step can create a head σ3-redex, and viceversa. This is not a problem,
since head σ-reduction is strongly normalizing (by Proposition 4 and since h→σ⊆→σ). Our
approach does not force a strict order of head σ-reductions.

G. Guerrieri, L. Paolini, and S. Ronchi Della Rocca 221

4 Standardization

Now we are able to prove the main result of this paper, i.e., a standardization theorem for λσv
(Theorem 25). In particular we provide a notion of standard reduction sequence that avoids
any auxiliary notion of residual redexes, by closely following the definition given in [15].

I Notation. For any k,m ∈ N with k ≤ m, we denote by dM0, · · · ,Mk, · · ·Mmehead a
sequence of terms such that Mi

h→βv Mi+1 when 0 ≤ i < k, and Mi
h→σ Mi+1 when

k ≤ i < m.

It is easy to check that dMehead for any M ∈ Λ. The notion of standard sequence of
terms is defined by using the previous notion of head-sequence. Our notion of standard
reduction sequence is mutually defined together with the notion of inner-sequence of terms
(Definition 23). This definition allows us to avoid non-deterministic cases remarked in [7]
(we provide more details at the end of this section). We denote by dM0, · · · ,Mmestd (resp.
dM0, · · · ,Mmein) a standard (resp. inner) sequence of terms.

I Definition 23 (Standard and inner sequences). Standard and inner sequences of terms are
defined by mutual induction as follows:
1. if dM0, · · · ,Mmehead and dMm, · · · ,Mm+nein then dM0, · · · ,Mm+nestd , where m,n ∈ N;
2. dMein, for any M ∈ Λ;
3. if dM0, · · · ,Mmestd then dλz.M0, · · · , λz.Mmein, where m ∈ N;
4. if dV0, · · ·, Vhestd and dN0, · · ·, Nnein then dV0N0, · · ·, V0Nn, · · ·, VhNnein, where h, n ∈ N;
5. if dN0, · · ·, Nnein, dM0, · · ·,Mmestd and N0 6∈ Λv, then dN0M0, · · ·, NnM0, · · ·, NnMmein,

where m,n ∈ N.

For instance, let M = (λy.Ix)(z(∆I))(II): M →v (λy.Ix)(z(∆I))I →v (λy.x)(z(∆I))I
and M →v (λy.Ix(II))(z(∆I)) →v (λy.Ix(II))(z(II)) are not standard sequences; M →v
(λy.Ix)(z(∆I))I and M →v (λy.Ix)(z(II))(II)→v (λy.Ix)(zI)(II)→v (λy.Ix(II))(zI)→v
(λy.x(II))(zI)→v (λy.xI)(zI) are standard sequences.

I Remark 24. For any n ∈ N, if dN0, · · ·, Nnein (resp. dN0, · · ·, Nnehead) then dN0, · · ·, Nnestd .
Indeed, dN0ehead (resp. dNnein by Definition 23.2), so dN0, · · · , Nnestd by Definition 23.1.

In particular, dNestd for any N ∈ Λ: apply Definition 23.2 and Remark 24 for n = 0.

I Theorem 25 (Standardization).
1. If M →∗v M ′ then there is a sequence dM, · · · ,M ′estd.
2. If M int−→∗v M ′ then there is a sequence dM, · · · ,M ′ein.

Proof. Both statements are proved simultaneously by induction on M ′ ∈ Λ.
1. If M ′ = z then, by Theorem 22, M h−→∗βv

L
h−→∗σ N

int−→∗v z for some L,N ∈ Λ. By
Remarks 12.5 and 11.2, L = N = z; therefore M h−→∗βv

z and hence there is a sequence
dM, · · · , zehead . Thus, dM, · · · , zestd by Remark 24.
If M ′ = λz.N ′ then, by Theorem 22, M h−→∗βv

L
h−→∗σL′

int−→∗v λz.N ′ for some L,L′∈Λ. By
Remarks 12.5 and 11.2, L = L′ = λz.N withN→∗v N ′. SoM

h−→∗βv
λz.N and hence there

is a sequence dM, · · ·, λz.Nehead . By induction on (1), there is a sequence dN, · · ·, N ′estd ,
thus dλz.N, · · ·, λz.N ′ein by Definition 23.3. Therefore dM, · · ·, λz.N, · · ·, λz.N ′estd by
Definition 23.1.
If M ′ = N ′L′ then, by Theorem 22, M h−→∗βv

M ′′
h−→∗σM0

int−→∗v N ′L′ for some M ′′,M0∈Λ.
By Remark 3, M0 = NL for some N,L ∈ Λ, since int−→∗v⊆→∗v and M ′ /∈ Λv. Thus there
is a sequence dM, · · · ,M ′′, · · · , NLehead . By Remark 12.5, NL int⇒∗ N ′L′; clearly, each
step of int⇒ is an instance of the rule right of Definition 9. There are two sub-cases.

TLCA’15

222 Standardization of a Call-By-Value Lambda-Calculus

If N ∈ Λv then N⇒∗N ′ and L int⇒∗ L′, so N→∗v N ′ and L
int−→∗v L′ by Remarks 12.4-5.

By induction respectively on (1) and (2), there are sequences dN, · · · , N ′estd

and dL, · · ·, L′ein, thus dNL, · · ·, NL′, · · ·, N ′L′ein by Definition 23.4. Therefore
dM, · · ·,M ′′, · · ·, NL, · · ·, NL′, · · ·, N ′L′estd by Definition 23.1.
If N /∈Λv (i.e., N=VM1 . . .Mm with m>0) then N int⇒∗N ′ and L⇒∗L′, so N int−→∗v N ′
and L→∗v L′ by Remarks 12.4-5. By induction respectively on (2) and (1), there are
sequences dN, · · · , N ′ein and dL, · · · , L′estd . Hence dNL, · · · , N ′L, · · · , N ′L′ein by
Definition 23.5 . Thus dM, · · ·,M ′′, · · ·, NL, · · ·, N ′L, · · ·, N ′L′estd by Definition 23.1.

2. If M ′ = z then M = z by Remark 12.5, hence dzein by Definition 23.2.
IfM ′ = λz.L′ thenM = λz.L and L→∗v L′ by Remark 12.5. Hence there is a sequence
dL, · · · , L′estd by induction on (1). By Definition 23.3, dλz.L, · · · , λz.L′ein.
If M ′ = N ′L′ then M = NL for some N,L ∈ Λ by Remark 3, since int−→∗v ⊆→∗v and
M ′ /∈ Λv. By Remark 12.5, NL int⇒∗ N ′L′; clearly, each step of int⇒ is an instance of the
rule right of Definition 9. There are two sub-cases.

IfN ∈ Λv thenN ⇒∗ N ′ and L
int⇒∗ L′, soN→∗v N ′ and L

int−→∗v L′ by Remarks 12.4-5.
Thus there are sequences dN, · · · , N ′estd and dL, · · · , L′ein by induction respectively
on (1) and (2). Therefore, by Definition 23.4, dNL, · · · , NL′, · · · , N ′L′ein.
If N /∈ Λv (i.e. N = VM1 . . .Mm with m > 0) then N

int⇒∗ N ′ and L⇒∗L′, thus
N

int−→∗v N ′ and L→∗v L′ by Remarks 12.4-5. By induction respectively on (2) and (1),
there are sequences dN, · · ·, N ′ein and dL, · · ·, L′estd . So dNL, · · ·, N ′L, · · ·, N ′L′ein
by Definition 23.5. J

Due to non-sequentialization of head σ1- and head σ3-reductions, several standard
sequences may have the same starting term and ending term: for instance, if M = I(∆I)I
and N = (λz.(λx.xI)(zz))I then M →v (λx.xI)(∆I) →v N and M →v (λz.I(zz))II →v
(λz.I(zz)I)I →v N are both standard sequences from M to N .

Finally, we can compare our notion of standardization with that given in [15]. To
make the comparison possible we avoid σ-reductions and we recall that h→βv is exactly
the Plotkin’s left-reduction [15, p. 136]. As remarked in [7, §1.5 p. 149], both sequences
(λz.II)(II)→v (λz.I)(II)→v (λz.I)I and (λz.II)(II)→v (λz.II)I →v (λz.I)I are standard
according to [15]. On the other hand, only the second sequence is standard in our sense.
It is easy to check that collapsing the two notions of inner and standard sequence given in
Definition 23, we get a notion of standard sequence that accept both the above sequences.

5 Some conservativity results

The sequentialization result (Theorem 22) has some interesting semantic consequences. It
allows us to prove that (Corollary 29) the λσv -calculus is sound with respect to the call-by-
value observational equivalence introduced by Plotkin in [15] for λv. Moreover we can prove
that some notions, like that of potential valuability and solvability, introduced in [13] for λv,
coincide with the respective notions for λσv (Theorem 31). This justifies the idea that λσv is a
useful tool for studying the properties of λv. Our starting point is the following corollary.

I Corollary 26.
1. If M →∗v V ∈ Λv then there exists V ′ ∈ Λv such that M h−→∗βv

V ′
int−→∗v V .

2. For every V ∈ Λv, M
h−→∗βv

V if and only if M h−→∗v V .

Proof. The first point is proved by observing that, by Theorem 22, there are N,L ∈ Λ such
that M h−→∗βv

L
h−→∗σ N

int−→∗v V . By Remark 12.5 , N ∈ Λv and thus L = N according to

G. Guerrieri, L. Paolini, and S. Ronchi Della Rocca 223

Remark 11.2. Concerning the second point, the right-to-left direction is a consequence of
Lemma 14.3 and Remark 11.2; the left-to-right direction follows from h→βv

⊆ h→v. J

Let us recall the notion of observational equivalence defined by Plotkin [15] for λv.

I Definition 27 (Halting, observational equivalence). Let M ∈ Λ. We say that (the evaluation
of) M halts if there exists V ∈ Λv such that M h−→∗βv

V .
The (call-by-value) observational equivalence is an equivalence relation ∼= on Λ defined

by: M ∼= N if, for every context C, one has that CLMM halts iff CLNM halts.1

Clearly, similar notions can be defined for λσv using h→v instead of h→βv
. Head σ-reduction

plays no role neither in deciding the halting problem for evaluation (Corollary 26.1), nor in
reaching a particular value (Corollary 26.2). So, we can conclude that the notions of halting
and observational equivalence in λσv coincide with the ones in λv, respectively.

Now we compare the equational theory of λσv with Plotkin’s observational equivalence.

I Theorem 28 (Adequacy of v-reduction). If M →∗v M ′ then: M halts iff M ′ halts.

Proof. If M ′ h−→∗βv
V ∈ Λv then M →∗v M ′ →∗v V since h→βv

⊆→v. By Corollary 26.1, there
exists V ′ ∈ Λv such that M h−→∗βv

V ′. Thus M halts.
Conversely, if M h−→∗βv

V ∈ Λv then M →∗v V since h→βv ⊆→v. By confluence of →v
(Proposition 4, sinceM→∗v M ′) and Remark 3 (since V ∈Λv), there is V ′∈Λv such that V →∗v
V ′ andM ′→∗v V ′. By Corollary 26.1, there is V ′′∈Λv such thatM ′ h−→∗βv

V ′′. So M ′ halts. J

I Corollary 29 (Soundness). If M =v N then M ∼= N .

Proof. Let C be a context. By confluence of →v (Proposition 4), M =v N implies that there
exists L ∈ Λ such that M →∗v L and N →∗v L, hence CLMM→∗v CLLM and CLNM→∗v CLLM. By
Theorem 28, CLMM halts iff CLLM halts iff CLNM halts. Therefore, M ∼= N . J

Plotkin [15, Theorem 5] has already proved that M =βv N implies M ∼= N , but our
Corollary 29 is not obvious since our λσv -calculus equates more than Plotkin’s λv-calculus
(=βv ⊆=v since →βv ⊆→v, and Example 5 shows that this inclusion is strict).

The converse of Corollary 29 does not hold since λx.x(λy.xy) ∼= ∆ but λx.x(λy.xy) and ∆
are different v-normal forms and hence λx.x(λy.xy) 6=v ∆ by confluence of→v (Proposition 4).

A further remarkable consequence of Corollary 26.1 is that the notions of potential
valuability and solvability for λσv -calculus (studied in [3]) can be shown to coincide with the
ones for Plotkin’s λv-calculus (studied in [13, 14]), respectively. Let us recall their definition.

I Definition 30 (Potential valuability, solvability). Let M be a term:
M is v-potentially valuable (resp. βv-potentially valuable) if there are m ∈ N, pairwise
distinct variables x1, . . . , xm and V, V1, . . . , Vm ∈ Λv such thatM{V1/x1, . . . , Vm/xm} →∗v
V (resp. M{V1/x1, . . . , Vm/xm} →∗βv

V);
M is v-solvable (resp.βv-solvable) if there are n,m∈N, variables x1, . . . , xm and N1, . . . ,Nn
∈ Λ such that (λx1 . . . xm.M)N1 · · ·Nn →∗v I (resp. (λx1 . . . xm.M)N1 · · ·Nn →∗βv

I).

I Theorem 31. Let M be a term:
1. M is v-potentially valuable if and only if M is βv-potentially valuable;
2. M is v-solvable if and only if M is βv-solvable.

1 Original Plotkin’s definition of call-by-value observational equivalence (see [15]) also requires that CLMM
and CLNM are closed terms, according to the tradition identifying programs with closed terms.

TLCA’15

224 Standardization of a Call-By-Value Lambda-Calculus

Proof. In both points, the implication from right to left is trivial since →βv ⊆→v. Let us
prove the other direction.
1. Since M is v-potentially valuable, there are variables x1, . . . , xm and V, V1, . . . , Vm ∈ Λv

(with m ≥ 0) such that M{V1/x1, . . . , Vm/xm} →∗v V ; then, there exists V ′ ∈ Λv such
thatM{V1/x1, . . . , Vm/xm} →∗βv

V ′ by Corollary 26.1 and because h→βv
⊆→βv

, therefore
M is βv-potentially valuable.

2. Since M is v-solvable, there exist variables x1, . . . , xm and terms N1, . . . , Nn (for some
n,m ≥ 0) such that (λx1 . . . xm.M)N1 · · ·Nn →∗v I; then, there exists V ∈ Λv such
that (λx1 . . . xm.M)N1 · · ·Nn →∗βv

V
int−→∗v I by Corollary 26.1 and because h→βv

⊆→βv
.

According to Remark 12.5 , V = λx.N for some N ∈ Λ such that N →∗v x. By
Corollary 26.1, there is V ′ ∈ Λv such that N h−→∗βv

V ′
int−→∗v x, hence V ′ = x by Remark 12.5

again. Since h→βv
⊆→βv

, N →∗βv
x and thus V = λx.N →∗βv

I, thereforeM is βv-solvable.
J

So, due to Theorem 31, the semantic (via a relational model) and operational (via two
sub-reductions of →v) characterization of v-potential valuability and v-solvability given
in [3, Theorems 24-25] is also a semantic and operational characterization of βv-potential
valuability and βv-solvability. The difference is that in λσv these notions can be studied
operationally inside the calculus, while it has been proved in [13, 14] that the βv-reduction is
too weak to characterize them: an operational characterization of βv-potential valuability and
βv-solvability cannot be given inside λv. Hence, λσv is a useful, conservative and “complete”
tool for studying semantic properties of λv.

6 Conclusions

In this paper we have proved a standardization theorem for the λσv -calculus introduced in [3].
The used technique is a notion of parallel reduction. Let us recall that parallel reduction
in λ-calculus has been defined by Tait and Martin-Löf in order to prove confluence of the
β-reduction, without referring to the difficult notion of residuals. Takahashi in [17] has
simplified this technique and showed that it can be successfully applied to standardization.
We would like to remark that our parallel reduction cannot be used to prove confluence of→v.
Indeed, take M = (λx.L)

(
(λy.N)((λz.N ′)N ′′)

)
L′, M1 = (λx.LL′)

(
(λy.N)((λz.N ′)N ′′)

)
and

M2 =
(
(λy.(λx.L)N)((λz.N ′)N ′′)

)
L′: then M ⇒M1 and M ⇒M2 but there is no term M ′

such that M1 ⇒M ′ and M2 ⇒M ′. To sum up, ⇒ does not enjoy the Diamond Property.
The standardization result allows us to formally verify the correctness of λσv with respect

to the semantics of λv, so we can use λσv as a tool for studying properties of λv. This is a
remarkable result: in fact some properties, like potential valuability and solvability, cannot
be characterized in λv by means of βv-reduction (as proved in [13, 14]), but they have a
natural operational characterization in λσv (via two sub-reductions of →v).

We plan to continue to explore the call-by-value computation, using λσv . As a first step,
we would like to revisit and improve the Separability Theorem given in [11] for λv. Still
the issue is more complex than in the call-by-name, indeed in ordinary λ-calculus different
βη-normal forms can be separated (by the Böhm Theorem), while in λv there are different
normal forms that cannot be separated, but which are only semi-separable (e.g. I and
λz.(λu.z)(zz)). We hope to completely characterize separable and semi-separable normal
forms in λσv . This should be a first step aimed to define a semantically meaningful notion of
approximants. Then, we should be able to provide a new insight on the denotational analysis
of the call-by-value, maybe overcoming limitations as that of the absence of fully abstract
filter models [14, Theorem 12.1.25]. Last but not least, an unexplored but challenging

G. Guerrieri, L. Paolini, and S. Ronchi Della Rocca 225

research direction is the use of commutation rules to improve the call-by-value evaluation.
We do not have concrete evidence supporting such possibility, but since λσv is strongly related
to the calculi presented in [7, 1], which are endowed with explicit substitutions, we are
confident that a sharp use of commutations can have a relevant impact in the evaluation.

References
1 Beniamino Accattoli and Luca Paolini. Call-by-Value Solvability, Revisited. In Tom

Schrijvers and Peter Thiemann, editors, Functional and Logic Programming, volume 7294
of Lecture Notes in Computer Science, pages 4–16. Springer-Verlag, 2012.

2 Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies
in logic and the foundation of mathematics. North Holland, 1984.

3 Alberto Carraro and Giulio Guerrieri. A Semantical and Operational Account of Call-by-
Value Solvability. In Anca Muscholl, editor, Foundations of Software Science and Com-
putation Structures, volume 8412 of Lecture Notes in Computer Science, pages 103–118.
Springer-Verlag, 2014.

4 Karl Crary. A Simple Proof of Call-by-Value Standardization. Technical Report CMU-CS-
09-137, Carnegie Mellon University, 2009.

5 Haskell B. Curry and Robert Feys. Combinatory Logic, volume 1. North Holland, 1958.
6 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–102, 1987.
7 Hugo Herbelin and Stéphane Zimmermann. An Operational Account of Call-by-Value

Minimal and Classical lambda-Calculus in “Natural Deduction” Form. In Pierre-Louis
Curien, editor, Typed Lambda Calculi and Applications, volume 5608 of Lecture Notes in
Computer Science, pages 142–156. Springer-Verlag, 2009.

8 Roger Hindley. Standard and normal reductions. Transactions of the American Mathem-
atical Society, pages 253–271, 1978.

9 John Maraist, Martin Odersky, David N. Turner, and Philip Wadler. Call-by-name, call-by-
value, call-by-need and the linear lambda calculus. Theoretical Computer Science, 228(1–
2):175–210, 1999.

10 Eugenio Moggi. Computational Lambda-Calculus and Monads. In Logic in Computer
Science, pages 14–23. IEEE Computer Society, 1989.

11 Luca Paolini. Call-by-Value Separability and Computability. In Antonio Restivo, Simona
Ronchi Della Rocca, and Luca Roversi, editors, Italian Conference in Theoretical Computer
Science, volume 2202 of Lecture Notes in Computer Science, pages 74–89. Springer-Verlag,
2002.

12 Luca Paolini and Simona Ronchi Della Rocca. Parametric parameter passing lambda-
calculus. Information and Computation, 189(1):87–106, 2004.

13 Luca Paolini and Simona Ronchi Della Rocca. Call-by-value Solvability. Theoretical In-
formatics and Applications, 33(6):507–534, 1999. RAIRO Series, EDP-Sciences.

14 Luca Paolini and Simona Ronchi Della Rocca. The Parametric λ-Calculus: a Metamodel for
Computation. Texts in Theoretical Computer Science: An EATCS Series. Springer-Verlag,
2004.

15 Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theoretical
Computer Science, 1(2):125–159, 1975.

16 Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing
style. Lisp and symbolic computation, 6(3-4):289–360, 1993.

17 Masako Takahashi. Parallel reductions in lambda-calculus. Information and Computation,
118(1):120–127, 1995.

TLCA’15

	Introduction
	The call-by-value lambda calculus with sigma-rules
	Sequentialization
	Standardization
	Some conservativity results
	Conclusions

