
Adaptive Context-sensitive Analysis for JavaScript
Shiyi Wei and Barbara G. Ryder

Department of Computer Science
Virginia Tech
Blacksburg, VA, USA
{wei, ryder}@cs.vt.edu

Abstract
Context sensitivity is a technique to improve program analysis precision by distinguishing between
function calls. A specific context-sensitive analysis is usually designed to accommodate the pro-
gramming paradigm of a particular programming language. JavaScript features both the object-
oriented and functional programming paradigms. Our empirical study suggests that there is no
single context-sensitive analysis that always produces precise results for JavaScript applications.
This observation motivated us to design an adaptive analysis, selecting a context-sensitive ana-
lysis from multiple choices for each function. Our two-staged adaptive context-sensitive analysis
first extracts function characteristics from an inexpensive points-to analysis and then chooses
a specialized context-sensitive analysis per function based on the heuristics. The experimental
results show that our adaptive analysis achieved more precise results than any single context-
sensitive analysis for several JavaScript programs in the benchmarks.

1998 ACM Subject Classification D.3.4 Processors, F.3.2 Semantics of Programming Languages,
D.2.5 Testing and Debugging

Keywords and phrases Context Sensitivity, JavaScript, Static Program Analysis

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2015.712

1 Introduction

JavaScript is the lingua franca of client-side web applications and is becoming the most
popular programming language choice for open source projects [13]. Its flexible programming
paradigm is one of the reasons behind its popularity. JavaScript is known as a dynamic
object-oriented language, supporting prototype-based programming [9, 20], a different model
from class-based languages. However, it also supports features of functional programming
(e.g., first class functions). This flexibility helps in programming JavaScript applications
for different requirements and goals, but it also renders program analysis techniques more
complicated and often ineffective.

Context sensitivity is a general technique to achieve more precise program analysis by
distinguishing between calls to a specific function. Historically, call-strings and functional
are the two approaches to enable context sensitivity in an analysis [14]. The call-strings
approach, using the information on the call stack as a context element1, originally was
explored by Shivers (i.e., known as call-site sensitivity or k-CFA) for functional programming
languages [15] and was later adapted to object-oriented languages such as Java [2]. The
functional approach, using information about the computation state as a context element,
was investigated in several variations for object-oriented languages (e.g., [1, 10]). Several

1 A context element refers to the label that is used to distinguish between different function calling
contexts.

© Shiyi Wei and Barbara G. Ryder;
licensed under Creative Commons License CC-BY

29th European Conference on Object-Oriented Programming (ECOOP’15).
Editor: John Tang Boyland; pp. 712–734

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.712
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Wei and B. G. Ryder 713

studies were performed to compare the precision of different context-sensitive analyses for
Java [7, 16]. These studies revealed that object sensitivity [10], an functional approach that
uses the receiver object represented by its allocation site as a context element, often produced
more precise results than call-site sensitivity in Java applications.

Despite the challenges of effective analysis for JavaScript programs, different context-
sensitive analyses have been developed to improve precision. Jensen et al. implemented
object sensitivity in the TAJS analysis framework [4]. Several other context-sensitive analyses
were designed for specific features in JavaScript programs (e.g., dynamic property accesses
[19] and object property changes [22]). These approaches have been demonstrated effective
when certain program features are present. Recently, Kashyap et al. conducted a study to
compare the performance and precision of different context-sensitive analyses for JavaScript
[5]. Unlike the results for Java analyses [7, 16], the authors concluded that there was no
clear winner context-sensitive analysis for JavaScript across all benchmarks [5].

Because JavaScript features flexible programming paradigms and no single context-
sensitive analysis seems best for analyzing JavaScript programs, there are opportunities for
an adaptive (i.e., multi-choice) analysis to improve precision. In this work, we first performed
a fine-grained study that compares the precision of four different JavaScript analyses on
the function level (Section 2.2) on the same benchmarks used by Kashyap et al. [5]. We
observed that JavaScript functions in the same program may benefit from use of different
context-sensitive analyses depending on specific characteristics of the functions.

The results of our empirical study guided us to design a novel adaptive context-sensitive
analysis for JavaScript that selectively applies a specialized context-sensitive analysis per
function chosen from call-site, object and parameter sensitivity. This two-staged analysis
first applied an inexpensive points-to analysis (i.e., mostly context-insensitive, Section 2.2)
to a JavaScript program to extract function characteristics. Each function characteristic
is relevant to the precision of a context-sensitive analysis of the function (e.g., the call
sites that invoke function foo determine the context elements to be generated if call-site
sensitivity is applied to foo). We designed heuristics according to our observations on the
relationship between function characteristics and the precision of a specific analysis using
the empirical results on the benchmark programs. Finally, an adaptive analysis based on
the heuristics-based selection of a context-sensitive analysis per function was performed.
We have evaluated our new approach on two sets of benchmarks. The experimental results
show that our adaptive context-sensitive analysis produces more precise results than any
single context-sensitive analysis we evaluated for several JavaScript programs and that the
heuristics for selecting a context-sensitive analysis per function are fairly accurate.

The major contributions of this work are:
A new empirical study on JavaScript benchmarks to compare the precision of different
context-sensitive analyses (i.e., 1-call-site, 1-object and 1st-parameter as defined in Section
2.1). We measure the precision per function on two simple clients of points-to analysis (i.e.,
Pts-Size and REF). We have made several observations: (i) any specific context-sensitive
analysis is precise only for a subset of programs in the benchmarks. More interestingly,
any specific context-sensitive analysis is often effective only on a portion of a program.
(ii) The precision of a context-sensitive analysis also is dependent on the analysis client.
These findings motivated and guided us to design a novel JavaScript analysis.
An adaptive context-sensitive analysis for JavaScript. The heuristics to select from various
context-sensitive analyses (i.e., 1-call-site, 1-object and ith-parameter) for a function are
based on the function characteristics computed from an inexpensive points-to solution.
This adaptive analysis is the first analysis for JavaScript that automatically and selectively

ECOOP’15

714 Adaptive Context-sensitive Analysis for JavaScript

applies a context-sensitive analysis depending on the programming paradigms (i.e., coding
styles) of a function.
An empirical evaluation of the adaptive context-sensitive analysis on two sets of benchmark
programs. The experimental results show that our adaptive analysis was more precise
than any single context-sensitive analysis for several applications in the benchmarks,
especially for those using multiple programming paradigms. Our results also show that
the heuristics were accurate for selecting appropriate context-sensitive analysis on the
function level.

Overview. Section 2 introduces various context-sensitive analyses and then presents our
motivating empirical study. Section 3 discusses heuristics that represent the relationship
between function characteristics and analysis precision. Section 4 describes the design of our
new analysis. Section 5 presents experimental results. Section 6 further discusses related
work. Section 7 offers conclusions.

2 Background and Empirical Study

In this section, we first introduce the context-sensitive analyses used in our study. We then
present the new comparisons among different context-sensitive analyses with empirical results
and observations.

2.1 Context Sensitivity
As discussed in Section 1, various context-sensitive analyses have been designed for different
programming languages. In this section, we only discuss the approaches that are most
relevant to our empirical study of context-sensitive analysis for JavaScript. We provide more
discussions on related context-sensitive analyses in Section 6.

Call-strings approach. A call-strings approach distinguishes function calls using information
on the call stack. The most widely known call-strings approach is call-site-sensitive (k-CFA)
analysis [15]. A k-call-site sensitive analysis uses a sequence of the top k call sites on the call
stack as the context element. k is a parameter that determines the maximum length of the call
string maintained to adjust the precision and performance of call-site-sensitive analysis. We
used 1-call-site sensitivity for comparison. 1-call-site-sensitive analysis separately analyzes
each different call site of a function. Intuitively in the code example below, 1-call-site-sensitive
analysis will analyze function foo in two calling contexts L1 and L2, such that local variables
(including parameters) of foo will be analyzed independently for each context element.

L1: x.foo(p1 , p3);
L2: y.foo(p2 , p4);

Functional approach. A functional approach distinguishes function calls using information
about the computation state at the call. Object sensitivity analyzes a function separately for
each of the abstract object names on which this function may be invoked [10]. Milanova et al.
presented object sensitivity as a parameterized k-object-sensitive analysis, where k denotes
the maximum sequence of allocation sites to represent an object name. We used 1-object
sensitivity for comparison. 1-object-sensitive analysis separately analyzes a function for each
of its receiver objects with a different allocation site. Intuitively in the code example above,
1-object-sensitive analysis will analyze function foo separately if x and/or y may point to

S. Wei and B. G. Ryder 715

different abstract objects. If x points to objects O1 and O2, while y points to object O3,
1-object-sensitive analysis will analyze function foo for three context elements differentiated
as O1, O2 and O3.

Other functional approaches presented use the computation state of the parameter instead
of the receiver object as a context element [1, 19]. The Cartesian Product Algorithm (CPA)
uses tuples of parameter types as a context element for Self [1]. The context-sensitive analysis
presented by Sridharan et al., designed specifically for JavaScript programs, analyzes a
function separately using the values of a parameter p if p is used as the property name in a
dynamic property access (e.g., v[p]) [19]. To capture these approaches, we define a simplified,
parameterized ith-parameter-sensitive analysis, where i means we use the abstract objects
corresponding to the ith parameter as a context element. We used 1st-parameter sensitivity
for comparisons. Intuitively in the code example above, 1st-parameter-sensitive analysis will
analyze function foo separately if p1 and/or p2 may point to different abstract objects. If p1
points to object O4, while p2 points to object O4 and O5, 1st-parameter-sensitive analysis
will analyze function foo for two context elements distinguished as O4 and O5.

2.2 Empirical Study
There is no theoretical comparison between the functional and call-strings approaches to
context sensitivity that proves one better than the other. Therefore, we study the precision
of different context-sensitive analyses in practice based on experimental observations. Such
comparisons have been conducted for call-site and object sensitivity on Java [7, 16] as well
as JavaScript [5] applications. Object sensitivity produced more precise results for Java
benchmarks [7, 16], while there was no clear winner across all benchmarks for JavaScript
[5]. The latter observation motivated us to perform an in-depth, fine-grained, function-level
study which led to our design of a new context-sensitive analysis for JavaScript.

Hypothesis. Our hypothesis is that a specific context-sensitive analysis may be more
effective on a portion of a JavaScript program (i.e., some functions), while another kind
of context sensitivity may produce better results for other portions of the same program.
To test this hypothesis, we compared the precision of different context-sensitive analyses at
the function level (i.e., we collect the results of different analyses for a specific function and
compare their precision). In contrast, all previous work [7, 16, 5] reported overall precision
results per benchmark program. The results of our empirical study were obtained on a 2.4
GHz Intel Core i5 MacBook Pro with 8GB memory running the Mac OS X 10.10 operating
system.

Analyses for comparisons. We compared across four different flow-insensitive analyses to
study their precision. The baseline analysis is an analysis that applies the default context-
sensitive analysis for JavaScript in WALA2 (i.e., only uses 1-call-site-sensitive analysis for
the constructors to name abstract objects by their allocation sites and for nested functions
to properly access variables accessible through lexical scoping [19]). In the implementation,
the other three analyses (i.e., 1-call-site, 1-object and 1st-parameter) all apply this default
analysis. In principle, these analyses should be at least as precise as the baseline analysis for
all functions.

2 Our implementation is based on the IBM T.J. Watson Libraries for Analysis (WALA). http://wala.
sourceforge.net/

ECOOP’15

http://wala.sourceforge.net/
http://wala.sourceforge.net/

716 Adaptive Context-sensitive Analysis for JavaScript

Analysis clients and precision metrics. We compare precision results on two simple clients
of points-to analysis. Points-to analysis calculates the set of values a reference property or
variable may have during execution, an important enabling analysis for many clients. The
first client, Pts-Size, is a points-to query returning the cardinality of the set of all values
of all local variables in a function (i.e., the total number of abstract objects pointed to by
local variables). The second client, REF [22], is a points-to query returning the cardinality
of the set of all property values in all the property read (e.g., x=y.p) or call statements
(e.g., x = y.p(...)) in a function (i.e., the total number of abstract objects returned by all
the property lookups). Because both clients count the number of abstract objects returned
and object-naming scheme is unified across different analyses, if an analysis A1 produces a
smaller result than another analysis A2 for a function foo, we say that A1 is more precise
than A2 for foo.

Benchmarks. We conduct our comparisons on the same set of benchmarks used for the
study performed by Kashyap et al. [5]. There are in total 28 JavaScript programs divided
into four categories: standard (i.e., from SunSpider3 and V84), addon (i.e., Firefox browser
plugins), generated (i.e., from the Emscripten LLVM test suite5) and opensrc (i.e., open
source JavaScript frameworks). There are seven programs in each benchmark category.6 In
our study, all benchmark programs are transformed with function extraction for correlated
property accesses [19] before running any analysis. This program transformation preserves
the semantics of the original programs and may help handle dynamic property accesses more
accurately [19].

Results. We ran each analysis of a benchmark program under a time limit of 10 minutes.
The baseline and 1-call-site-sensitive analyses finished analyzing all 28 programs under
the time limit. 1-object-sensitive analysis timed out on 4 programs (i.e., linq_aggregate,
linq_enumerable and linq_functional in the opensrc benchmarks and fourinarow in the
generated benchmarks), while 1st-parameter-sensitive analysis timed out on 2 programs (i.e.,
fasta and fourinarow in the generated benchmarks).

Figures 1a and 1b show the relative precision results for Pts-Size and REF, respectively.
In both figures, the horizontal axis represents the results from four benchmark categories
(i.e., standard, addon, generated and opensrc) and the vertical axis represents the percentages
of functions in each benchmark category on which an analysis produces the best results (i.e.,
more precise results than those from all other three analyses) or equally precise results. We
consider the results of an analysis as equally precise as follows. (i) Baseline analysis is equally
precise on a function if its results are as precise as each of the other three context-sensitive
analyses. (ii) 1-call-site-sensitive, 1-object-sensitive or 1st-parameter-sensitive analysis is
equally precise on a function if the results are more precise results than baseline analysis, and
if the analysis does not produce the best results but the results are at least as precise as the
other two context-sensitive analyses. This definition indicates that multiple context-sensitive
analyses (e.g., 1-call-site-sensitive and 1-object-sensitive analyses) may produce equally precise
results on a function.

For example, the left four bars in Figure 1a present the precision results for the addon

3 https://www.webkit.org/perf/sunspider/sunspider.html
4 http://v8.googlecode.com/svn/data/benchmarks/v7/run.html
5 http://kripken.github.io/emscripten-site/
6 Details of the benchmark programs were provided in Kashyap et al. [5].

https://www.webkit.org/perf/sunspider/sunspider.html
http://v8.googlecode.com/svn/data/benchmarks/v7/run.html
http://kripken.github.io/emscripten-site/

S. Wei and B. G. Ryder 717

addon opensrc standard generated
0%

10%

20%

30%

40%

50%

60%

70%
1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 17	
 18	
 19	
 20	
 21	

Benchmark category

Pe
rc

en
ta

ge
 o

f f
un

ct
io

ns

1st-parameter_equal

1st-parameter_best

1-object_equal

1-object_best

1-call-site_equal

1-call-site_best

baseline_equal

(a) Relative precision results for the Pts-Size client.

 addon opensrc ���standard
generated

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 17	
 18	
 19	
 20	
 21	

Benchmark category

Pe
rc

en
ta

ge
 o

f f
un

ct
io

ns

1st-parameter_equal

1st-parameter_best

1-object_equal

1-object_best

1-call-site_equal

1-call-site_best

baseline_equal

(b) Relative precision results for the REF client.

Figure 1 Comparison results between baseline, 1-call-site-sensitive, 1-object-sensitive and 1st-
parameter-sensitive analyses. Bars show the percentage of functions on which an analysis is best or
equally precise.

benchmarks for the Pts-Size client. The baseline_equal bar (i.e., the left most) shows that
baseline analysis achieved as precise results as those from all three other analyses for 64% of
the functions in the addon benchmarks, indicating context sensitivity does not make much
difference for more than two thirds of the functions in these programs for the Pts-Size client.
The 1-call-site_best and 1st-parameter_best bars (i.e., the parts of the second and fourth
bars from left filled with patterns) show that 1-call-site-sensitive and 1st-parameter-sensitive
analyses produced more precise results than all other analyses for 9% and 1.5% of the
functions in the addon benchmarks, respectively. The 1-object_best result missing from
the third bar from left indicates that 1-object-sensitive analysis failed to produce the most
precise results for any function in addon benchmarks. Nevertheless, the 1-object_equal bar
shows 1-object-sensitive analysis achieved equally precise results with 1-call-site-sensitive
and/or 1st-parameter-sensitive analyses for 25% of the functions in the addon benchmarks.

ECOOP’15

718 Adaptive Context-sensitive Analysis for JavaScript

Comparing with the 1-call-site_equal (26%) and 1st-parameter_equal (1%) bars, we can
predict that 1-call-site-sensitive and 1-object-sensitive analyses had similar precision on a
quarter of the functions in the addon benchmarks.

The baseline_equal bars in Figure 1a show that analysis of a large percentage of functions
in the benchmarks does not benefit from context sensitivity in terms of the Pts-Size results
(i.e., from 32% for the generated benchmarks to 64% for the addon benchmarks). Also, 1-call-
site-sensitive analysis had relatively consistent impact in the benchmarks, achieving best or
equally precise results for around 30% functions across all benchmark categories. In contrast,
the precision of 1-object-sensitive analysis results seems dependent on the benchmark. Having
little impact on the precision of the opensrc benchmarks, 1-object-sensitive analysis produced
best results for 29% of the functions in the generated benchmarks with an additional 11% of
the functions achieving equally best results. 1st-parameter-sensitive analysis, less studied in
previous work, produced best results for about 10% functions in the opensrc, standard and
generated benchmarks, a reasonable technique to improve precision for these programs. It is
also interesting to learn from Figure 1a that different context-sensitive analyses may produce
equally precise results on many functions in some benchmark categories. 1-call-site-sensitive
and 1-object-sensitive analyses produced equally best results for 25% functions in the addon
benchmarks. 1-call-site-sensitive, 1-object-sensitive and 1st-parameter-sensitive analyses
produced equally best results for 3% functions in the generated benchmarks.

Recall that the REF client uses data from different parts of the points-to results than
the Pts-Size client; in addition, the REF client may query the points-to results (i.e., all the
property lookup statements in a function) less frequently than the Pts-Size client (i.e., all
local variables in a function). Overall in Figure 1b, context sensitivity improves precision less
over baseline analysis for the REF than for the Pts-Size client. Baseline analysis produced as
precise results as all other three analysis for more than 50% of the functions in all benchmark
categories. About 96% of the functions in the addon benchmarks did not benefit from any
context-sensitive analysis over the baseline analysis. 1-call-site-sensitive analysis achieved
dramatically better results for the Pts-Size client than REF client in addon, opensrc and
standard benchmarks. 1-object-sensitive analysis also achieved much better results for the
Pts-Size client than the REF client in the generated benchmarks. On the other hand,
1st-parameter-sensitive analysis still remains effective in the opensrc, standard and generated
benchmarks.

Summary. First, the effectiveness of specific context-sensitive analysis for JavaScript func-
tions is sensitive to the coding style. For example, 1-call-site-sensitive, 1-object-sensitive and
1st-parameter-senstive analyses each produced best results on a large percentage of functions
in the programs from the generated benchmarks. Second, the precision of context-sensitive
analysis also depends on the analysis client.

Based on these observations, we believe JavaScript programs can benefit from an adaptive
context-sensitive analysis that chooses an appropriate context-sensitive analysis for a specific
function. We used these observations as guidance to design our new analysis.

3 Function Characteristics and Heuristics

A context-sensitive analysis is designed to be useful for a specific programming paradigm. For
example, object-sensitive analysis targets the class-based model of object-oriented languages.
The results from Section 2 indicate that JavaScript functions in one program may benefit
from different context-sensitive analyses depending on the coding style of the functions. In

S. Wei and B. G. Ryder 719

Table 1 Function characteristics.

1-call-site 1-object 1st-parameter

context element FC1: CSNum FC4: RCNum FC6: 1ParNum

approximations FC2: EquivCSNum

client-related FC3: AllUse FC5: ThisUse
FC7: 1ParName

metrics FC8: 1ParOther

this section, we present the function characteristics we extracted from the baseline analysis
results and then investigate heuristics that represent the relations between these function
characteristics and the precision of context-sensitive analyses. Finally, we use these heuristics
to select the appropriate context-sensitive analysis per function in our adaptive algorithm
(Section 4).

3.1 Function Characteristics

For a JavaScript function, we extracted characteristics from the baseline analysis results
that are relevant to the precision of context-sensitive analyses for a specific client. The goal
is to extract function characteristics that (i) intuitively are relevant to the precision of a
specific analysis for a particular client, and (ii) do not require more costly analysis than a
baseline points-to analysis. Table 1 shows that for a JavaScript function foo, we extract eight
function characteristics (i.e., FC1, FC2, ..., FC8). Each function characteristic is related to
the precision of a specific context-sensitive analysis (i.e., FC1-FC3, FC4-FC5, and FC6-FC8
are related to the precision of 1-call-site, 1-object and 1st-parameter, respectively).

For a specific context-sensitive analysis, we extracted two kinds of function characteristics:
context element approximations and client-related metrics. A context element approximation
predicts the number of distinct context elements generated for a function by a context-sensitive
analysis, which determines its ability to distinguish between function calls. A client-related
metric predicts the effectiveness of a context-sensitive analysis on a JavaScript function for a
particular client. FC1 -FC2, FC4 and FC6 in Table 1 are the context element approximations
we designed for 1-call-site-sensitive, 1-object-sensitive and 1st-parameter-sensitive analyses,
respectively. For example, FC4-RCNum presents an approximation of the number of receiver
objects on which a function is called, computed from the baseline points-to results. FC3,
FC5 and FC7 -FC8 are the client-related metrics we designed for the Pts-Size client7 for
1-call-site, 1-object and 1st-parameter sensitivity, respectively. For example, FC5-ThisUse
measures the usage frequency of the this object in the function body, because frequent use of
the this object indicates that the precision of the Pts-Size client on the function depends on
how accurately the this object is analyzed. Because 1-object-sensitive analysis potentially
analyzes the this object more precisely, we use FC5-ThisUse to predict the effectiveness of
1-object-sensitive analysis on a function for the Pts-Size client. We now will define each
function characteristic.

7 In this work, we use the Pts-Size client to demonstrate the effectiveness of our approach because the
empirical results in Section 2.2 suggest that the Pts-Size client is relatively more sensitive to the choice
of context-sensitive analyses.

ECOOP’15

720 Adaptive Context-sensitive Analysis for JavaScript

Function characteristics for 1-call-site-sensitive analysis. Recall that a 1-call-site-sensitive
analysis uses the immediate call site of a function as the context element. We define FC1,
the CSNum metric, as follows:

FC1-CSNum: for function foo, the number of call sites that invoke foo in the baseline
call graph G.

Although FC1 approximates the number of context elements that a 1-call-site-sensitive
analysis would generate for foo, this metric may not be directly relevant to the precision of
1-call-site-sensitive analysis. Intuitively, if function foo is invoked from two call sites CS1
and CS2, the analysis precision on foo is not likely to benefit from distinguishing between
these two call sites if the parameters of CS1 and CS2 have the same values because these
parameters are used in foo as local variables. More precisely, we define two call sites, CS1:
p0.foo(p1, p2, ... , pn) and CS2: p0’.foo(p1’, p2’, ..., pn’), to be equivalent if for each pair of
receiver objects and parameters (i.e., pi and pi’) in CS1 and CS2, the points-to sets of pi
and pi’ are the same. We then define FC2, the EquivCSNum metric using this definition of
equivalent call sites, as follows:

FC2-EquivCSNum: for function foo, the number of equivalence classes of call sites that
invoke foo in the baseline call graph G.

Recall that the Pts-Size client calculates the cardinality of the set of abstract objects
to which a local variable of foo may point. Intuitively, the precision of the Pts-Size client
depends on the receiver object or parameters that are frequently used as local variables in the
function body. For example, if a parameter p is never used in foo, even if 1-call-site-sensitive
analysis distinguishes call sites that pass different values of p, the results of the Pts-Size client
may not be different because p is never used locally. Theoretically, 1-call-site sensitivity may
distinguish objects passed through any parameter as well as receiver objects via call sites.
We define FC3, the AllUse metric, as follows:

FC3-AllUse: for function foo, the total number of uses of the this object and all parameters.

Function characteristics for 1-object-sensitive analysis. Recall that 1-object-sensitive ana-
lysis distinguishes calls to a function if they correspond to different receiver objects. To
approximate the number of context elements generated by 1-object-sensitive analysis for
function foo, we define FC4, the RCNum metric, as follows:

FC4-RCNum: for function foo, the total number of abstract receiver objects from all call
sites that invoke foo in the baseline call graph G.

Naturally, 1-object-sensitive analysis would be effective on functions implemented with
the object-oriented programming paradigm. The behavior of these functions is dependent
on the objects on which they are called. Uses of the this object in a function is common in
the object-oriented programming paradigm and 1-object-sensitive analysis should produce
relatively precise results. We define FC5, the ThisUse metric, as follows:

FC5-ThisUse: for function foo, the total number of uses of the this object.

Function characteristics for 1st-parameter-sensitive analysis. The ith-parameter sensit-
ivity is designed to be effective when a specific parameter (e.g., the first parameter for
1st-parameter-sensitive analysis) has large impact on analysis precision. 1st-parameter-
sensitive analysis uses the objects that the 1st parameter points to as context elements. We
define FC6, the 1ParNum metric, as follows:

FC6-1ParNum: for function foo, the total number of abstract objects to which the 1st
parameter may point from all call sites that invoke foo in the baseline call graph G.

S. Wei and B. G. Ryder 721

If a parameter p is frequently used in a function, it may be more important to apply
context-sensitive analysis on p than on the receiver object. Also, if p is used as a property
name in dynamic property accesses, using context sensitivity to distinguish the values of p
significantly improves analysis precision [19]. We define FC7, the 1ParName metric, and
FC8, the 1ParOther metric, as follows:

FC7-1ParName: for function foo, the total number of uses of the 1st parameter as a
property name in dynamic property accesses.
FC8-1ParOther. for function foo, the total number of uses of the 1st parameter not as a
property name.

3.2 Heuristics

The function characteristics defined in Section 3.1 are intuitive and easy to calculate from the
baseline points-to graph and call graph. Nevertheless, it is still not clear how these function
characteristics are related to the precision of a context-sensitive analysis. In this section,
we use empirical data to design the heuristics that define the relations between function
characteristics and analysis precision.

Our goal is to select an appropriate analysis for a function given the set of its function
characteristics. The heuristics are not obvious given that there are multiple context-sensitive
analysis choices. To design useful heuristics, we first compared the precision of a pair of
analyses on the function level and observed the impact of a subset of function characteristics
on these two analyses. We then applied these heuristics to adaptively choose an appropriate
context-sensitive analysis using the function characteristics (Section 4). More specifically, for
the Pts-Size results from the benchmarks (Section 2.2), we compared the precision between all
2-combinations of baseline, 1-call-site-sensitive, 1-object-sensitive and 1st-parameter-sensitive
analyses and derived the heuristics to select an analysis from each of the combinations.

For example, to choose between the baseline analysis and 1-call-site-sensitive analysis,
we obtained the relevant subset of function characteristics (i.e., FC1-FC3) and the Pts-Size
results of baseline and 1-call-site-sensitive analyses for each function foo in the benchmarks.
If the Pts-Size result from 1-call-site-sensitive analysis is more precise than baseline analysis,
1-call-site sensitivity should be chosen when analyzing foo; otherwise, baseline analysis should
be chosen. Given the list of function characteristics and corresponding analysis choices on
the benchmark functions, we first used a machine learning algorithm8 to get the relationship
(i.e., presented as a decision tree) between the function characteristics and analysis choice.
We then manually adjusted the initial decision tree based on domain knowledge to decide on
the heuristic, in order to ensure that the heuristic is intuitive and easy to interpret while the
classifications still maintain good accuracy.

We report the accuracy of an analysis choice (e.g., 1-call-site-sensitive analysis) using the
standard information retrieval metrics of precision and recall. Assuming S1 is the set of all
functions in the benchmarks where 1-call-site-sensitive analysis produces more precise results
than baseline analysis and S2 is the set of functions where 1-call-site-sensitive analysis is
chosen by the heuristic. The precision of 1-call-site sensitivity classification is computed
as P1−call−site = |S1

⋂
S2|

|S2| and the recall is computed as R1−call−site = |S1
⋂

S2|
|S1| . The

balanced F-score, the harmonic mean of the precision and recall, is computed as F1−call−site

8 We used the C4.5 classifier [12] implemented in Weka data mining software (http://www.cs.waikato.
ac.nz/ml/weka/) to derive the initial decision tree.

ECOOP’15

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/

722 Adaptive Context-sensitive Analysis for JavaScript

= 2× P1−call−site×R1−call−site

P1−call−site+R1−call−site
, where F1−call−site has its best value at 1 and worst score at 0

for choosing 1-call-site-sensitive analysis by this heuristic.
Figure 2 shows the heuristics to make a choice between each pair of the analyses using

function characteristic values. We discuss each pair of the analyses in turn:

Baseline vs. 1-call-site. Three function characteristics (i.e., FC1-FC3) are relevant to
the precision of 1-call-site-sensitive analysis for the Pts-Size client. For 1-call-site-sensitive
analysis to produce more precise results than baseline analysis, the prerequisite is that there
is more than one distinct 1-call-site-sensitive context element (i.e., FC1 > 1). Figure 2a
shows the heuristic to choose between baseline and 1-call-site-sensitive analyses. 1-call-site-
sensitive analysis is chosen over baseline analysis for a function foo if there is more than
one equivalence class of call sites that invoke foo (i.e., FC2 > 1). This result indicates that
the effectiveness of 1-call-site sensitivity depends on its ability to distinguish call sites with
different receiver objects or different corresponding parameters. The balanced F-scores for
baseline and 1-call-site-sensitive analyses in this heuristic are 0.46 and 0.8, respectively.

Baseline vs. 1-object. FC4 and FC5 are relevant to the precision of 1-object-sensitive
analysis for the Pts-Size client. For 1-object-sensitive analysis to produce more precise results
than baseline analysis, the prerequisite is that there is more than one 1-object-sensitive
context element (i.e., FC4 > 1). Figure 2b shows the heuristic to choose between baseline
and 1-object-sensitive analyses. 1-object-sensitive analysis is chosen over baseline analysis for
a function foo if the this object is used at least once in the function body of foo (i.e., FC5 >

0). This result suggests that 1-object-sensitive analysis is useful in terms of Pts-Size client
for a function foo whose behavior relies on the values of the this object, even for a small
number of 1-object-sensitive context elements for foo. The balanced F-scores for baseline
and 1-object-sensitive analyses in this heuristic are 0.65 and 0.79, respectively.

Baseline vs. 1st-parameter. Three function characteristics (i.e., FC6-FC8) are relevant to
the precision of 1st-parameter-sensitive analysis for the Pts-Size client. For 1st-parameter-
sensitive analysis to produce more precise results than baseline analysis, the prerequisite
is that there is more than one 1st-parameter-sensitive context element (i.e., FC6 > 1).
Figure 2c shows the heuristic to choose between baseline and 1st-parameter-sensitive analyses.
1st-parameter-sensitive analysis is chosen over baseline analysis for a function foo if the first
parameter of foo is used (i.e., as the property name in dynamic property accesses or otherwise)
at least once in the function body of foo (i.e., FC7 > 0 OR FC8 > 0). Similar to 1-object
sensitivity, 1st-parameter sensitivity is another functional approach that distinguishes calls
based on the computation states of a parameter. It is expected for 1-object-sensitive or
1st-parameter-sensitive analysis to be effective on the function foo if the values of the this
object or the first parameter affect the behavior of foo. The balanced F-scores for baseline
and 1st-parameter-sensitive analyses in this heuristic are 0.49 and 0.83, respectively.

1-call-site vs. 1-object. To select between 1-call-site-sensitive and 1-object-sensitive ana-
lyses, function characteristics related to both are considered (i.e., FC1-FC5). In our adaptive
analysis, two context-sensitive analyses are compared for a function when both of them
would be chosen over baseline analysis (see Section 4). As a consequence, the prerequisite for
the heuristic in this case is the number of equivalence classes of call sites is larger than 1
(i.e., FC2 > 1) and the this object is used at least once (i.e., FC5 > 0). Figure 2d shows the
heuristic to choose between 1-call-site-sensitive and 1-object-sensitive analyses. The heuristic

S. Wei and B. G. Ryder 723

FC2 - EquivCSNum = 1: baseline
FC2 - EquivCSNum > 1: 1-call -site

(a) Baseline vs. 1-call-site.

FC5 - ThisUse = 0: baseline
FC5 - ThisUse > 0: 1- object

(b) Baseline vs. 1-object.

FC7 -1 ParName = 0 AND FC8 -1 ParOther = 0: baseline
FC7 -1 ParName > 0 OR FC8 -1 ParOther > 0: 1st - parameter

(c) Baseline vs. 1st-parameter.

FC4 -RCNum / FC2 - EquivCSNum <= 0.8: 1-call -site
FC4 -RCNum / FC2 - EquivCSNum > 0.8
| FC5 - ThisUse / FC3 - AllUse <= 0.375: 1-call -site
| FC5 - ThisUse / FC3 - AllUse > 0.375: 1- object

(d) 1-call-site vs. 1-object.

FC7 -1 ParName = 0
| FC8 -1 ParOther / FC3 - AllUse <= 0.19: 1-call -site
| FC8 -1 ParOther / FC3 - AllUse > 0.19
| | FC6 -1 ParNum / FC2 - EquivCSNum <= 3.8
| | | FC8 -1 ParOther / FC3 - AllUse <= 0.35: 1-call -site
| | | FC8 -1 ParOther / FC3 - AllUse > 0.35: 1st - parameter
| | FC6 -1 ParNum / FC2 - EquivCSNum > 3.8: 1st - parameter
FC7 -1 ParName > 0: 1st - parameter

(e) 1-call-site vs. 1st-parameter.

FC7 -1 ParName = 0
| FC5 - ThisUse / FC8 -1 ParOther <= 0.8: 1st - parameter
| FC5 - ThisUse / FC8 -1 ParOther > 0.8
| | FC5 - ThisUse / FC8 -1 ParOther <= 1.34
| | | FC4 -RCNum / FC6 -1 ParNum < 0.5: 1st - parameter
| | | FC4 -RCNum / FC6 -1 ParNum >= 0.5
| | | | FC4 -RCNum / FC6 -1 ParNum <= 1: unknown
| | | | FC4 -RCNum / FC6 -1 ParNum > 1: 1- object
| | FC5 - ThisUse / FC8 -1 ParOther > 1.34: 1- object
FC7 -1 ParName > 0: 1st - parameter

(f) 1-object vs. 1st-parameter.

Figure 2 Heuristics to select between a pair of analyses.

consists of the relationship between the metrics of both analyses. 1-call-site-sensitive analysis
is selected if it generates a greater number of context elements than 1-object-sensitive analysis
(i.e., FC4 / FC2 <= 0.8) for a function. This result suggests that 1-call-site-sensitive and
1-object-sensitive analyses in this case are empirically comparable in terms of precision. The
relationship between the numbers of context elements generated by each analysis on foo
indicates which context-sensitive analysis may be more precise for that function. When the

ECOOP’15

724 Adaptive Context-sensitive Analysis for JavaScript

number of receiver objects that invoke foo is close to or larger than the number of equivalence
classes of call sites (i.e., FC4 /FC2 > 0.8), if the this object is used quite frequently (i.e.,
FC5 / FC3 > 0.375) in foo, 1-object-sensitive analysis is more precise for foo; otherwise
(i.e., FC5 / FC3 <= 0.375), 1-call-site-sensitive analysis is selected. This result is intuitive
in that 1-object-sensitive analysis produces more precise results than 1-call-site-sensitive
analysis for the Pts-Size client when (i) 1-object-sensitive analysis generates a number of
context elements and (ii) the behavior of a function is heavily dependent on the values of the
receiver object. The balanced F-scores for 1-call-site-sensitive and 1-object-sensitive analyses
in this heuristic are 0.67 and 0.8, respectively.

1-call-site vs. 1st-parameter. Function characteristics FC1-FC3 and FC6-FC8 are con-
sidered to select between 1-call-site-sensitive and 1-object-sensitive analyses. The prerequisite
for this comparison is FC2 > 1 and the first parameter of the function is used at least once
(i.e., FC7 > 0 OR FC8 > 0). Figure 2e shows the heuristic to choose between 1-call-site-
sensitive and 1-object-sensitive analyses. 1st-parameter-sensitive analysis is always selected
if the first parameter is ever used as a property name in dynamic property accesses because
the dynamic property accesses in JavaScript make analysis results very imprecise [19] and
1st-parameter sensitivity is a technique that significantly improves the analysis precision
in this situation. In other cases, 1-call-site sensitive analysis is preferred if uses of the first
parameter are not important to the function behavior (i.e., FC8 / FC3 <= 0.19). Also,
similar to the heuristic that selects between 1-call-site-sensitive and 1-object-sensitive analyses
(Figure 2d), the heuristic between 1-call-site-sensitive and 1st-parameter-sensitive analyses
is dependent on the relationship between the context elements generated by both analyses.
If 1st-parameter-sensitive analysis potentially generates many more context elements than
1-call-site sensitive analysis (i.e., FC6 / FC2 > 3.8), we expect the 1st-parameter-sensitive
analysis to be more precise. Otherwise (i.e., FC6 / FC2 <= 3.8), depending on the import-
ance of the first parameter to the function behavior, 1-call-site-sensitive analysis (when 0.19
< FC8 / FC3 <= 0.35) or 1st-parameter-sensitive analysis (when FC8 / FC3 > 0.35) is
selected. The balanced F-scores for 1-call-site-sensitive and 1st-parameter-sensitive analyses
in this heuristic are 0.73 and 0.66, respectively.

1-object vs. 1st-parameter. Finally, Figure 2f presents the heuristic that selects between
1-object-sensitive and 1st-parameter-sensitive analyses. Function characteristics FC4-FC8
are considered and the prerequisite is FC5 > 0 and FC7 > 0 OR FC8 > 0. It is not
surprising that 1-object-sensitive analysis is selected by the heuristic when the this object
is more frequently used (i.e., FC5 /FC8 > 1.34) and 1st-parameter-sensitive analysis is
selected when the condition is opposite (i.e., FC5 /FC8 <= 0.8). When uses of the this
object and the first parameter are similar (i.e., 0.8 < FC5 /FC8 < 1.34), the number
of context elements generated by these two analyses decides the selection: (i) if 1-object-
sensitive analysis potentially generates more context elements than 1st-parameter-sensitive
analysis (i.e., FC5 /FC 8 > 1), we expect 1-object sensitive analysis to be more precise;
(ii) if 1st-parameter-sensitive analysis generates more than twice the number of context
elements than 1-object-sensitive analysis (i.e., FC5 /FC 8 < 0.5), 1st-parameter-sensitive
analysis is selected; (iii) otherwise (i.e., 0.5 <= FC5 /FC 8 <= 1), it is not clear from the
data in the benchmarks which analysis produces more precise results because the function
characteristics indicate that they have similar capability to analyze the function. In this case,
we randomly select between 1-object-sensitive and 1st-parameter-sensitive analyses for the
function whose characteristics fall in this region. The balanced F-scores for 1-object-sensitive
and 1st-parameter-sensitive analyses in this heuristic are 0.79 and 0.86, respectively.

S. Wei and B. G. Ryder 725

iParName < jParName : jth - parameter
iParName = jParName
| iParOther < jParOther : jth - parameter
| iParOther = jParOther
| | iParNum < jParNum : jth - parameter
| | iParNum >= jParNum : ith - parameter
| iParOther > jParOther : ith - parameter
iParName > jParName : ith - parameter

Figure 3 Heuristic for ith-parameter vs. jth-parameter.

Summary. The heuristics presented in Figure 2 are intuitive for making a choice between
each pair of analyses. More importantly, the heuristics for the call-strings approach and
the functional approaches (i.e., Figures 2d and 2e) allow us to make a decision between two
incomparable analyses. Finally, these heuristics are accurate (i.e., good balanced F-scores)
in terms of their effectiveness on the benchmark programs.

4 Adaptive Context-sensitive Analysis

In this section, we present our adaptive context-sensitive analysis algorithm. This staged
analysis (i) uses baseline analysis to obtain a call graph and points-to solution to extract
function characteristics and (ii) performs an adaptive context-sensitive analysis based on
heuristics that select an appropriate context-sensitive analysis for each function.

4.1 Function Characteristics Extraction
In Section 3, we discussed the function characteristics used in the heuristics to select from
baseline, 1-call-site-sensitive, 1-object-sensitive and 1st-parameter-sensitive analyses. Various
other context-sensitive analyses exist for improving analysis precision. For example, ith-
parameter-sensitive analysis (Section 2.1) provides variations to distinguish function calls
based on the computation states of parameters, decided by the parameter i.

In our adaptive context-sensitive analysis, we actually apply ith-parameter-sensitive
analysis for a function whose precision relies on how accurately the ith parameter is ana-
lyzed. Therefore, for each parameter of a function, we extract three function characteristics:
iParNum, iParName and iParOther. We apply the heuristics of 1st-parameter-sensitive
analysis to select between ith-parameter-sensitive analysis and baseline(Figure 2c), 1-call-
site-sensitive (Figure 2e) or 1-object-sensitive (Figure 2f) analysis. To select between ith-
parameter-sensitive and jth-parameter-sensitive analyses, we apply the heuristic shown in
Figure 3. We designed this heuristic based on the observation that for parameter sensitivity,
a functional approach, the uses of the parameter whose computation states are used to
distinguish function calls usually are more closely related to the analysis precision. In Figure
3, because the uses of a parameter as a property name in the dynamic property accesses is
the most important characteristic, if one parameter is used as a property name more often
than the other, distinguishing function calls based on its values may produce more precise
results. If the ParName characteristics are the same for parameters i and j, the uses of the
parameters in other situations are compared to decide if ith-parameter-sensitive analysis is
more/less precise than jth-parameter-sensitive analysis. Finally, if both client-related metrics
(i.e., ParName and ParOther) cannot distinguish the parameters, the heuristic selects the
parameter that points to more objects.

ECOOP’15

726 Adaptive Context-sensitive Analysis for JavaScript

baseline

Function
Characteristics

=1 analysis

>1 analyses

Proc
1

1-call-site

1-object

ith-par

Proc
2 >1

par-sens

ith-par

Proc
3

1-call-site

1-object

ith-par

=1 analysis

> 1 analyses

<=1 par-sens

Figure 4 Workflow to select a context-sensitive analysis for a JavaScript function.

For a function foo with n parameters, we extract three characteristics for 1-call-site
sensitivity (i.e., CSNum, EquivCSNum and AllUse), two characteristics for 1-object sensitivity
(i.e., RCNum and ThisUse), and three characteristics for ith-parameter sensitivity (i.e.,
iParNum, iParName and iParOther). In total, there are 6+3n function characteristics for
foo.

4.2 Algorithm
Our adaptive context-sensitive analysis automatically selects a specific context-sensitive
analysis for each function based on the function characteristics derived from the baseline
analysis. Figures 2a-2f and 3 present the heuristics used to choose between pairs of analyses.
The overall algorithm to select the context-sensitive analysis for a function is described
in Figure 4. Given the function characteristics of function foo, Procedure 1 performs all
pairwise comparisons between baseline analysis and 1-call-site-sensitive, 1-object-sensitive
and ith-parameter-sensitive analyses for all the parameters of foo. If Procedure 1 returns a
single analysis, this analysis is selected for foo. Returning baseline analysis means none of
the context-sensitive analyses makes much difference to improve precision for foo.

In case more than one choice is returned by Procedure 1, further comparisons are
conducted to decide the specific context-sensitive analysis to use for foo. If the analysis
precision of foo may benefit from applying parameter-sensitive analyses on multiple parameter
choices returned by Procedure 1, Procedure 2 selects from among them to find the parameter
i that may produce the most precise results when ith-parameter-sensitive analysis is applied.
If the choices from Procedure 1 are now narrowed down to only the ith-parameter-sensitive
analysis, this analysis is selected by our algorithm to analyze foo.

When necessary, Procedure 3 chooses from the remaining context-sensitive analyses that
are returned by Procedures 1 and 2. If there are two remaining context-sensitive analyses to
choose from, Procedure 3 applies the heuristic in Figure 2d, 2e or 2f to decide on the context-
sensitive analysis for analyzing foo. Otherwise (i.e., to choose from all three context-sensitive
analyses), Procedure 3 compares each pair of 1-call-site-sensitive, 1-object-sensitive and ith-
parameter-sensitive analyses and tries to find a best context-sensitive analysis for a majority
of the pairs using heuristics in Figures 2d, 2e and 2f. For example, the adaptive analysis
selects 1-call-site-sensitive analysis to analyze foo if it is chosen by both heuristics comparisons
with 1-object-sensitive and ith-parameter-sensitive analyses. Finally, if Procedure 3 cannot

S. Wei and B. G. Ryder 727

decide on a specific accurate context-sensitive analysis (i.e, when each of the three heuristics
returns a different analysis choice), the adaptive analysis randomly chooses an analysis for
foo.

5 Evaluation

In this section, we first present the details of our experimental setup. We then evaluate our
adaptive context-sensitive analysis using two sets of benchmarks. We compared the precision
of adaptive analysis to other context-sensitive analyses applied to the entire program.

5.1 Experiment Setup
Our implementation of adaptive context-sensitive analysis was based on the WALA static
analysis infrastructure that supports JavaScript analysis. The baseline points-to analysis,
ZERO_ONE_CFA analysis in WALA that uses the default context sensitivity for JavaScript
analysis (Section 2.2), produced a call graph and a points-to solution from which we extracted
the function characteristics. For the adaptive context-sensitive analysis, we implemented
a new context selector9 that applies the context-sensitive analysis chosen by the heuristics
for each function. Note that the default context-sensitive analysis is always used as well to
ensure that the results of adaptive analysis are comparable to the baseline analysis.

The goals of the experiments include: (i) comparing the precision of adaptive context-
sensitive analysis with each of the other context-sensitive analyses to learn if the adaptive
analysis improves JavaScript analysis precision and (ii) studying the accuracy of selecting a
specific context-sensitive analysis for each function to validate the quality of the heuristics
presented in Section 3.

To achieve these goals, we evaluated our analysis on two sets of benchmarks: (i) the
same benchmark programs on which we performed the empirical study in Section 2.2 (i.e.,
Benchmarks I including the 28 JavaScript programs collected by Kashyap et al. [5], divided
into four categories) and (ii) four open-source JavaScript applications or libraries (i.e.,
Benchmarks II). The programs in Benchmarks II are (i) Box2DWeb, collected in the Octane
benchmarks10, (ii) minified.js library11 version 1.0, (iii) mootools library12 version 1.5.1, and
benchmark.js library13 version 1.0.0. Because the heuristics were designed based on machine
learning results using Benchmarks I, Benchmarks II serve to test if these heuristics can be
applied by the adaptive context-sensitive analysis to arbitrary JavaScript programs and
produce fairly accurate analysis results for the Pts-Size client.

5.2 Experimental Results
Results for Benchmarks I. Figure 5 shows the analysis precision results for Benchmarks I.
We compared the results of our adaptive analysis with the context-sensitive analysis (i.e.,
1-call-site-sensitive, 1-object-sensitive or 1st-parameter-sensitive analysis) that produced
most accurate results for each program for these benchmarks. We define a context-sensitive
analysis to be the winner analysis for a program if it was at least as precise as the other

9 In WALA, the context element at a call site is decided by a context selector.
10 https://developers.google.com/octane/
11 http://minifiedjs.com
12 http://mootools.net
13 http://benchmarkjs.com

ECOOP’15

https://developers.google.com/octane/
http://minifiedjs.com
http://mootools.net
http://benchmarkjs.com

728 Adaptive Context-sensitive Analysis for JavaScript

addon opensrc standard generated
60%

65%

70%

75%

80%

85%

90%

95%

100%
1	
 1	
 2	
 2	
 3	
 3	
 4	
 4	

Benchmark I category

Pe
rc

en
ta

ge
 o

f f
un

ct
io

ns

winner analysis adaptive analysis

Figure 5 Analysis precision on Benchmarks I.

two context-sensitive analyses on the largest number of functions. For all 14 programs in
the addon and opensrc benchmarks, 1-call-site-sensitive analysis was the winner among
the 1-call-site-sensitive, 1-object-sensitive and 1st-parameter-sensitive analyses. For the
standard benchmarks, 1st-parameter-sensitive analysis was winner on three programs and
1-call-site-sensitive analysis was winner on the other four programs. For all but one program
in the generated benchmarks, 1-object-sensitive analysis was the winner analysis and 1-
call-site-sensitive analysis was winner for fourinarow. In Figure 5, the winner analysis
bar shows the percentage of the total number of functions in each benchmark category
on which the winner analysis produced most accurate results. For example, the leftmost
winner analysis bar represents that 1-call-site analysis (i.e., the winner analysis for all the
programs in the addon benchmarks) produced at least as precise results as 1-object-sensitive
and 1st-parameter-sensitive analyses for 98.8% of the functions in the addon benchmarks.
The adaptive analysis bar shows the percentage of functions in each benchmark category
for which our adaptive analysis produced at least as precise results as 1-call-site-sensitive,
1-object-sensitive and 1st-parameter-sensitive analyses.

In Figure 5, our adaptive analysis produced at least as precise results for most functions
in the addon and opensrc benchmarks (i.e., 98% and 90%, respectively). In these two
benchmark categories, 1-call-site-sensitive analysis was the winner analysis for all programs,
producing at least as precise results for 98.8% and 89.8% of the functions, respectively. These
results indicate our adaptive analysis is capable of producing similar precision for a set of
programs that shares the same winner analysis. For the standard benchmarks, the winner
analyses (i.e., 1-call-site-sensitive analysis for four programs and 1st-parameter-sensitive
analysis for three programs) were more precise than the adaptive analysis in terms of the
percentage of functions for which an analysis produced at least as precise results (i.e., 81.9%
of the functions for the winner analyses comparing to 77.1% of the functions for adaptive
analysis). Nevertheless, the adaptive analysis still achieved good precision for most of these
relatively small programs in the standard benchmarks. Even though there were different
winner context-sensitive analyses on the programs from the standard benchmarks, the use of
the adaptive analysis avoided having to manually pick a specific context-sensitive analysis for
an individual program. Finally, for the programs in the generated benchmarks, our adaptive
analysis significantly improved precision over the winner context-sensitive analyses (i.e.,
1-object-sensitive analysis for 6 programs and 1-call-site-sensitive analysis for the other one),

S. Wei and B. G. Ryder 729

Table 2 Selection precision for Benchmarks I.

best / equally precise
analysis

of observed
functions

of selected
functions (true

positives)

true positive
rate

1-call-site 351 258 73.5%
1-object 241 164 68.0%

1st-parameter 162 79 48.8%

1-call-site = 1-object 153 1-call-site: 39 94.1%
1-object: 105

1-call-site 39 1-call-site: 23 74.4%
= 1st-parameter 1st-parameter: 6

1-object 6 1-object: 4 83.3%
= 1st-parameter 1st-parameter: 1

1-call-site
25

1-call-site: 2
100%= 1-object 1-object: 13

= 1st-pararameter 1st-parameter: 10
total 977 704 72.1%

from 71.7% to 86.7% functions. According to the results in Figure 1a, the programs in the
generated benchmarks require context sensitivity for precision and moreover, these programs
often benefited from different context-sensitive analyses. The results for the generated
benchmarks show that we achieved our goal to analyze a multi-paradigm JavaScript program
more accurately using a different context-sensitive analysis for each function.

The most important aspect of adaptive analysis is its ability to select an appropriate
context-sensitive analysis for a specific function. Table 2 shows the accuracy of the analysis
selection process for a function using the heuristics presented in Section 3 with the Pts-Size
client. The first column in Table 2 lists the (set of) analyses that are best or equally precise
(i.e., rows 4-7 in the first column) for a function (see Section 2.2). The second column shows
the total number of functions in all programs from Benchmarks I on which the corresponding
analyses were observed to produced the best or equally precise results. There were in total
1817 functions analyzed in Benchmarks I and the precision results of 977 functions were
improved over baseline analysis by at least one context-sensitive analysis for the Pts-Size
client. The last column presents the the number of functions on which the adaptive analysis
matched the observed results (i.e., true positives for our heuristics). For those functions
on which 1-call-site-sensitive and 1-object-sensitive analyses produced the best results, the
selection heuristics resulted in good precision (i.e., 73.5% and 68%, respectively). However,
the selection on 1st-parameter-sensitive analysis only achieved 48.8% precision. This is
because our adaptive analysis chooses the appropriate ith-parameter-sensitive analysis to
analyze a function using the parameter sensitivity. Here we are only checking the selection
precision with respect to 1st-parameter-sensitive analysis; whereas ith-parameter-sensitive
analysis (i>1) was applied to analyze 51 functions in the programs of Benchmarks I.

1-call-site-sensitive and 1-object-sensitive analyses produced equally precise results in
terms on Pts-Size client on 153 functions. The adaptive analysis correctly selected 1-
call-site-sensitive or 1-object-sensitive analysis to analyze 144 of those 153 functions, and
interestingly, the choice was leaning towards 1-object-sensitive analysis (i.e., 1-object-sensitive
analysis for 105 functions comparing to 1-call-site-sensitive analysis for 39 functions). For
the functions on which equally precise results were produced by 1-call-site-sensitive and

ECOOP’15

730 Adaptive Context-sensitive Analysis for JavaScript

box2d minified.js mootools benchmark.js
40%

50%

60%

70%

80%

90%

100%
1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	

Benchmarks II

Pe
rc

en
ta

ge
 o

f f
un

ct
io

ns

1-call-site 1-object 1st-parameter adaptive

Figure 6 Analysis precision on Benchmarks II.

1st-parameter-sensitive analyses, adaptive analysis selects more functions to be analyzed by
1-call-site-sensitive analysis. The overall precision of selecting a context-sensitive analysis by
our heuristics is very good (i.e., 72.1%); this is a measure of when adaptive analysis made
the best choice possible. The above observations may help us to improve the heuristics in
the future.

The time cost of our adaptive analysis is the sum of its two stages (i.e., the baseline
points-to analysis to gather function characteristics and the subsequent adaptive context-
sensitive analysis). We compare the performance of our adaptive analysis with the winner
analysis for each program in Benchmarks I. On average over all the programs in Benchmarks
I, our two-staged analysis introduced a 67% overhead. Nevertheless, the second stage (i.e.,
the adaptive context-sensitive analysis) is on average 19% faster than the winner analysis
over the Benchmarks I programs. This result suggests that an appropriate choice of context
sensitivity per function yields better performance and precision.

Results for Benchmarks II. Figure 6 shows initial analysis precision results using four
programs from Benchmarks II. The sizes of these programs, in terms of the number of
functions analyzed, are 126, 119, 80 and 64, respectively. The 1-call-site, 1-object and
1st-parameter bars represent the percentage of functions on which each context-sensitive
analysis produced at least as precise results as the other two. The adaptive bar (rightmost)
represents the percentage of functions on which the adaptive analysis produced at least as
precise results as 1-call-site-sensitive, 1-object-sensitive and 1st-parameter-sensitive analyses.
We picked these four programs in Benchmarks II because their analysis results for different
context-sensitive analyses were varied. For example, 1-object-sensitive analysis was more
precise than 1-call-site-sensitive and 1st-parameter sensitive analyses for box2d, while 1st-
parameter-sensitive analysis was the most precise for mootools.

The results in Figure 6 show that our adaptive analysis achieved better results than any
single context-sensitive analysis for box-2d and minified.js. For example, 1-object-sensitive
analysis was at least as precise for 92.8% of the functions in box-2d; adaptive analysis
improved these results to 98.4% of the functions. 1-call-site-sensitive analysis produced at
least precise results for 88.2% of the functions in minified.js; adaptive analysis improved the
results by 5.9% more functions. 1st-parameter-sensitive and 1-call-site-sensitive analyses were
the most precise context-sensitive analyses for mootools and benchmark.js, respectively. While
adaptive analysis produced results lower than these analyses, the results of adaptive analysis

S. Wei and B. G. Ryder 731

were close, only different for 6.2% and 4.7% of the functions in mootools and benchmark.js,
respectively. Overall, our adaptive context-sensitive analysis was fairly accurate for analyzing
these programs from Benchmarks II. This promising result indicates that the heuristics
presented in Section 3 may be applicable in general to JavaScript programs.

5.3 Discussion
In this work, we have demonstrated the ability of our adaptive analysis that chooses a
specific context-sensitive analysis for each function in order to significantly improve analysis
precision. Nevertheless, this initial work has inspired us with more research ideas for further
improvements of context-sensitive analyses for JavaScript. First, since we evaluated the
adaptive analysis on a simple client of points-to analysis (i.e., Pts-Size), it would be interesting
to know if adaptive analysis is effective to improve precision for other clients (e.g., security
analysis). Second, context-sensitive analysis for JavaScript are not limited to 1-call-site,
1-object and ith-parameter. A deeper object-sensitive analysis (i.e., k-object) or another
context-sensitive analysis (e.g., using the length of the parameter list at a call site as context
element to distinguish JavaScript variadic functions [21]) could be used by adaptive analysis.
New heuristics need to be designed for selecting these analyses. Third, we would like to
explore if analysis precision may benefit from applying multiple-sensitive analyses on a
specific JavaScript function. The idea of hybrid context-sensitive analysis has been tried
for analyzing Java programs [6]. Fourth, scalability is an important issue for JavaScript
analyses, especially for analyzing JavaScript websites that use libraries heavily (e.g., jQuery).
In this work, we do not address this problem, that is, when a baseline points-to analysis is
not scalable for a large JavaScript application, typically a website. In the future, we plan
to focus on improving the performance of analysis of JavaScript websites using an adaptive
approach.

Although we used benchmarks collected by Kashyap et al. [5] as well as other JavaScript
programs to evaluate adaptive context-sensitive analysis, these programs may not be rep-
resentative of non-website JavaScript applications, which might threaten the validity of our
conclusions as applicable to all JavaScript programs.

6 Related Work

To the best of our knowledge, we have proposed the first analysis for JavaScript that
adaptively uses multiple context-sensitive analyses to analyze a program when context
sensitivity may help improve precision. Nevertheless, our work is related to approaches that
apply context-sensitive analysis selectively (e.g., refinement-based analysis [3, 18, 17] and
hybrid context-sensitive analysis [6]) for other programming languages. We already have
discussed several context-sensitive analyses in Sections 1 and 2. In this section, we focus on
related “selective” context-sensitive analyses.

Context-sensitive analysis has been deeply investigated for other object-oriented languages
such as Java. However, these object-oriented languages do not seem as amenable to our
approach of using different context-sensitive analyses on different functions. Castries and
Smaragdakis presented hybrid context-sensitive points-to analysis for Java [6]. Several
combinations of call-site and object-sensitive analyses were explored and evaluated for
precision. Their results showed that selectively adding call-site-sensitive analysis to specific
places in the program (e.g., static calls) significantly improved the precision of object-sensitive
points-to analysis for Java. Our adaptive analysis automatically chooses an appropriate
context-sensitive analysis for each function in JavaScript program.

ECOOP’15

732 Adaptive Context-sensitive Analysis for JavaScript

Several works were proposed to tune the context sensitivity of an analysis based on
pre-analysis results. Smaragdakis et al. presented introspective analysis that aims to improve
the performance of a context-sensitive analysis for Java [17]. Introspective analysis selectively
refines allocation sites or call sites based on the heuristics consisting of metrics computed
from context-insensitive points-to results. The heuristics are tunable via constant parameters.
In our adaptive analysis, the heuristics are computed from baseline analysis and syntactic
analysis. The heuristics in our analysis focus on “which” context-sensitive analysis may
improve precision instead of “if” context sensitivity would be of benefit.

Sridharan and Bodík presented a refinement-based points-to analysis for Java [18] that
refines sensitivity for heap accesses and method calls. It also is demand-driven in that it
skips irrelevant code in the analysis. Our adaptive context-sensitive analysis aims to improve
precision for the whole program.

Guyer and Lin presented a client-driven analysis for C that automatically adjusts its
precision in response to the needs of client analyses [3]. This client-driven analysis monitors
polluting assignments (i.e., the program points that result inaccuracy in the analysis) and
tunes context as well as flow sensitivity to improve precision. Liang and Naik presented
another client-driven algorithm for Java that prunes away analysis results irrelevant to
refinement for more precision [8]. For these techniques, a pre-analysis is used to determine
the program points for refinement. Baseline points-to analysis is used to derive the function
characteristics for our heuristics. Furthermore, our adaptive analysis involves more than one
context-sensitive analysis.

Oh et al. presented a selective context-sensitive analysis for C guided by an impact pre-
analysis [11]. The impact pre-analysis applies full context sensitivity (i.e., ∞-CFA) but with
simplified abstract domain and transfer functions to infer the impacts of context sensitivity
in the main analysis. The heuristics in our adaptive analysis focus on the characteristics of a
function to indicate whether analysis precision for a function would benefit from a specific
context-sensitive analysis. Our pre-analysis, the baseline analysis, is comparable with the
adaptive analysis in terms of abstract domain and transfer functions.

7 Conclusions

The effectiveness of a context-sensitive analysis on a JavaScript program depends on its
coding style because JavaScript features both object-oriented and functional programming
paradigms. The fact that there is no winner context-sensitive analysis for the JavaScript
benchmarks we examined motivated us to design an adaptive analysis. Our analysis applies
a specialized context-sensitive analysis per function, using heuristics based on function
characteristics derived from an inexpensive points-to analysis. Our experimental results show
that adaptive analysis is more precise than any single context-sensitive analysis for several
programs in the benchmarks, especially for those multi-paradigm programs whose analysis
precision can benefit from multiple context-sensitive analyses. This work also has inspired
opportunities to solve fundamental problems in analyzing JavaScript programs including
analysis scalability for websites.

References

1 Ole Agesen. The cartesian product algorithm: Simple and precise type inference of para-
metric polymorphism. In Proceedings of the 9th European Conference on Object-Oriented
Programming, ECOOP’95, pages 2–26, 1995.

S. Wei and B. G. Ryder 733

2 David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. Call graph construction
in object-oriented languages. In Proceedings of the 12th ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications, OOPSLA’97, pages
108–124, 1997.

3 Samuel Z. Guyer and Calvin Lin. Client-driven pointer analysis. In Proceedings of the 10th
International Conference on Static Analysis, SAS’03, pages 214–236, 2003.

4 Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis for JavaScript. In
Proceedings of the 16th International Symposium on Static Analysis, SAS’09, pages 238–255,
2009.

5 Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gibbons, John Sar-
racino, Ben Wiedermann, and Ben Hardekopf. Jsai: A static analysis platform for JavaS-
cript. In Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2014, pages 121–132, 2014.

6 George Kastrinis and Yannis Smaragdakis. Hybrid context-sensitivity for points-to analysis.
In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI’13, pages 423–434, 2013.

7 Ondřej Lhoták and Laurie Hendren. Evaluating the benefits of context-sensitive points-to
analysis using a bdd-based implementation. ACM Trans. Softw. Eng. Methodol., 18(1):3:1–
3:53, October 2008.

8 Percy Liang and Mayur Naik. Scaling abstraction refinement via pruning. In Proceedings of
the 32Nd ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI’11, pages 590–601, 2011.

9 Henry Lieberman. Using prototypical objects to implement shared behavior in object-
oriented systems. In Conference proceedings on Object-oriented programming systems, lan-
guages and applications, OOPLSA’86, pages 214–223, 1986.

10 Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object sensitivity
for points-to analysis for Java. ACM Trans. Softw. Eng. Methodol., 14(1):1–41, January
2005.

11 Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and Kwangkeun Yi. Selective
context-sensitivity guided by impact pre-analysis. In Proceedings of the 35th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI’14, pages
475–484, 2014.

12 J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1993.

13 RedMonk. The RedMonk programming language rankings. http://redmonk.com/
sogrady/2014/06/13/language-rankings-6-14/, 2014.

14 Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow analysis.
Program Flow Analysis: Theory and Applications, pages 189–234, 1981.

15 Olin Grigsby Shivers. Control-flow Analysis of Higher-order Languages of Taming Lambda.
PhD thesis, Carnegie Mellon University, 1991.

16 Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your contexts well: un-
derstanding object-sensitivity. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL’11, pages 17–30, 2011.

17 Yannis Smaragdakis, George Kastrinis, and George Balatsouras. Introspective analysis:
Context-sensitivity, across the board. In Proceedings of the 35th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI’14, pages 485–495,
2014.

18 Manu Sridharan and Rastislav Bodík. Refinement-based context-sensitive points-to analysis
for Java. In Proceedings of the 2006 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI’06, pages 387–400, 2006.

ECOOP’15

http://redmonk.com/sogrady/2014/06/13/language-rankings-6-14/
http://redmonk.com/sogrady/2014/06/13/language-rankings-6-14/

734 Adaptive Context-sensitive Analysis for JavaScript

19 Manu Sridharan, Julian Dolby, Satish Chandra, Max Schäfer, and Frank Tip. Correlation
tracking for points-to analysis of JavaScript. In Proceedings of the 26th European Conference
on Object-Oriented Programming, ECOOP’12, pages 435–458, 2012.

20 Peter Wegner. Dimensions of object-based language design. In Conference proceedings
on Object-oriented programming systems, languages and applications, OOPSLA’87, pages
168–182, 1987.

21 Shiyi Wei and Barbara G. Ryder. Practical blended taint analysis for JavaScript. In
Proceedings of the 2013 International Symposium on Software Testing and Analysis, ISSTA
2013, pages 336–346, 2013.

22 Shiyi Wei and Barbara G. Ryder. State-sensitive points-to analysis for the dynamic behavior
of JavaScript objects. In Proceedings of the 28th European Conference on Object-oriented
Programming, ECOOP’14, pages 1–26, 2014.

	Introduction
	Background and Empirical Study
	Context Sensitivity
	Empirical Study

	Function Characteristics and Heuristics
	Function Characteristics
	Heuristics

	Adaptive Context-sensitive Analysis
	Function Characteristics Extraction
	Algorithm

	Evaluation
	Experiment Setup
	Experimental Results
	Discussion

	Related Work
	Conclusions

