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Abstract
We study amortised resource analysis in the context of term rewrite systems. We introduce
a novel amortised analysis based on the potential method. The method is represented in an
inference system akin to a type system and gives rise to polynomial bounds on the innermost
runtime complexity of the analysed rewrite system. The crucial feature of the inference system is
the admittance of multivariate bounds in the context of arbitrary data structures in a completely
uniform way. This extends our earlier univariate resource analysis of typed term rewrite systems
and continues our program of applying automated amortised resource analysis to rewriting.
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1 Introduction

Amortised resource analysis was pioneered by Sleator and Tarjan who used it to analyse the
performance of new data structures that sometimes need to perform costly operations that
pay off later on, e.g. rebalancing operations on a search tree.

Briefly, one assigns to the participating datastructures a nonnegative real-value, the
potential in an a priori arbitrary fashion. One then defines the amortised cost of an operation
as its actual cost, e.g. runtime plus the difference in potential of all datastructures before
and after the operations. In this way, the amortised cost of a costly operation may be small
if it results in a big decrease of potential. On the other hand some cheap operations that
increase the potential will be overcharged. In this way, one can “save money” now to pay for
costly operations later. By a simple telescoping argument the sum of all amortised costs in a
sequence of operations plus the potential of the initial input data structure is also an upper
bound on the actual cost of that sequence. In this way, amortised analysis yields rigorous
bounds on actual resource usage and not just approximate or average bounds. If the potential
functions are chosen well then the amortised costs of operations are either constant or exhibit
merely a very simple dependency on the maximum size of all intermediate results which
considerably facilitates a compositional analysis: the costs of running composite expressions
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can be calculated as the sum of the individual costs. If costs are highly input-dependent, on
the other hand, one must get bounds on the sizes or shapes of intermediate results which
can be very difficult. This compositional aspect of amortised analysis makes it attractive for
syntax-directed automation.

Of course, the crux of the matter is the choice of the correct potential functions. A simple
concrete example is the implementation of a queue by two stacks, an in-tray and an out-tray.
Incoming elements are added to the in-tray, outgoing elements are taken from the top of the
out-tray. Only if the out-tray becomes empty the entire in-tray is reverse-copied into the
out-tray. In this case, the length of the in-tray is clearly a suitable potential function. The
costly operation of copying can entirely be paid from the big decrease in potential it causes.

In a nutshell automated amortised analysis works as follows. One selects a collection
of basic potential functions, called basic resource functions, and assumes that all potential
functions are linear combinations of these basic resource functions. One then performs a
symbolic amortised cost analysis where the coefficients of these linear combinations as well as
the amortised costs of operations (assumed constant) are unknowns. This yields a system of
linear constraints for these unknowns whose solution provides the desired amortised analysis
from which actual cost bounds in the form of functions of the size of the initial input can be
easily read off.

Most automated amortised analyses are univariate in the sense that the joint potential of
several arguments to an operation (a “context”) is calculated as the sum of the individual
potentials. This, however, proved unsatisfactory in the analysis of nested data structures
such as lists of lists or trees and led to the development of multivariate analysis where also
products and sums of products of the individual potentials may be used [9].

While automated amortised analysis has hitherto mostly been applied to functional
and to a lesser extent to imperative programs; we are here interested in its application
to term rewriting understood as a generalisation of functional programming to arbitrary
constructor-defined datatypes. After a first step in this direction [12] which was based on
univariate analysis, we now generalise to multivariate analysis and indeed subsume and
further extend the entire system from [9].

On the one hand this gives a more general treatment of algebraic datatypes which are
now untyped and merely defined by their constructor symbols. On the other hand, this
necessitates a more general approach to basic resource functions which also streamlines the
existing format in [9] or for that matter [11]. In [9] a basic resource function for a list type
L(A) is given by a finite list [p1, . . . , pk] of basic resource functions for the underlying type
of entries A. The interpretation of such a list as a nonegative R-valued potential function
was then given by the formula

[p1, . . . , pk]([v1, . . . , vn]) :=
∑

16i1<···<ik6n
p1(vi1) · · · · · pk(vik ) .

By treating tree types as a list of entries in depth-first order this same format could then be
applied to trees as well. While these formats provided a smooth interaction with the typing
rules and allow a very precise analysis of many examples they still look somewhat arbitrary
and unjustified.

In the present paper, these formats are subsumed under a very general pattern that is on
the one hand simpler and on the other hand permits an even smoother interaction with the
typing rules for constructors and matching.

Namely, for us, a basic resource function is defined simply by a bottom-up tree automaton



M. Hofmann and G. Moser 243

A which acts on values by

pA(v) := number of accepting runs of A on v .

If c is a binary constructor, we have

pA(c(v1, v2)) =
∑

c(β1,β2)→α∈A

p(A,β1)(v1) · p(A,β2)(v2) .

where α is the final state of A and c(β1, β2) → α represents a transition in A and (A, βi)
denotes A with the final state set to βi. Using this formula, the above formats for potentials
on lists and trees are readily derived and obviously much more general potential functions
can be defined which for example perform a rudimentary kind of type checking by simply
ignoring certain constructors or, more interestingly, insisting on certain local patterns.

We note that the expression pA(v) is known as the ambiguity of A [13] and has been
extensively studied. In particular, the above recursive expansion of pA(v) is known and
attributed to Kuich, cf. [13]. However, these previous studies focused mainly on bounding
maxv pA(v) as a function of the number of states (in the case where this quantity is at all
finite) and has to our knowledge never been applied to complexity analysis of tree-like data
structures.

Let us now look at a concrete example. Consider the following TRS Rdyade, encoding
vector multiplication. The example forms a direct translation of the dyade.raml program
discussed in [9].

0 + y → y s(x) + y → s(x + y)
0 × y → 0 s(x) × y → y + (x × y)

mult(n, [])→ [] mult(n, x :: xs)→ (n × x) :: mult(n, xs)
dyade([], ls)→ [] dyade(x :: xs, ls)→ mult(x, ls) :: dyade(xs, ls) .

Consider a call to dyade(ls1, ls2), where ls1 and ls2 are lists. It is easy to see that the
runtime complexity of Rdyade crucially depends on the sum of the entries of ls1 times the
sum of the entries of ls2, that is an optimal (automated) analysis should provide us with
the certificate O(|ls1| · |ls2|). However, state-of-the-art complexity tools, like AProVE [7],
or TCT [2] overestimate the actual resource usage. For example TCT will provide a polynomial
interpretation of degree 2, which is quadratic in |ls1|, even if the monotonicity conditions are
weakened suitably, cf. [8]. Also our earlier amortised resource analysis of typed TRS [12] can
only provide the non-optimal bound O(|ls1|2 + |ls2|2). On the other hand the automated
analysis of the RaML prototype is more to the point; the analysis with respect to dyade.raml,
just overestimates the optimal bound by a linear factor and provides unnecessary big constants.
The multivariate amortised analysis provided in this paper allows to lift this analysis to the
above example and provides essentially optimal bounds (see the example on page 254).

This paper is structured as follows. In the next section we cover basics. In Section 3
we introduce resource functions as generalisations of resource polynomials to arbitrary
constructor-defined datatypes. In Section 4 we present our type system and establish its
soundness. Finally, we conclude in Section 5, where we also present related work.

2 Term Rewrite Systems and Tree Automata

We assume familiarity with term rewriting [4, 16] and tree automata [6] but briefly review
basic concepts and notations.

TLCA’15
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xσ = v

σ
0
x⇒ v

c ∈ C x1σ = v1 · · · xnσ = vn

σ
0
c(x1, . . . , xn)⇒ c(v1, . . . , vn)

f(l1, . . . , ln)→ r ∈ R ∃τ ∀i : xiσ = liτ σ ] τ m
r ⇒ v

σ
m+1

f(x1, . . . , xn)⇒ v

all xi are fresh
σ ] ρ m0

f(x1, . . . , xn)⇒ v σ
m1

t1 ⇒ v1 · · · σ
mn

tn ⇒ vn m =
∑n

i=0 mi

σ
m
f(t1, . . . , tn)⇒ v

Here ρ := {x1 7→ v1, . . . , xn 7→ vn}.

Figure 1 Operational Big-Step Semantics.

Let V denote a countably infinite set of variables and F a signature, such that F contains
at least one constant. The set of terms over F and V is denoted by T (F ,V). We write Var(t)
to denote the set of variables occurring in term t. The size |t| of a term is defined as the
number of symbols in t. We suppose F = C ] D, where C denotes a finite, non-empty set
of constructor symbols, D is a finite set of defined function symbols, and ] denotes disjoint
union. The set of ground constructor terms is denoted as T (C), ground constructor terms are
also called values. A substitution σ is a mapping from variables to terms. Substitutions are
conceived as sets of assignments: σ = {x1 7→ t1, . . . , xn 7→ tn}. We write dom(σ) (rg(σ)) to
denote the domain (range) of σ. Let σ, τ be substitutions such that dom(σ) ∩ dom(τ) = ∅.
Then we denote the (disjoint) union of σ and τ as σ ] τ . We call a substitution σ normalised
if all terms in the range of σ are values.

A rewrite rule is a pair l→ r of terms, such that (i) the root symbol of l is defined, and
(ii) Var(l) ⊇ Var(r). A rule l → r is called left-linear, if l is linear. A term rewrite system
(TRS for short) over F is a finite set of rewrite rules. In the sequel, R always denotes a TRS.
The rewrite relation is denoted as →R and we use the standard notations for its transitive
and reflexive closure. We simply write → for →R if R is clear from context. Let s and t be
terms. If exactly n steps are performed to rewrite s to t, we write s→n t. In the sequel we
are concerned with innermost rewriting, that is, an eager evaluation strategy. The innermost
rewrite relation i−→R of a TRS R is defined on terms as follows: s i−→R t if there exists a
rewrite rule l → r ∈ R, a context C, and a substitution σ such that s = C[lσ], t = C[rσ],
and all proper subterms of lσ are normal forms of R.

A TRS is left-linear if all rules are left-linear, it is non-overlapping if there a no critical
pairs, that is, no ambiguity exists in applying rules. A TRS is orthogonal if it is left-linear
and non-overlapping. A TRS is completely defined if all ground normal-forms are values.
Note that an orthogonal TRS is confluent. Let s and t be terms, such that t is in normal-form.
Then a derivation D : s→∗R t with respect to a TRS R is a finite sequence of rewrite steps.
The derivation height of a term s with respect to a well-founded, finitely branching relation
→ is defined as: dh(s,→) = max{n | ∃t s→n t}. A term t = f(t1, . . . , tk) is called basic if f
is defined, and all ti ∈ T (C). We define the (innermost) runtime complexity (with respect to
R): rcR(n) := max{dh(t, i−→R) | t is basic and |t| 6 n}.

We study constructor TRSs R, that is, for each rule f(l1, . . . , ln)→ r we have that the
arguments li are constructor terms. Furthermore, we restrict to completely defined and
orthogonal systems. These restrictions are natural in the context of functional programming
as orthogonal TRSs correspond to first-order function programs with pattern matching. Let
F denote the signature underlying R.
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As R is completely defined, any derivation ends in a value. In connection with innermost
rewriting this yields a call-by-value strategy. Furthermore, as R is non-overlapping any
innermost derivation is determined modulo the order in which parallel redexes are contracted.
This allows us to recast innermost rewriting into an operational big-step semantics instru-
mented with resource counters, cf. Figure 1. The semantics resembles similar definitions
given in the literature on amortised resource analysis.

I Proposition 1. Let f be a defined function symbol of arity n and σ a normalised substitution.
Then σ m

f(x1, . . . , xn)⇒ v holds iff dh(f(x1σ, . . . , xnσ),→R) = m.

We suit the standard definition of bottom-up tree automata to our context. A tree
automaton is a quadruple A = (F ,Q, α,∆), consisting of a finite signature F , a finite
non-empty set of states Q (disjoint from F), a unique final state α, and a set of non-empty
transitions ∆. Every rule in ∆ has the following form f(α1, . . . , αn) → β with f ∈ F ,
α1, . . . , αn, β ∈ Q.

Note that we only consider tree automata that consist of at least one state and feature
a non-empty transition relation. As we will only be concerned with tree automata, we
drop the qualifier “tree” and simply speak of an automaton. Observe that an automaton
A = (F ,Q, α,∆) is conceivable as a finite ground TRS ∆ over the signature F ∪Q, where
the shape of the rewrite rules is restricted. The induced rewrite relation on T (F ∪ Q) is
denoted as →A. A ground term t is accepted by A if t→∗A α; we set L(A) := {t | t→∗A α}.
Two automata A and B are equivalent, if L(A) = L(B). We use the notation (A, β) to refer
to the automaton (F ,Q, β,∆) where β ∈ Q. Note that (A, α) = A and we sometimes use
the succinct notation instead of the expanded one.

In the sequel, A will always denote an automaton. Henceforth, R and F , as well as
the defined symbols D and constructors C are kept fixed. Furthermore, all considered
substitutions are normalised.

3 Resource Functions

We define a set BF of basic functions, that map terms to natural numbers. Basic functions
are indexed by a pair consisting of an automaton A and a state α. Resource functions will
then be defined as nonnegative rational linear combinations of basic functions.

I Definition 2. Let A = (C,Q, α,∆). For v ∈ T (C) we define the basic function pA, whose
value pA(v) is the number of accepting runs of A on v. The set of basic functions is denoted
as BF .

For any set of constructors C, there exists an automaton A with pA(v) = 1 for all values v.
Moreover A is unique upto renaming of the single state α. We call A the canonical automaton,
denoted by ∅, whose unique state is denoted by ∅. As mentioned in the introduction pA(v)
is called ambiguity in the literature (see for example [13, 14]). In particular it is known that
the finiteness of the degree of ambiguity supv pA(v) is polytime decidable [13]. The following
is direct from the definition.

I Proposition 3. Let v ∈ T (C) be a value such that v = c(v1, . . . , vn) and let α ∈ Q. We
then have:

p(A,α)(c(v1, . . . , vn)) :=
∑

c(α1,...,αn)→α∈∆

p(A,α1)(v1) · · · p(A,αn)(vn) .

Note that p(A,α)(c) =
∑
c→α∈∆ 1, as the empty product equals 1.

TLCA’15
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We could alternatively have used the latter as a recursive definition of p(A,α)(v). The
advantage of the definition based on runs is that we can immediately read off an exponential
upper bound:

I Proposition 4. Let q be the number of states of A and n the size of v ∈ T (C). Then
pA(v) 6 qn.

It is also easy to see that this bound is actually taken on so that unlike the basic functions
in [9] ours are not in general polynomials. If desired, it is however easy to impose syntactic
restrictions that ensure polynomial growth. For example, we can use a ranking function
on states and require that for each transition c(α1, . . . , αn) → α the ranks of the αi are
not bigger than that of α and that they strictly decrease for all but one transition with
symbol c and result state α. All the concrete basic functions we use in examples satisfy this
restriction and thus exhibit polynomial growth. We believe, however, that in some cases also
exponential bounding functions may prove useful.

Let C = {0, s, [], ::} and consider the following automaton A with final state βk.

0→ α0 s(α0)→ α1 · · · s(α`−1)→ α`

s(α0)→ α0 · · · s(α`−1)→ α`−1 s(α`)→ α`

[]→ β0 αik :: β0 → β1 · · · αi1 :: βk−1 → βk

α0 :: β0 → β0 · · · α0 :: βk−1 → βk−1 α0 :: βk → βk .

First, by a simple inductive argument we see that p(A,αi)(sn(0)) =
(
n
i

)
for n > 0 and

i = 0, . . . , `. Based on this, we conclude by induction on m:

p(A,βk)([n1, . . . ,nm]) =
∑

16j1<···<jk6m

(
nj1

i1

)
· · ·
(
njk

ik

)
,

where we denote the numeral sn(0) by n, [n1, . . . ,nm] abbreviates the corresponding cons-list,
and 1 6 ij 6 ` for all j = 1, . . . , k.

Consider the set, denoted as A, of all non-equivalent (and non-empty) automata over C.
In the following we will frequently appeal to an enumeration of A, referring to a suitable
chosen, but inessential encoding of automata. Note that in effect we will only work with a
small, in particular finite subset of A.

I Definition 5. A resource function r : T (C)→ Q+ is a non-negative rational linear com-
bination of basic functions, that is,

r(t) :=
∑
A∈A

qA · pA(t) ,

where pA ∈ BF . The set of resource functions is denoted as RF .

The example above hints at the fact that the expressivity of our basic functions exceeds
the expressivity of the base polynomials considered by Hoffmann et al. [10, 9]. The next
proposition makes this fact precise.

I Lemma 6. All the resource polynomials from [9] are also resource functions in the present
automata-based setting.

Proof. This is proved by induction on the definition of resource polynomials [9]. We do not
need to recall their definition here; the inductive cases we establish reveal enough detail.
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If p, q are basic resource polynomials for types A,B respectively then λab(p(a) · q(b)) is a
base resource polynomial for the product type A×B. In rewriting, we can simulate product
types by introducing a binary constructor pair(x, y). Now, if, inductively p = p(A,α) and
q = p(B,β), and w.l.o.g. the two automata have disjoint state sets, then we can build an
automaton C whose states are the union of the states of A and B together with a new state
γ and a transition pair(α, β)→ γ in addition to the transitions from A and B. We then have
p(C,γ)(a, b) = p(A,α)(a) · p(B,β)(b) = p(a) · q(b) as required. If p1, . . . , pk are base polynomials
for type A then the base polynomial [p1, . . . , pk] given by

[p1, . . . , pk]([a1, . . . , am]) :=
∑

16i1<i2<···<ik6m
p1(ai1) · · · · · pk(aik ) ,

is the generic base polynomial for lists over type A. Assuming that lists are constructed with
the symbols [] and :: and that, inductively, pi = p(Ai,αi), we can build an automaton B as
the disjoint union of the Ai together with k + 1 states β0, β1, . . . , βk, and transitions:

∅ :: βi → βi αi+1 :: βi+1 → βi []→ ∅ ,

where i = 0, . . . , k − 1. (Recall that ∅ denotes the final state of the canonical automaton ∅,
whose inclusion we here tacitly assume.) We obtain [p1, . . . , pk]([a1, . . . , an]) = p(B,βk)(a1 ::
a2 · · · an :: []). Finally, the generic resource polynomial for A-labelled trees takes the form

[p1, . . . , pk](t) := [p1, . . . , pk](lt) ,

where lt is the list of entries of t (in the leaves) in depth-first order. Note that we have

ls(t) :=



∑k
i=0([p1, . . . , pi](t1) ·

· [pi+1, . . . , pk](t2))
if ls = [p1, . . . , pk], k > 1, and t = node(t1, t2)

p(a) if ls = [p] and t = leaf(a)
1 if ls = [] and t = leaf(a)
0 otherwise .

Thus, assuming the automata Ai (i = 1, . . . , k) as above, we can construct a new automaton B
for [p1, . . . , pk] as the disjoint union of the Ai together with new states βi,j for 1 6 i 6 j 6 k

and the following transitions:

leaf(αi)→ βi,i+1 leaf(∅)→ βi,i node(βi,t, βt,j)→ βi,j ,

where t = i, . . . , j. As above, we obtain [p1, . . . , pk](t) = p(B,β1,k)(lt). Thus the lemma
follows. J

I Lemma 7. If r and r′ are resource functions, then r + r′, r · r′ ∈ RF .

Proof. First, resource functions are obviously closed under addition. With respect to
multiplication we employ the linearity of resource functions to see that it suffices to prove
the claim for basic functions. Here we argue similar to the proof of Lemma 6 by using a
product automata construction. J

I Definition 8. We define the set of multivariate basic functions, denoted as BF(n):

BF(n) := {v1, . . . , vn 7→ pA1(v1) · · · pAn(vn) | for all i: vi ∈ T (C) and pAi ∈ BF} .

We enumerate the set BF(n) by sequences of automata, such that p(A1,...,An)(v1, . . . , vn) =
pA1(v1) · · · pAn

(vn).

TLCA’15
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In the following sequences of automata (like (A1, . . . ,An)) are sometimes abbreviated as
~A, in particular we set ~∅ = (∅, . . . ,∅). Note that BF(1) = BF ; in the following we use BF
as unique denotation.

I Lemma 9. For all p ∈ BF(2), there exists p′ ∈ BF , such that p(v, v) = p′(v) for all
values v.

Proof. By definition there exists automata A,B such that p(v, v) = pA(v) · pB(v). By the
previous lemma there exists an automaton C such that pC(v) = pA(v) · pB(v). Thus we set
p′ := pC to conclude the lemma. J

Let C denote a set of constructor symbols. A resource annotation over C, or simply
annotation, is a family Q = (qA)A∈A with qA ∈ Q+ with all but finitely many of the
coefficients qA equal to 0. It represents a (finite) linear combination of basic resource
functions. We generalise annotation for sequences of terms. An annotation for a sequence of
length n is a family Q = (q(A1,...,An))Ai∈A again vanishing almost everywhere. We denote
annotations with upper-case letters from the end of the alphabet and use the convention
that the corresponding lower-case letter denotes the elements of the family.

I Definition 10. The potential of a value v with respect to an annotation Q (of length 1),
that is, Q = (qA)A∈A, is defined as:

Φ(v :Q) :=
∑
A∈A

qA · pA(v) ,

where pA ∈ BF . We generalise this to the potential of a term sequence with respect
to an annotation Q = (q(A1,...,An))Ai∈A: Φ(v1, . . . , vn :Q) :=

∑
A1,...,An∈A q(A1,...,An) ·

p(A1,...,An)(v1, . . . , vn), where p(A1,...,An) ∈ BF(n).

We are ready to generalise the notion of additive shift studied in [10, 9, 12].

I Definition 11. Suppose Q = (q(A1,...,Am,B))Ai,B∈A denotes a resource annotation of length
m + 1. Let c ∈ C be a constructor symbol of arity n. The additive shift for c of Q is
an annotation /c(Q) = (q′(A1,...,Am,B1,...,Bn))Ai,Bj∈A for a sequence of length n+m, where
q′(A1,...,Am,B1,...,Bn) is defined as follows:

q′(A1,...,Am,B1,...,Bn) :=
∑

B=(C,Q,β,∆)∈A
with c(β1, . . . , βn)→ β ∈ ∆

q(A1,...,Am,B) , (1)

Here Bi = (C,QBi
, βi,∆Bi

) for each i = 1, . . . , n.

The correctness of the additive shift operation follows from the next lemma.

I Lemma 12. Let v = c(v1, . . . , vn) be a value and let Q = (q(A1,...,Am,B))A1,...,Am,B∈A be an
annotation of length m+ 1. Then Φ(w1, . . . , wm, v :Q) = Φ(w1, . . . , wm, v1, . . . , vn : /c(Q)).
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Proof. In proof, we restrict to the case m = 0. Consider the value v = c(v1, . . . , vn):

Φ(v :Q) =
∑
B∈A

qB · pB(c(v1, . . . , vn))

=
∑
B∈A

qB ·

 ∑
c(β1,...,βn)→β∈∆

p(B,β1)(v1) · · · p(B,βn)(vn)


=

∑
B1,...,Bn∈A

q′(B1,...,Bn) · (pB1(v1) · · · pBn(vn))

=
∑

B1,...,Bn∈A

q′(B1,...,Bn) · p(B1,...,Bn)(v1, . . . , vn) = Φ(v1, . . . , vn : /c(Q)) .

Here is is straightforward to check that q′(B1,...,Bn) is as in (1). Thus the last equation (and
the lemma) follows. J

Let Q = (q(A1,...,An))Ai∈A denote a resource annotation of length n. Let ~B =
(B1, . . . ,Bm); we define the projection of Q with respect to ~B to an annotation of length
` < n. The projection is denoted as π ~B` (Q). We set

πB1,...,Bm

` (Q) := (q′(A1,...,A`))Ai∈A ,

where q′(A1,...,A`) = q(A1,...,A`,B1,...,Bm) and n = ` + m. Suppose Γ, v1, v2 :Q denotes an
annotated sequence of length m+ 2. Suppose v1 = v2 and we want to share the values. Then
we make use of the operator g(Q) that adapts the potential suitably. The operator is also
called sharing operator.

I Lemma 13. Let Γ, v1, v2 :Q denote an annotated sequence of length m + 2. Then there
exists a resource annotation g(Q) such that Φ(Γ, v1, v2 :Q) = Φ(Γ, v :g(Q)), if v1 = v2 = v.

Proof. This follows from Lemma 9. J

Let Q be an annotation over the set of constructor symbols C and let K ∈ Q+. Then
we define Q′ := Q+K as follows: Q′ = (q′A)A∈A, where q′∅ := q∅ +K and for all A 6= ∅,
q′A := qA. We define the comparison 6 of two annotations Q,Q′ over C pointwise: Q 6 Q′ if
for all A ∈ A: qA 6 q′A.

4 Amortised Cost Analysis

The rest of the paper is essentially an adaptation of the type systems given in [10, 9, 12].
There are no essential surprises but care must be taken with the rule for the evaluation of
non-constructor terms which is essentially a combination of the let rule and the function
application rule from [9].

Let Γ denote a sequence of variables x1, . . . , xn; Γ is called a variable context or simply
a context. The length n of Γ is denoted as |Γ|. A resource annotation for Γ or simply
annotation is an annotation of length |Γ|. Now let Q be a resource annotation for Γ, let Q′
be a resource annotation, let t be a term and let v denote its normalform. Then the typing
judgement Γ:Q ` t :Q′ expresses that for bounded TRS (see Definition 15) the potential of Γ
with respect to Q is sufficient to pay for the total cost m of the evaluation σ m

t⇒ v (σ a
substitution), plus the potential of the value v with respect to Q′.

We comment on the inference rules in Figure 2. For the majority of the typing rules
their definition is straightforward. Consider exemplary the typing rule for constructors
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250 Multivariate Amortised Resource Analysis for Term Rewrite Systems

c ∈ C. Due to Lemma 6 the potential of a value c(x1σ, . . . , xnσ) equals the potential of the
variable context modulo an additive shift with respect to c. This is precisely expressed in the
corresponding type rule. On the other hand the composition rule is more involved. Consider
the judgement Γ1, . . . ,Γn :Q ` f(t1, . . . , tn) :Q′. Observe that on the basis of the sharing
rule we can assume that t = f(t1, . . . , tn) is linear and thus the variable context splits into its
parts Γi (i = 1, . . . , n). The intuition of the composition is that the potential of Γ1, . . . ,Γn
(represented through the annotation Q) should be distributed over the evaluations of all
arguments ti and the evaluation of the function f , in a way such that the interdependency of
the bounds is preserved. This is achieved by type checking each of the arguments and the
context individually and verifying that all issuing annotations are consistent with each other.

In order to see how this works, we detail some of the constraints. First, consider
π
~j1
Γ1

(Q) = P1(~j1). Here ~j1 denotes an index for Γ2, . . . ,Γn. The projection asserts that the
resources annotated in Q are projected to Γ1, so that the typing Γ1 :P1(~j1) `(cf) t1 :R1(~j1) is
realisable for every index ~j1. The constraint pi+1,~ji+1

` = ri,
~ji

k , where 1 6 i < n, ` an index
for Γi and k ∈ I, guarantees that the annotations for the remaining contexts Γi, i > 1 are
consistent with each other. Finally, constraint π~jn

xn
(S) = Rn(~jn) links the potential after

the evaluation of the last argument tn consistently with the annotation S for the variable
context x1, . . . , xn.

The type system given requires the use of cost-free judgements. Here the rules of the
given TRS are considered as weak rules that are not taken into account in the complexity
evaluation (see Definition 15).

I Definition 14. An annotated signature F is a mapping from D to sets of pairs of resource
annotations:

F(f) :=
{
Q→ Q′ | if the arity of f is n, Q is an annotation of length

n and Q′ a resource annotation

}
.

Usually, we confuse the signature and the annotated signature and denote the latter simply
as F .

The set of indices of an annotation for a context Γ is defined as follows:

I(Γ) := {(A1, . . . ,An) | if A ∈ A and |Γ| = n} .

We also set I := A. Let Q be a resource annotation of length n, let Γ = x1, . . . , x` be a
variable context, and let ~i = B1, . . . ,Bm be an index of length m. We define the projection
with respect to Γ: π~iΓ(Q) := π

~i
|Γ|(Q).

Recall that any rewrite rule l → r ∈ R can be written as f(l1, . . . , ln) → r with
li ∈ T (C,V) and that no variable occurs twice in l. Similar to the notion of well-typed TRSs
in [12], we introduce bounded TRSs.

I Definition 15. Let f(l1, . . . , ln) → r be a rewrite rule in R and let Var(f(l1, . . . , ln)) =
{x1, . . . , x`}. Suppose f is defined and let Q→ Q′ ∈ F(f). Suppose further, for any such
annotation Q→ Q′ we can derive

x1, . . . , x` :P ` r :Q′ , (2)

where P + 1 = R and R is obtained by iteratively applying shift operations with respect
to the constructors occurring in

⋃n
i=1 li to Q. Then we say f is bounded wrt. F . On the

other hand f is weakly bounded if the rewrite step is not counted, that is, the judgement
x1, . . . , x` :R ` r :Q′ is asserted instead of (2). A TRS R over F is bounded (weakly bounded)
if any defined f is bounded (weakly bounded).
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x :Q ` x :Q
Γ:π∅

Γ (Q) ` t :Q′

Γ, x :Q ` t :Q′

f ∈ D Q→ Q′ ∈ F(f) f is n-ary
x1, . . . , xn :Q ` f(x1, . . . , xn) :Q′

c ∈ C c is n-ary
x1, . . . , xn : /c(Q) ` c(x1, . . . , xn) :Q

∀~j1, . . . ,~jn
~ji ∈ Ii−1 × I(Γi+1)× · · · × I(Γn)

Pi(~ji) = (p`,~ji )`∈I(Γi) Ri(~ji) = (rk,~ji )k∈I

p
i+1,~ji+1
` = ri,~ji

k if ~ji = a @ ` @ b and ~ji+1 = a @ k @ b

π
~j1
Γ1

(Q) = P1(~j1) π
~jn
xn

(S) = Rn(~jn) x1, . . . , xn :S ` f(x1, . . . , xn) :Q′

Γ1 :P1(~j1) `(cf) t1 :R1(~j1) . . . Γn :Pn(~jn) `(cf) tn :Rn(~jn)
Γ1, . . . ,Γn :Q ` f(t1, . . . , tn) :Q′

Γ, x, y :Q ` t[x, y] :Q′ x, y are fresh
Γ, z :g(Q) ` t[z, z] :Q′

Γ, x :P ` t :P ′ P 6 Q P ′ > Q′

Γ, x :Q ` t :Q′

In the composition rule a and b denote suitable chosen indices, where @ denotes
concatenation of indices. Further, the judgement Γi :Pi(~ji) `(cf) ti :Ri(~ji) abbreviates that
Γi :Pi(~∅) ` ti :Ri(~∅) and Γi :Pi(~ji) `cf ti :Ri(~ji) for all ~ji 6= ~∅ and i = 1, . . . , n.

Figure 2 Multivariate Analysis of Term Rewrite Systems.

y1 :P1(j) `(cf) y1 :R1(j)
× : P2(i)→ R2(i)

x, y2 :P2(i) `(cf) x × y2 :R2(i)
+: S → S′

u, v :S ` u + v :S′

y1, x, y2 :T ` y1 + (x × y2) :M ′

x, y :M2 ` y + (x × y) :M ′ .

Here i ∈ I, and j ∈ I(x, y2).

Figure 3 Derivation of x, y :M2 ` y + (x × y) :M ′.

Let σ denote a substitution, Γ = x1, . . . , xn a context and Q a resource annotation. Then we
define the potential of Γ:Q with respect to σ:

Φ(σ,Γ:Q) := Φ(x1σ, . . . , xnσ :Q) .

Note that the above definition employs the shift operator in a similar way as in [9], where
this is part of the type system in the case for pattern matching.

Before we state our main result, we exemplify the use of the type system on a simple (but
clarifying) example. Consider the following TRS R×, restricting our motivating example
(see page 243).

0 + y → y s(x) + y → s(x + y)
0 × y → 0 s(x) × y → y + (x × y) .

We consider the canonical automaton ∅ for the constructor symbols {0, s} together with the
automaton A defined as follows:

A : 0→ ∅ s(∅)→ α s(∅)→ ∅ s(α)→ α
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We show that R× is bounded with respect to the following annotated signatures:

+:
{

(p(∅,∅), p(A,∅))→ (p′∅) | p(∅,∅) > 1, p(A,∅) > 1, p(∅,∅) − 1 > p′∅
}

× :
{(

m(∅,∅) m(A,∅)
0 m(A,A)

)
→ (m′∅,m′A) |

m(∅,∅) > 1,m(A,∅) > 2,
m(A,A) > 1,m(∅,∅) − 1 > m′∅

}
.

Each of the four rules induced one of the following demands, cf. (2). (Recall that we denote
annotations with upper-case letters and the elements of the families with the corresponding
lower-case letters.)

y :P 1 ` y :P ′ P 1 + 1 = /0(P ) (3)
x, y :P 2 ` s(x + y) :P ′ P 2 + 1 = /s(P ) (4)
y :M1 ` 0 :M ′ M1 + 1 = /0(M) (5)
x, y :M2 ` y + (x × y) :M ′ M2 + 1 = /s(M) (6)

It is not difficult to see that (3) and (4) induce the constraints p(∅,∅) > 1, p(A,∅) > 1, and
p(∅,∅) − 1 > p′∅, and to ease the presentation we set p′A = 0. Furthermore, the typing
judgement (5) yields the constraint m(∅,∅) − 1 > m′∅.

Of more interest is the precise derivation of (6). In this derivation we make use of
the weakly boundedness of R× with respect to the cost-free signature +: (p(∅,∅)) → p′∅
and × : (m(∅,∅)) → m′∅, where it suffices to demand that p(∅,∅) > p′∅ and m(∅,∅) > m′∅.
We obtain the following derivation in Figure 3. This derivation induces the constraint
g(T ) = M2, as first (reading bottom-up) we employ a sharing rule. The composition rule
yields the constraints πjy1

(T ) = P1(j) (j ∈ I(x, y2)), πiv(S) = R2(i) (i ∈ I), and r1,j
i = p2,i

j ,
where R1(j) = (r1,j)i∈I and P2(i) = (p2,i)j∈I(x,y2). Finally, the axioms yield the constraints
P1(j) > Ri(j) for j ∈ I(x, y2) as well as the indicated conditions on the signature. It
is tedious, but straightforward to check that these constraints can be met for the given
annotations. Thus, × can be typed with the annotation m(∅,∅) = 1, m(A,∅) = 2, and
m(A,A) = 1 which yields the bound dh(m × n,→R×) 6 m · n+ 2m+ 1.

It is instructive to depict the annotation M2 in matrix format, which allows a simple
expression of the /s-operator.

M2 =
(
m∅,∅ mA,∅
m∅,A mA,A

)
=
(
m∅,∅ +mA,∅ − 1 mA,∅

mA,A mA,A

)
= /s(M) .

Then it becomes apparent that the annotation M2 is the result of adding the auxiliary
annotation(

mA,∅ − 1 0
mA,A 0

)
, (7)

to the annotation for multiplication. Intuitively the type system asserts that we can split the
annotation M2 into an annotation M that pays for the recursive call and the annotation (7)
that pays for the call to addition.

I Theorem 16. Let R be bounded. Suppose Γ:Q ` t :Q′ and σ m
t⇒ v. Then Φ(σ,Γ:Q)−

Φ(v :Q′) > m.

Proof. Let Π be the proof deriving σ m
t⇒ v and let Ξ be the proof of Γ:Q ` t :Q′. The

proof of the theorem proceeds by main-induction on the length of Π and by side-induction
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on the length of Ξ. We consider the case for composition. Suppose the last rule in Π has the
form

σ ] ρ m0
f(x1, . . . , xn)⇒ v σ

mi
ti ⇒ vi i = 1, . . . , n m =

∑n
i=0mi

σ
m
t⇒ v .

We can assume that t = f(x1, . . . , xn) is linear, due the presence of the share operator. In
proof we restrict to the case where n = 2. Hence the last rule in the type inference Ξ is of
the following form.

Γ1 :P (j) `(cf) t1 :P (j) Γ2 :R(i) `(cf) t2 :R(i) x, y :S ` f(x, y) :Q′

Γ1,Γ2 :Q ` f(t1, t2) :Q′

The following conditions hold, where we use the notations P (j) = (pji )i∈I(Γ1), P (j) =
(pji )i∈I(Γ1), R(i) = (rij)j∈I(Γ2), and R(i) = (rij)j∈I(Γ2)

∀j ∈ I(Γ2) πjΓ1
(Q) = P (j) ∀i ∈ I πiy(S) = R(i) ∀i, j pji = rij . (8)

By induction hypothesis, we have (i) Φ(σ ] ρ, x, y :R)−Φ(v :Q′) > m0, (ii) for all j ∈ I(Γ2):
Φ(σ,Γ1 :P (j))− Φ(v1 :P (j)) > m1, and (iii) for all i ∈ I: Φ(σ,Γ2 :R(i))− Φ(v2 :R(i)) > m2.
Let ~x := x1, . . . , xn, where Var(t1) = {x1, . . . , xn} and let ~y := y1, . . . , yn with Var(t2) =
{y1, . . . , yn}. The theorem follows by a straightforward calculation:

Φ(σ,Γ1,Γ2 :Q) =
∑

i∈I(Γ1),j∈I(Γ2)

q(i,j) · pi(~xσ) · pj(~yσ)

=
∑

j∈I(Γ2)

pj(~yσ) ·

 ∑
i∈I(Γ1)

pji · pi(~xσ)


>

∑
j∈I(Γ2)

pj(~yσ) ·
(∑
i∈I

pji · pi(v1)
)

+m1

=
∑
i∈I

pi(v1) ·

 ∑
j∈I(Γ2)

rij · pj(~yσ)

+m1

>
∑
i∈I

pi(v1) ·

∑
j∈I

rij · pj(v2)

+m1 +m2

>
∑
i∈I

q′i · pi(v) +
2∑
i=0

mi = Φ(v :Q′) +
2∑
i=0

mi .

Here we tacitly employ the conditions (8) together with the induction hypothesis which is
employed in line 3, 5, and 6. J

The following corollary to the theorem is immediate.

I Corollary 17. Assume the conditions of the theorem. If additionally for all values v and
annotations Q, Φ(v :Q) ∈ O(nk), where n = |v|, then rcR(n) ∈ O(nk).

I Remark. Recall that we restrict to completely defined, orthogonal constructor TRSs. It is
not difficult to see that Theorem 16 (and its corollary) generalise to the case where completely
definedness is dropped. While completely definedness is essential for the correctness of the
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big-step semantics presented in Figure 1, the proof of Theorem 16 extends with relative ease.
The induction on the length of Π: σ m

t⇒ v is replaced by an induction on the length of
an innermost derivation D : tσ →+

R v.
Finally, we consider the motivating TRS Rdyade. Based on the above example (page 251)

it remains to consider the remaining four rules of Rdyade:

mult(n, [])→ [] mult(n, x :: xs)→ (n × x) :: mult(n, xs)

dyade([], ls)→ [] dyade(x :: xs, ls)→ mult(x, ls) :: dyade(xs, ls) .

We consider the following automata ∅, A, B and C, where ∅ denotes the canonical automata
for {0, s, [], ::} and A is defined as on page 251. The definition of B and C is given below.

B : 0→ ∅ s(∅)→ ∅ []→ ∅ ∅ :: ∅→ β ∅ :: β → β

C : 0→ ∅ s(∅)→ ∅ s(∅)→ α s(α)→ α []→ ∅

α :: ∅→ γ ∅ :: γ → γ .

Note that p∅(v) = 1, pA(n) = n, pB(l) = |l|, and pC(l) =
∑m
i=1 ni, where l = [n1, . . . ,nm].

We make use of a similar denotation of the annotations as in the example on page 251
and set mult : M → (m′∅,∅), where M = (mA1,A2)A1∈{∅,A},A2∈{∅,B,C} and similarly for
dyade: dyade : D → (d′∅,∅), where D = (dA1,A2)A1∈{∅,B,C},A2∈{∅,B,C} Thus we can assert
the signature of mult and dyade as follows:

mult :

1 0
2 1
0 1

→ (0) dyade :

1 2 0
0 2 1
0 0 1

→ (0) .

Considering dyade(x :: xs, ls) → mult(x, ls) :: dyade(xs, ls), we study the effects of the
additive shift on D. Let D := /::(D)− 1 such that D = (dA1,A2,A3)A1∈{∅,A},A2,A3∈{∅,B,C}.
For A1 = A, then dA,A2,A3 vanishes almost everywhere, but dA,∅,B = dC,B = 1 and
dA,∅,C = dC,C = 1. To ease the presentation, we ignore these positive annotations and
only consider the restricted annotation (d∅,A2,A3)A2,A3∈{∅,B,C}. This annotation is again
representable as a matrix and typability of the rule follows, as we can decompose the matrix
suitably:2 2 0

2 3 1
0 1 1

 =

1 2 0
0 2 1
0 0 1

+

1 0 0
2 1 0
0 1 0

 .

In order to estimate Φ(σ, xs, ys :D) for arbitrary σ we analyse the base functions of the
considered automata. Thus the analysis yields the essentially optimal bound of the execution
of dyade(ls1, ls2) as a multiplicative bound in the sum of the values of the first and second
list ls1 ( = xsσ) and ls2 ( = ysσ), respectively, together with a linear factor.

5 Conclusion

We have presented a novel amortised resource analysis in the context of term rewrite systems.
The method is represented in an inference system akin to a type system and can give rise
to polynomial bounds on the innermost runtime complexity of the analysed rewrite system.
The crucial feature of the inference system is the admittance of multivariate bounds in the
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context of arbitrary data structures in a completely uniform way. This extends our earlier
univariate resource analysis of typed term rewrite systems and continues our program of
applying automated amortised resource analysis to rewriting.

We already briefly commented on the differences of the here presented study to our earlier
work [12] in the introduction. As far as we can tell this and the present result are currently
the only attempts to lift amortised cost analysis to rewriting or provide such a study in
the context of arbitrary constructor-defined datastructures. Hoffmann and Shao provide
in [11] a multivariate amortised analysis of integers and arrays that extend upon [10]. These
language extensions are also provided in RaML. However, the treatment still appears to be
ad-hoc and does not provide a similar uniform framework than ours. Further we mention
some general work on automated resource analysis. Albert et al. [1] underlies COSTA, an
automated tool for the resource analysis of Java programs. Sinn et al. provide in [15] related
approaches for the runtime complexity analysis of C programs, incorporated into LOOPUS.
Very recently Brockschmidt et al. [5] have provided a runtime complexity analysis of integer
programs, taking also size considerations into account. Basic steps for a modular complexity
framework for rewrite systems have been established in [3]. Finally, the RaML prototype [10]
provides an automated potential-based resource analysis for various resource bounds of
functional programs. For term rewriting AProVE [7] and TCT [2] are the most powerful
tools for complexity analysis of rewrite systems as witnessed during last year’s termination
competition.1

In future work we will clarify the automatability of the method. We expect that by
restricting the number of states and the format of those tree automata A, whose annotation
do not vanish, we can reduce inference of annotations to linear constraint solving in much
the same way as in [10]. More challenging would be a combination of linear programming
and combinatorial constraint solving to infer the best possible structure of automata.
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