
A Chasm Between Identity and Equivalence
Testing with Conditional Queries∗

Jayadev Acharya1, Clément L. Canonne2, and Gautam Kamath1

1 Massachusetts Institute of Technology
32 Vassar Street, Cambridge MA, USA
{jayadev,g}@csail.mit.edu

2 Columbia University
500 W 120th Street, New York NY, USA
ccanonne@cs.columbia.edu

Abstract
A recent model for property testing of probability distributions [11, 9] enables tremendous savings
in the sample complexity of testing algorithms, by allowing them to condition the sampling on
subsets of the domain.

In particular, Canonne, Ron, and Servedio [9] showed that, in this setting, testing identity of
an unknown distribution D (i.e., whether D = D∗ for an explicitly known D∗) can be done with
a constant number of samples, independent of the support size n – in contrast to the required√
n in the standard sampling model. However, it was unclear whether the same held for the case

of testing equivalence, where both distributions are unknown. Indeed, while Canonne, Ron, and
Servedio [9] established a polylog(n)-query upper bound for equivalence testing, very recently
brought down to Õ(log logn) by Falahatgar et al. [13], whether a dependence on the domain
size n is necessary was still open, and explicitly posed by Fischer at the Bertinoro Workshop
on Sublinear Algorithms [14]. In this work, we answer the question in the positive, showing
that any testing algorithm for equivalence must make Ω

(√
log logn

)
queries in the conditional

sampling model. Interestingly, this demonstrates an intrinsic qualitative gap between identity
and equivalence testing, absent in the standard sampling model (where both problems have
sampling complexity nΘ(1)).

Turning to another question, we investigate the complexity of support size estimation. We
provide a doubly-logarithmic upper bound for the adaptive version of this problem, generalizing
work of Ron and Tsur [22] to our weaker model. We also establish a logarithmic lower bound for
the non-adaptive version of this problem. This latter result carries on to the related problem of
non-adaptive uniformity testing, an exponential improvement over previous results that resolves
an open question of Chakraborty, Fischer, Goldhirsh, and Matsliah [11].

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.3 Probabil-
ity and Statistics

Keywords and phrases property testing, probability distributions, conditional samples

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2015.449

∗ The full version of this paper can be found at [1].

© Jayadev Acharya, Clément L. Canonne, and Gautam Kamath;
licensed under Creative Commons License CC-BY

18th Int’l Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX’15) /
19th Int’l Workshop on Randomization and Computation (RANDOM’15).
Editors: Naveen Garg, Klaus Jansen, Anup Rao, and José D.P. Rolim; pp. 449–466

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.449
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

450 A Chasm Between Identity and Equivalence Testing with Conditional Queries

1 Introduction

‘No, Virginia, there is no constant-query tester.’

Understanding properties and characteristics of an unknown probability distribution is a
fundamental problem in statistics, and one that has been thoroughly studied. However, it is
only since the seminal work of Goldreich and Ron [15] and Batu et al. [5] that the problem
has been considered through the lens of theoretical computer science, more particularly in
the setting of property testing.

Over the following decade, a flurry of subsequent work explored and delved into this new
area, resulting in a better and often complete understanding of a number of questions in
distributional property testing (see e.g. [15, 4, 6, 20, 24, 2, 7, 23, 17, 3, 12, 29] or [8] for a
survey). In many cases, these culminated in provably sample-optimal algorithms. However,
the standard setting of distribution testing, where one only obtains independent samples
from an unknown distribution D, does not encompass all scenarios one may encounter. In
recent years, stronger models have thus been proposed to capture more specific situations [16,
11, 9, 18, 10]: among these is the conditional oracle model [11, 9] which will be the focus
of our work. In this setting, the testing algorithms are given the ability to sample from
conditional distributions: that is, to specify a subset S of the domain and obtain samples
from DS , the distribution induced by D on S (the formal definition of the model can be
found in Definition 2.1). In particular, the hope is that allowing algorithms to have stronger
interactions with the unknown underlying distributions might significantly reduce the number
of samples they need, thereby sidestepping the strong lower bounds that hold in the standard
sampling model.

1.1 Background and previous work
We focus in this paper on proving lower bounds for testing two extremely natural properties
of distributions, namely equivalence testing (“are these two datasets identically distributed?”)
and support size estimation (“how many different outcomes can actually be observed?”).
Along the way, we use some of the techniques we develop to obtain an upper bound on the
query complexity of the latter. We state below the informal definition of these two problems,
along with closely related ones (uniformity and identity testing). Hereafter, “oracle access”
to a distribution D over [n] = {1, . . . , n} means access to samples generated independently
from D.
Uniformity testing: granted oracle access to D, decide whether D = U (the uniform distri-

bution on [n]) or is far from it;
Identity testing: granted oracle access to D and the full description of a fixed D∗, decide

whether D = D∗ or is far from it;
Equivalence (closeness) testing: granted independent oracle accesses to D1, D2 (both un-

known), decide whether D1 = D2 or D1, D2 are far from each other.
Support size estimation: granted oracle access to D, output an estimate of the size of the

support1 supp(D) ={ x : D(x) > 0 }, accurate within a multiplicative factor.
It is not difficult to see that each of the first three problems generalizes the previous, and is
therefore at least as hard. All of these tasks are known to require sample complexity nΩ(1)

1 For this problem, it is typically assumed that all points in the support have probability mass at least
Ω(1)/n, as without such guarantee it becomes impossible to give any non-trivial estimate (consider for
instance a distribution D such that D(i) ∝ 1/2in).

J. Acharya, C. L. Canonne, and G. Kamath 451

in the standard sampling model (SAMP); yet, as prior work [11, 9] shows, their complexity
decreases tremendously when one allows the stronger type of access to the distribution(s)
provided by a conditional sampling oracle (COND). For the problems of uniformity testing
and identity testing, the sample complexity even becomes a constant provided the testing
algorithm is allowed to be adaptive (i.e. when the next queries it makes can depend on the
samples it previously obtained).

Testing uniformity and identity

Given the complete description of a distribution D∗ over [n], a parameter ε > 0, and oracle
access to a distribution D, identity testing asks to distinguish the case D1 = D∗ from
where their total variation distance dTV(D,D∗) is at least ε. This is a generalization of
uniformity testing, where D∗ is taken to be the uniform distribution over [n]. The complexity
of these tasks is well-understood in the sampling model; in particular, it is known that
for both uniformity and identity testing Θ

(√
n/ε2) samples are necessary and sufficient

(see [15, 5, 20, 29] for the tight bounds on these problems).
The uniformity testing problem emphasizes the additional flexibility granted by conditional

sampling: as Canonne, Ron, and Servedio [9] showed, in this setting only Õ
(
1/ε2) adaptive

queries now suffice (and this is optimal, up to logarithmic factors). They further prove that
identity testing has constant sample complexity as well, namely Õ

(
1/ε4) – very recently

improved to a near-optimal Õ
(
1/ε2) by Falahatgar et al. [13]. The power of the COND model

is evident from the fact that a task requiring polynomially many samples in the standard
model can now be achieved with a number of samples independent of the domain size n.

Focusing on the case of non-adaptive algorithms, Chakraborty et al. [11] describe a
poly(logn, 1/ε)-query tester for uniformity, showing that even without the full power of
conditional queries one can still get an exponential improvement over the standard sampling
setting. They also obtain an Ω(log logn) lower bound for this problem, and leave open the
possibility of improving this lower bound up to a logarithmic dependence. The present work
answers this question, establishing that any non-adaptive uniformity tester must perform
Ω(logn) conditional queries.

Testing equivalence

A natural generalization of these two testing problems is the question of equivalence testing,
defined as follows. Given oracle access to two unknown distributions D1 and D2 over [n]
and a parameter ε > 0, equivalence testing asks to distinguish between the cases D1 = D2
and dTV(D1, D2) > ε. This problem has been extensively studied over the past decade,
and its sample complexity is now known to be Θ(max(n2/3/ε4/3,

√
n/ε2)) in the sampling

model [5, 30, 12].
In the COND setting, Canonne, Ron, and Servedio showed that equivalence testing is

possible with only poly(logn, 1/ε) queries. Concurrent to our work, Falahatgar et al. [13]
brought this upper bound down to Õ

(
(log logn)/ε5), a doubly exponential improvement over

the nΩ(1) samples needed in the standard sampling model. However, these results still left
open the possibility of a constant query complexity: given that both uniformity and identity
testing admit constant-query testers, it is natural to wonder where equivalence testing lies2.

This question was explicitly posed by Fischer at the Bertinoro Workshop on Sublinear
Algorithms 2014 [14]: in this paper, we make decisive progress in answering it, ruling out

2 It is worth noting that an Ω(logc n) lower bound was known for equivalence testing in a weaker version
of the conditional oracle, PAIRCOND (where the tester’s queries are restricted to being either [n] or
subsets of size 2 [9]).

APPROX/RANDOM’15

452 A Chasm Between Identity and Equivalence Testing with Conditional Queries

the possibility of any constant-query tester for equivalence. Along with the upper bound
of Falahatgar et al. [13], our results essentially settle the dependence on the domain size,
showing that (log logn)Θ(1) samples are both necessary and sufficient.

Support size estimation

Finally, the question of approximating the support size of a distribution has been considered
by Raskhodnikova et al. [21], where it was shown that obtaining additive estimates requires
sample complexity almost linear in n. Subsequent work by Valiant and Valiant [28, 26]
settles the question, establishing that an n/ logn dependence is both necessary and sufficient.
Note that the proof of their lower bound translates to multiplicative approximations as well,
as they rely on the hardness of distinguishing a distribution with support s ≤ n from a
distribution with support s+ εn ≥ (1 + ε)s. To the best of our knowledge, the question of
getting a multiplicative-factor estimate of the support size of a distribution given conditional
sampling access has not been previously considered. We provide upper and lower bounds for
both the adaptive and non-adaptive versions of this problem.

1.2 Our results
In this work, we make significant progress in each of the problems introduced in the previous
section, yielding a better understanding of their intrinsic query complexities. We prove four
results pertaining to the sample complexity of equivalence testing, support size estimation,
and uniformity testing in the COND framework. Our main result on the sample complexity
of equivalence testing is presented in this extended abstract, the details of the other results
are available in the full version of this paper [1].

Our main result considers the sample complexity of testing equivalence with adaptive
queries under the COND model, resolving in the negative the question of whether constant-
query complexity was achievable [14]. More precisely, we prove the following theorem:

I Theorem 1.1 (Testing Equivalence). Any adaptive algorithm which, given COND access
to unknown distributions D1, D2 on [n], distinguishes with probability at least 2/3 between
(a) D1 = D2 and (b) dTV(D1, D2) ≥ 1

4 , must have query complexity Ω
(√

log logn
)
.

Combined with the recent Õ(log logn) upper bound of Falahatgar et al. [13], this almost
settles the sample complexity of this question. Furthermore, as the related task of identity

Table 1 Summary of results. Note that the lower bound (†) can also be easily derived from our
lower bound on testing equivalence.

Problem COND model Standard model
Are D1, D2 (both unknown)

equivalent? (adaptive)
Õ
(

log logn
ε5

)
[13] Θ

(
max

(
n2/3

ε4/3 ,
n1/2

ε2

))
[12]

Ω
(√

log logn
)
[this work]

What is the support size of
D? (adaptive)

Õ
(

log logn
ε3

)
[this work]

Θ
(

n
logn

)
[26]Ω

(√
log logn

)
[11] (†)

What is the support size of
D? (non-adaptive)

O(poly(logn, 1/ε)) [this work]
Ω(logn) [this work]

Is D uniform over the
domain? (non-adaptive)

Õ
(

log5 n
ε6

)
[11] Θ

(√
n
ε2

)
[15, 5, 20]

Ω(logn) [this work]

J. Acharya, C. L. Canonne, and G. Kamath 453

testing can be performed with a constant number of queries in the conditional sampling
model, this demonstrates an intriguing and intrinsic difference between the two problems. Our
result can also be interpreted as showing a fundamental distinction from the usual sampling
model, where both identity and equivalence testing have polynomial sample complexity.

Next, we establish a logarithmic lower bound on non-adaptive support size estimation,
for any factor larger than a fixed constant. This improves on the result of Chakraborty
et al. [11], which gave a doubly logarithmic lower bound for constant factor support-size
estimation.

I Theorem 1.2 (Non-Adaptive Support Size Estimation). Any non-adaptive algorithm which,
given COND access to an unknown distribution D on [n], estimates the size of its support up
to a factor γ must have query complexity Ω

(
logn
log γ

)
, for any γ ≥

√
2.

Moreover, the approach used to prove this theorem also implies an analogous lower bound
on non-adaptive uniformity testing in the conditional model, answering a conjecture of
Chakraborty et al. [11]:

I Theorem 1.3 (Non-Adaptive Uniformity Testing). Any non-adaptive algorithm which, given
COND access to an unknown distribution D on [n], distinguishes with probability at least 2/3
between (a) D = U and (b) dTV(D,U) ≥ 1

4 , must have query complexity Ω(logn).

We note that these results complement polylog(n)-query upper bounds, the former of which
we sketch in the full version of this paper, and the latter obtained by Chakraborty et al. [11].
This shows that both of these problems have query complexity logΘ(1) n in the non-adaptive
case.

Finally, we also show an upper bound for adaptive support size estimation. Specifically,
we provide a Õ(log logn)-query algorithm for support size estimation. This shows that the
question becomes double exponentially easier when conditional samples are allowed.

I Theorem 1.4 (Adaptive Support Size Estimation). Let τ > 0 be any constant. There exists
an adaptive algorithm which, given COND access to an unknown distribution D on [n] which
has minimum non-zero probability τ/n and accuracy parameter ε makes Õ

(
(log logn)/ε3)

queries to the oracle and outputs a value ω̃ such that the following holds. With probability at
least 2/3, ω̃ ∈ [1

1+ε · ω, (1 + ε) · ω], where ω = |supp(D)|.

1.2.1 Relation to the Ron-Tsur model
Recent work of Ron and Tsur [22] studies a model which is slightly stronger than ours.
In their setting, the algorithm still performs queries consisting of a subset of the domain.
However, the algorithm is also given the promise that the distribution is uniform on a subset
of the domain, and whenever a query set contains 0 probability mass the oracle explicitly
indicates this is the case. Their paper provides a number of results for support size estimation
in this model.

We point out two connections between our work and theirs. First, our Ω(logn) lower
bound for non-adaptive support size estimation (Theorem 1.2) leads to the same lower
bound for the problem in the model of Ron and Tsur. Although lower bounds in the
conditional sampling setting do not apply directly to theirs, we note that our construction
and analysis still carry over. This provides a nearly tight answer to this question, which
was left unanswered in their paper. Also, our Õ(log logn)-query algorithm for adaptive
support size estimation (Theorem 1.4) can be seen as generalizing their result to the weaker

APPROX/RANDOM’15

454 A Chasm Between Identity and Equivalence Testing with Conditional Queries

conditional sampling model (most significantly, when we are not given the promise that the
distribution be uniform).

1.3 Techniques and proof ideas
We now provide an overview of the techniques and arguments used to prove our results.

Lower bound on adaptive equivalence testing

In order to prove our main ω(1) lower bound on the query complexity of testing equivalence
in the conditional sampling model, we have to deal with one main conceptual issue: adaptivity.
While the standard sampling model does not, by definition, allow any choice on what the next
query to the oracle should be, this is no longer the case for COND algorithms. Quantifying the
power that this grants an algorithm makes things much more difficult. To handle this point,
we follow the approach of Chakraborty et al. [11] and focus on a restricted class of algorithms
they introduce, called “core adaptive testers” (see Section 2.2 for a formal definition). They
show that this class of testers is equivalent to general algorithms for the purpose of testing
a broad class of properties, namely those which are invariant to any permutation of the
domain. Using this characterization, it remains for us to show that none of these structurally
much simpler core testers can distinguish whether they are given conditional access to (a)
a pair of random identical distributions (D1, D1), or (b) two distributions (D1, D2) drawn
according to a similar process, which are far apart.

At a high level, our lower bound works by designing instances where the property can be
tested if and only if the support size is known to the algorithm. Our construction randomizes
the support size by embedding the instance into a polynomially larger domain. Since the
algorithm is only allowed a small number of queries, Yao’s Principle allows us to argue
that, with high probability, a deterministic algorithm is unable to “guess” the support size.
This separates queries into several cases. First, in a sense we make precise, it is somehow
“predictable” whether or not a query will return an element we have previously observed. If
we do, it is similarly predictable which element the query will return. On the other hand, if
we observe a fresh element, the query set is either “too small” or “too large.” In the former
case, the query will entirely miss the support, and the sampling process is identical for both
types of instance. In the latter case, the query will hit a large portion of the support, and
the amount of information gleamed from a single sample is minimal.

At a lower level, this process itself is reminiscent of the lower bound construction of
Canonne, Ron, and Servedio [9] on testing identity (with a PAIRCOND oracle), with one
pivotal twist. As in their work, both D1 and D2 are uniform within each of ω(1) “buckets”
whose size grows exponentially and are grouped into “bucket-pairs.” Then, D2 is obtained
from D1 by internally redistributing the probability mass of each pair of buckets, so that the
total mass of each pair is preserved but each particular bucket has mass going up or down
by a constant factor (see Section 3.1 for details of the construction). However, we now add a
final step, where in both D1 and D2 the resulting distribution’s support is scaled by a random
factor, effectively reducing it to a (randomly) negligible fraction of the domain. Intuitively,
this last modification has the role of “blinding” the testing algorithm: we argue that unless
its queries are on sets whose size somehow match (in a sense formalized in Section 3.2) this
random size of the support, the sequences of samples it will obtain under D1 and D2 are
almost identically distributed. The above discussion crucially hides many significant aspects
and technical difficulties which we address in Section 3. Moreover, we observe that the lower
bound we obtain seems to be optimal with regard to our proofs techniques (specifically, to

J. Acharya, C. L. Canonne, and G. Kamath 455

the decision tree approach), and not an artifact of our lower bound instances. Namely, there
appear to be conceptual barriers to strengthening our result, which would require new ideas.

Lower bound on non-adaptive support size estimation

Turning to the (non-adaptive) lower bound of Theorem 1.2, we define two families of
distributions D1 and D2, where an instance is either a draw (D1, D2) from D1 × D2, or
simply (D1, D1). Any distribution in D2 has support size γ times that of its corresponding
distribution in D1. Yet, we argue that no non-adaptive deterministic tester making too few
queries can distinguish between these two cases, as the tuple of samples it will obtain from
D1 or (the corresponding) D2 is almost identically distributed (where the randomness is over
the choice of the instance itself). To show this last point, we analyze separately the case
of “small” queries (conditioning on sets which turn out to be much smaller than the actual
support size, and thus with high probability will not even intersect it) and the “big” ones
(where the query set A is so big in front of the support size S that a uniform sample from
A∩ S is essentially indistinguishable from a uniform sample from A). We conclude the proof
by invoking Yao’s Principle, carrying the lower bound back to the setting of non-adaptive
randomized testers.

Interestingly, this argument essentially gives us Theorem 1.3 “for free:” indeed, the
big-query-set case above is handled by proving that the distribution of samples returned on
those queries is indistinguishable, both for D1 and D2, from samples obtained from the actual
uniform distribution. Considering again the small-query-set case separately, this allows us to
argue that a random distribution from (say) D1 is indistinguishable from uniform.

Upper bound on support size estimation

Our algorithm for estimating the support size to a constant factor (Theorem 1.4) is simple
in spirit, and follows a guess-and-check strategy. In more detail, it first obtains a “reference
point” outside the support, to check whether subsequent samples it may consider belong
to the support. Then, it attempts to find a rough upper bound on the size of the support,
of the form 22j (so that only log logn many options have to be considered); by using its
reference point to check if a uniform random subset of this size contains, as it should, at
least one point from the support. Once such an upper bound has been obtained using this
double-exponential strategy, a refined bound is then obtained via a binary search on the new
range of values for the exponent, {2j−1, . . . , 2j}. Not surprisingly, our algorithm draws on
similar ideas as in [22, 25], with some additional machinery to supplement the differences in
the models. Interestingly, as a side-effect, this upper bound shows our analysis of Theorem 1.1
to be tight up to a quadratic dependence. Indeed, the lower bound construction we consider
(see Section 3.1) can be easily “defeated” if an estimate of the support size is known, and
therefore cannot yield better than a Ω(log logn) lower bound. Similarly, this also shows that
the adaptive lower bound for support size estimation of Chakraborty et al. [11] is also tight
up to a quadratic dependence.

Organization

The rest of the paper describes details and proofs of the results mentioned in the above
discussion. In Section 2, we introduce the necessary definitions and some of the tools we
shall use. Section 3 covers our main result on adaptive equivalence testing, Theorem 1.1.
Further details on our other results are available in the full version of this paper.

APPROX/RANDOM’15

456 A Chasm Between Identity and Equivalence Testing with Conditional Queries

2 Preliminaries

2.1 Notation and sampling models
All throughout this paper, we denote by [n] the set {1, . . . , n}, and by log the logarithm in
base 2. A probability distribution over a (countable) domain [n] is a non-negative function
D : [n] → [0, 1] such that

∑
x∈[n]D(x) = 1. We denote by U(S) the uniform distribution

on a set S. Given a distribution D over [n] and a set S ⊆ [n], we write D(S) for the total
probability mass

∑
x∈S D(x) assigned to S by D. Finally, for S ⊆ [n] such that D(S) > 0,

we denote by DS the conditional distribution of D restricted to S, that is DS(x) = D(x)
D(S) for

x ∈ S and DS(x) = 0 otherwise.

As is usual in distribution testing, in this work the distance between two distributions
D1, D2 on [n] will be the total variation distance:

dTV(D1, D2) def= 1
2‖D1 −D2‖1 = 1

2
∑
x∈[n]

|D1(i)−D2(i)| = max
S⊆[n]

(D1(S)−D2(S)) (1)

which takes value in [0, 1].

In this work, we focus on the setting of conditional access to the distribution, as introduced
and studied in [11, 9]. We reproduce below the corresponding definition of a conditional
oracle, henceforth referred to as COND:

I Definition 2.1 (Conditional access model). Fix a distribution D over [n]. A COND oracle
for D, denoted CONDD, is defined as follows: the oracle takes as input a query set S ⊆ [n],
chosen by the algorithm, that has D(S) > 0. The oracle returns an element i ∈ S, where the
probability that element i is returned is DS(i) = D(i)/D(S), independently of all previous
calls to the oracle.

Note that as described above the behavior of CONDD(S) is undefined if D(S) = 0, i.e., the
set S has zero probability under D. Various definitional choices could be made to deal with
this. These choice do not do not make significant difference in most situations, as most
(adaptive) algorithms can always include in their next queries a sample previously obtained;
while our lower bounds can be thought of as putting exponentially small probability mass
of elements outside the support. For this reason, and for convenience, we shall hereafter
assume, following Chakraborty et al., that the oracle returns in this case a sample uniformly
distributed in S.

Finally, recall that a property P of distributions over [n] is a set consisting of all distri-
butions that have the property. The distance from D to a property P, denoted dTV(D,P),
is then defined as infD′∈P dTV(D,P). We use the standard definition of testing algorithms
for properties of distributions over [n], tailored for the setting of conditional access to an
unknown distribution:

I Definition 2.2 (Property tester). Let P be a property of distributions over [n]. A t-query
COND testing algorithm for P is a randomized algorithm T which takes as input n, ε ∈ (0, 1],
as well as access to CONDD. After making at most t(ε, n) calls to the oracle, T either outputs
ACCEPT or REJECT, such that the following holds:

2 Recall that a non-adaptive tester is an algorithm whose queries do not depend on the answers obtained
from previous ones, but only on its internal randomness. Equivalently, it is a tester that can commit
“upfront” to all the queries it will make to the oracle.

J. Acharya, C. L. Canonne, and G. Kamath 457

if D ∈ P, T outputs ACCEPT with probability at least 2/3;
if dTV(D,P) ≥ ε, T outputs REJECT with probability at least 2/3.

We observe that the above definitions can be straightforwardly extended to the more
general setting of pairs of distributions, where given independent access to two oracles
CONDD1 , CONDD2 the goal is to test whether (D1, D2) satisfies a property (now a set of
pairs of distributions). This will be the case in Section 3, where we will consider equivalence
testing, that is the property Peq ={ (D1, D2) : D1 = D2 }.

2.2 Adaptive Core Testers
In order to deal with adaptivity in our lower bounds, we will use ideas introduced by
Chakraborty et al. [11]. These ideas, for the case of label-invariant properties3 allow one to
narrow down the range of possible testers and focus on a restricted class of such algorithms
called adaptive core testers. These core testers do not have access to the full information
of the samples they draw, but instead only get to see the relations (inclusions, equalities)
between the queries they make and the samples they get. Yet, Chakraborty et al. [11] show
that any tester for a label-invariant property can be converted into a core tester with same
query complexity; thus, it is enough to prove lower bounds against this – seemingly – weaker
class of algorithms.

We here rephrase the definitions of a core tester and the view they have of the interaction
with the oracle (the configuration of the samples), tailored to our setting.

I Definition 2.3 (Atoms and partitions). Given a family A = (A1, . . . , At) ⊆ [n]t, the atoms
generated byA are the (at most) 2t distinct sets of the form

⋂t
r=1 Cr, where Cr ∈ {Ar, [n]\Ar}.

The family of all such atoms, denoted At(A), is the partition generated by A.

This definition essentially captures “all sets (besides the Ai’s) about which something can
be learnt from querying the oracle on the sets of A.” Now, given such a sequence of queries
A = (A1, . . . , At) and pairs of samples s = ((s(1)

1 , s
(2)
1), . . . , (s(1)

t , s
(2)
t)) ∈ A2

1 × · · · × A2
t , we

would like to summarize “all the label-invariant information available to an algorithm that
obtains ((s(1)

1 , s
(2)
1), . . . , (s(1)

t , s
(2)
t)) upon querying A1, . . . , At for D1 and D2.” This calls for

the following definition:

I Definition 2.4 (t-configuration). Given A = (A1, . . . , At) and s = ((s(1)
j , s

(2)
j))1≤j≤t as

above, the t-configuration of s consists of the 6t2 bits indicating, for all 1 ≤ i, j ≤ t, whether
s

(k)
i = s

(`)
j , for k, ` ∈ {1, 2}; and (relations between samples)

s
(k)
i ∈ Aj , for k ∈ {1, 2}. (relations between samples and query sets)

In other terms, it summarizes which is the unique atom Si ∈ At(A) that contains s(k)
i , and

what collisions between samples have been observed.

As aforementioned, the key idea is to argue that, without loss of generality, one can
restrict one’s attention to algorithms that only have access to t-configurations, and generate
their queries in a specific (albeit adaptive) fashion:

I Definition 2.5 (Core adaptive tester). A core adaptive distribution tester for pairs of
distributions is an algorithm T that acts as follows.

3 Recall that a property is label-invariant (or symmetric) if it is closed under relabeling of the elements of
the support. More precisely, a property of distributions (resp. pairs of distributions) P is label-invariant
if for any distribution D ∈ P (resp. (D1, D2) ∈ P) and permutation σ of [n], one has D ◦ σ ∈ P (resp.
(D1 ◦ σ,D2 ◦ σ) ∈ P).

APPROX/RANDOM’15

458 A Chasm Between Identity and Equivalence Testing with Conditional Queries

In the i-th phase, based only on its own internal randomness and the configuration of the
previous queries A1, . . . , Ai−1 and samples obtained (s(1)

1 , s
(2)
1), . . . , (s(1)

i−1, s
(2)
i−1) – whose

labels it does not actually know, T provides:
a number kAi for each A ∈ At(A1, . . . , Ai−1), between 0 and

∣∣∣A \ {s(1)
j , s

(2)
j }1≤j≤i−1

∣∣∣
(“how many fresh, not-already-seen elements of each particular atom A should be
included in the next query”)
sets K(1)

i ,K
(2)
i ⊆ {1, . . . , i− 1} (“which of the samples s(k)

1 , . . . , s(k)i−1 (whose label
is unknown to the tester, but referred to by the index of the query it got them) will be
included in the next query”).

based on these specifications, the next query Ai is drawn (but not revealed to T) by
drawing uniformly at random a set Λi in{

Λ ⊆ [n] \ {s(1)
j , s

(2)
j }1≤j≤i−1 : ∀A ∈ At(A1, . . . , Ai−1), |Λ ∩A| = kAi

}
.

That is, among all sets, containing only “fresh elements,” whose intersection with each
atom contains as many elements as T requires.
adding the selected previous samples to this set:

Γi
def=
{
s

(1)
j : j ∈ K(1)

i

}
∪
{
s

(2)
j : j ∈ K(2)

i

}
; Ai

def= Λi ∪ Γi .

This results in a set Ai, not fully known to T besides the samples it already got and
decided to query again; in which the labels of the fresh elements are unknown, but the
proportions of elements belonging to each atom are known.
samples s(1)

i ∼ (D1)Ai and s(2)
i ∼ (D2)Ai are drawn (but not disclosed to T). This defines

the i-configuration of A1, . . . , Ai and (s(1)
1 , s

(2)
1), . . . , (s(1)

i , s
(2)
i), which is revealed to T .

Put differently, the algorithm only learns (i) to which of the A`’s the new sample belongs,
and (ii) if it is one of the previous samples, in which stage(s) and for which of D1, D2 it
has already seen it.

After t = t(ε, n) such stages, T outputs either ACCEPT or REJECT, based only on the
configuration of A1, . . . , At and (s(1)

1 , s
(2)
1), . . . , (s(1)

t , s
(2)
t) (which is all the information it ever

had access to).

Note that in particular, T does not know the labels of samples it got, nor the actual queries
it makes: it knows all about their sizes and sizes of their intersections, but not the actual
“identity” of the elements they contain.

2.3 On the use of Yao’s Principle in our lower bounds
We recall Yao’s Principle (e.g., see Chapter 2.2 of [19]), a technique which is ubiquitous
in the analysis of randomized algorithms. Consider a set S of instances of some problem:
what this principle states is that the worst-case expected cost of a randomized algorithm on
instances in S is lower-bounded by the expected cost of the best deterministic algorithm on
an instance drawn randomly from S.

As an example, we apply it in a standard way for the proofs of Theorems 1.2 and 1.3:
instead of considering a randomized algorithm working on a fixed instance, we instead analyze
a deterministic algorithm working on a random instance. (We note that, importantly, the
randomness in the samples returned by the COND oracle is “external” to this argument, and
these samples behave identically in an application of Yao’s Principle.)

On the other hand, our application for the proof of Theorem 1.1 in Section 3 is slightly
different, due to our use of adaptive core testers. Once again, we focus on deterministic

J. Acharya, C. L. Canonne, and G. Kamath 459

algorithms working on random instances, and the randomness in the samples is external
and therefore unaffected by Yao’s Principle. However, we stress that the randomness in the
choice of the set Λi is also external to the argument, and therefore unaffected – similar to
the randomness in the samples, the algorithm has no control here. Another way of thinking
about this randomness is via another step in the distribution over instances: after an instance
(which is a pair of distributions) is randomly chosen, we permute the labels on the elements of
the distribution’s domain uniformly at random. We note that since the property in question
is label-invariant, this does not affect its value. We can then use the model as stated in
Section 2.2 for ease of analysis, observing that this can be considered an application of the
principle of deferred decisions (as in Chapter 3.5 of [19]).

3 A Lower Bound for Equivalence Testing

We prove our main lower bound on the sample complexity of testing equivalence between
unknown distributions. We construct two priors Y and N over pairs of distributions (D1, D2)
over [n]. Y is a distribution over pairs of distributions of the form (D,D), namely the
case when the distributions are identical. Similarly, N is a distribution over (D1, D2) with
dTV(D1, D2) ≥ 1

4 . We then show that no algorithm T making O
(√

log logn
)
queries to

CONDD1 ,CONDD2 can distinguish between a draw from Y and N with constant probability
(over the choice of (D1, D2), the randomness in the samples it obtains, and its internal
randomness). We describe the construction of Y and N in Section 3.1, and provide a detailed
analysis in Section 3.2. (Due to space constraints, some of the proofs are deferred to the full
version of the paper.)

3.1 Construction
We now summarize how a pair of distribution is constructed under Y and N . (Each specific
step will be described in more detail in the subsequent paragraphs.)
1. Effective Support

a. Pick kb from the set {0, 1, . . . , 1
2 logn} at random.

b. Let b = 2kb and m def= b · n1/4.
2. Buckets

a. ρ and r are chosen with
∑2r
i=1 ρ

i = n1/4.
b. Divide {1, . . . ,m} into intervals B1, . . . , B2r with |Bi| = b · ρi.

3. Distributions
a. Assign probability mass 1

2r uniformly over Bi to generate distribution D1.
b. (i) Let π1, . . . , πr be independent 0/1 with Pr(πi = 0) = 1

2 .
(ii) If πi = 0, assign probability mass 1

4r and 3
4r over B2i−1 and B2i respectively, else

3
4r and 1

4r respectively. This generates a distribution D2.
3. Support relabeling

a. Pick a permutation σ ∈ Sn of the total support n.
b. Relabel the symbols of D1 and D2 according to σ.

4. Output: Generate (D1, D1) for Y, and (D1, D2) otherwise.

We now describe the various steps of the construction in greater detail.

Effective support. Both D1 and D2, albeit distributions on [n], will have (common) sparse
support. The support size is taken to be m def= b · n1/4. Note that, from the above

APPROX/RANDOM’15

460 A Chasm Between Identity and Equivalence Testing with Conditional Queries

definition, m is chosen uniformly at random from products of n1/4 with powers of 2,
resulting in values in [n1/4, n3/4].

In this step b will act as a random scaling factor. The objective of this random scaling
is to induce uncertainty in the algorithm’s knowledge of the true support size of the
distributions, and to prevent it from leveraging this information to test equivalence. In
fact one can verify that the class of distributions induced for a single value of b, namely
all distributions have the same value of m, then one can distinguish the Y and N cases
with only O(1) conditional queries.

Buckets. Our construction is inspired by the lower bound of Canonne, Ron, and Servedio [9,
Theorem 8] for the more restrictive PAIRCOND access model. We partition the support
in 2r consecutive intervals (henceforth referred to as buckets) B1, . . . , B2r, where the size
of the i-th bucket is bρi. We note that r and ρ will be chosen such that

∑2r
i=1 bρ

i = bn1/4,
i.e., the buckets fill the effective support.

Distributions. We output a pair of distributions (D1, D2). Each distribution that we con-
struct is uniform within any particular bucket Bi. In particular, the first distribution
assigns the same mass 1

2r to each bucket. Therefore, points within Bi have the same
probability mass 1

(2rbρi) . For the Y case, the second distribution is identical to the
first. For the N case, we pair buckets in r consecutive bucket-pairs Π1, . . . ,Πr, with
Πi = B2i−1 ∪B2i. For the second distribution D2, we consider the same buckets as D1,
but repartition the mass 1/r within each Πi. More precisely, in each pair, one of the
buckets gets now total probability mass 1

4r while the other gets 3
4r (so that the probability

of every point is either decreased by a factor 1
2 or increased by 3

2). The choice of which
goes up and which goes down is done uniformly and independently at random for each
bucket-pair determined by the random choices of πi’s.

Random relabeling. The final step of the construction randomly relabels the symbols, namely
is a random injective map from [m] to [n]. This is done to ensure that no information
about the individual symbol labels can be used by the algorithm for testing. For example,
without this the algorithm can consider a few symbols from the first bucket and distinguish
the Y and N cases. As mentioned in Section 2.3, for ease of analysis, the randomness in
the choice of the permutation is, in some sense, deferred to the randomness in the choice
of Λi during the algorithm’s execution.

Summary. A no-instance (D1, D2) is thus defined by the following parameters: the support
size m, the vector (π1, . . . , πm) ∈ {0, 1}r (which only impacts D2), and the final permuta-
tion σ of the domain. A yes-instance (D1, D1) follows an identical process, however, π
has no influence on the final outcome. See Figure 1 for an illustration of such a (D1, D2)
when σ is the identity permutation and thus the distribution is supported over the first
m natural numbers.

Values for ρ and r. By setting r = logn
8 log ρ + O(1), we have as desired

∑2r
i=1|Bi| = m and

there is a factor (1 + o(1))n1/4 between the height of the first bucket B1 and the one of
the last, B2r. It remains to choose the parameter ρ itself; we shall take it to be 2

√
logn,

resulting in r = 1
8
√

logn + O(1). (Note that for the sake of the exposition, we ignore
technical details such as the rounding of parameters, e.g. bucket sizes; these can be easily
taken care of at the price of cumbersome case analyses, and do not bring much to the
argument.)

J. Acharya, C. L. Canonne, and G. Kamath 461

B1B2B3 B4 (. . .)

Dj(i)

im n

Figure 1 A no-instance (D1, D2) (before permutation).

3.2 Analysis
We now prove our main lower bound, by analyzing the behavior of core adaptive testers
(as per Definition 2.5) on the families Y and N from the previous section. In Section 3.2.1,
we argue that, with high probability, the sizes of the queries performed by the algorithm
satisfy some specific properties. Conditioned upon this event, in Section 3.2.2, we show
that the algorithm will get similar information from each query, whether it is running on a
yes-instance or a no-instance.

Before moving to the heart of the argument, we state the following fact, straightforward
from the construction of our no-instances:

I Fact 3.1. For any (D1, D2) drawn from N , one has dTV(D1, D2) = 1/4.

Moreover, as allowing more queries can only increase the probability of success, we hereafter
focus on a core adaptive tester that performs exactly q = 1

10
√

log logn (adaptive) queries;
and will show that it can only distinguish between yes- and no-instances with probability o(1).

3.2.1 Banning “bad queries”
As mentioned in Section 3.1, the draw of a yes- or no-instance involves a random scaling of the
size of the support of the distributions, meant to “blind” the testing algorithm. Recall that
a testing algorithm is specified by a decision tree, which at step i, specifies how many unseen
elements from each atom to include in the query ({kAi }) and which previously seen elements
to include in the query (sets K(1)

i ,K
(2)
i , as defined in Section 2.2), where the algorithm’s

choice depends on the observed configuration at that time. Note that, using Yao’s Principle
(as discussed in Section 2.3), these choices are deterministic for a given configuration – in
particular, we can think of all {kAi } and K

(1)
i ,K

(2)
i in the decision tree as being fixed. In this

section, we show that all kAi values satisfy with high probability some particular conditions
with respect to the choice of distribution, where the randomness is over the choice of the
support size. Due to space constraints, all proofs from this section are deferred to the full
version.

First, we recall an observation from [11], though we modify it slightly to apply to
configurations on pairs of distributions and we apply a slightly tighter analysis. This

APPROX/RANDOM’15

462 A Chasm Between Identity and Equivalence Testing with Conditional Queries

essentially limits the number of states an algorithm could be in by a function of how many
queries it makes.

I Proposition 3.2. The number of nodes in a decision tree corresponding to a q-sample
algorithm is at most 26q2+1.

For the sake of the argument, we will introduce a few notions applying to the sizes of
query sets: namely, the notions of a number being small, large, or stable, and of a vector being
incomparable. Roughly speaking, a number is small if a uniformly random set of this size does
not, in expectation, hit the largest bucket B2r. On the other hand, it is large if we expect
such a set to intersect many bucket-pairs (i.e., a significant fraction of the support). The
definition of stable numbers is slightly more quantitative: a number β is stable if a random
set of size β, for each bucket Bi, either completely misses Bi or intersects it in a number
of points very close to the expected number (in this case, we say the set concentrates over
Bi). Finally, a vector of values (βj) is incomparable if the union of random sets S1, . . . , Sm

of sizes β1, . . . , βm contains (with high probability) an amount of mass D
(⋃

j Sj

)
which is

either much smaller or much larger than the probability D(s) of any single element s.
We formalize these concepts in the definitions below. To motivate them, it will be useful to
bear in mind that, from the construction described in Section 3.1, the expected intersection
of a uniform random set of size β with a bucket Bi is of size βbρi/n; while the expected
probability mass from Bi it contains (under either D1 or D2) is β/(2rn).

I Definition 3.3. Let q be an integer, and let ϕ = Θ(q5/2). A number β is said to be small
if β < n

bρ2r ; it is large (with relation to some integer q) if β ≥ n
bρ2r−2ϕ .

Note that the latter condition equivalently means that, in expectation, a set of large size
will intersect at least ϕ + 1 bucket-pairs (as it hits an expected 2ϕ + 1 buckets, since
β|B2r−2ϕ| /n ≥ 1). From the above definitions we get that, with high probability, a random
set of any fixed size will in expectation either hit many or no buckets:

I Proposition 3.4. A number is either small or large with probability 1−O
(
ϕ log ρ
logn

)
.

The next definition characterizes the sizes of query sets for which the expected intersection
with any bucket is either close to 0 (less than 1/α, for some threshold α), or very big (more
than α). (It will be helpful to keep in mind that we will eventually use this definition with
α = poly(q).)

I Definition 3.5. A number β is said to be α-stable (for α ≥ 1) if, for each j ∈ [2r],
β /∈

[
n

αbρj ,
αn
bρj

]
. A vector of numbers is said to be α-stable if all numbers it contains are

α-stable.

I Proposition 3.6. A number is α-stable with probability 1−O
(
r logα
logn

)
.

The following definition characterizes the sizes of query sets which have a probability
mass far from the probability mass of any individual element. (For the sake of building
intuition, the reader may replace ν in the following by the parameter b of the distribution.)

I Definition 3.7. A vector of numbers (β1, . . . , β`) is said to be (α, τ)-incomparable with
respect to ν (for τ ≥ 1) if the two following conditions hold.

(β1, . . . , β`) is α-stable.
Let ∆j be the minimum ∆ ∈ {0, . . . , 2r} such that βjνρ

2r−∆

n ≤ 1
α , or 2r if no such ∆

exists. For all i ∈ [2r], 1
2rn
∑`
j=1 βj∆j 6∈

[
1

τ2rνρi ,
τ

2rνρi

]
.

J. Acharya, C. L. Canonne, and G. Kamath 463

Recall from the definition of α-stability of a number that a random set of this size either has
essentially no intersection with a bucket or “concentrates over it” (i.e., with high probability,
the probability mass contained in the intersection with this bucket is very close to the
expected value). The above definition roughly captures the following. For any j, ∆j is the
number of buckets that will concentrate over a random set of size βj . The last condition
asks that the total probability mass from D1 (or D2) enclosed in the union of m random
sets of size β1, . . . , β` be a multiplicative factor of τ from the individual probability weight

1
2rbρi of a single element from any of the 2r buckets.

I Proposition 3.8. Given that a vector of numbers of length ` is α-stable, it is (α, q2)-
incomparable with respect to b with probability at least 1−O

(
r log q
logn

)
.

We put these together to obtain the following lemma:

I Lemma 3.9. With probability at least 1−O
(

26q2+q(r logα+ϕ log ρ)+26q2
(r log q)

logn

)
, the following

holds for the decision tree corresponding to a q-query algorithm:
the size of each atom is α-stable and either large or small;
the size of each atom, after excluding elements we have previously observed,4 is α-stable
and either large or small;
for each i, the vector (kAi)A∈At(A1,...,Ai) is (α, q2)-incomparable (with respect to b).

Proof. From Proposition 3.2, there are at most 26q2+1 tree nodes, each of which contains one
vector (kAi)A, and at most 2q atom sizes. The first point follows from Propositions 3.4 and 3.6
and applying the union bound over all 26q2+1 · 2 · 2q sizes, where we note the additional factor
of 2 comes from either including or excluding the old elements. The latter point follows from
Proposition 3.8 and applying the union bound over all 26q2+1 (kAi) vectors. J

3.2.2 Key lemma: bounding the variation distance between decision
trees

In this section, we prove a key lemma on the variation distance between the distribution on
leaves of any decision tree, when given access to either an instance from Y or N . This lemma
will in turn directly yield Theorem 1.1. Hereafter, we set the parameters α (the threshold for
stability), ϕ (the parameter for smallness and largeness) and γ (an accuracy parameter for
how well things concentrate over their expected value) as follows:5 α def= q7, ϕ def= q5/2 and
γ

def= 1/ϕ = q−5/2. (Recall further that q = 1
10
√

log logn.)

I Lemma 3.10. Conditioned on the events of Lemma 3.9, consider the distribution over
leaves of any decision tree corresponding to a q-query adaptive algorithm when the algorithm
is given a yes-instance, and when it is given a no-instance. These two distributions have total
variation distance o(1).

4 More precisely, we mean to say that for each i ≤ q, for every atom A defined by the partition of
(A1, . . . , Ai), the values kA

i and |A \ {s(1)
1 , s

(2)
1 , . . . , s

(1)
i−1, s

(2)
i−1}| − k

A
i are α-stable and either large or

small;
5 This choice of parameters is not completely arbitrary: combined with the setting of q, r and ρ, they
ensure a total bound o(1) on variation distance and probability of “bad events” as well as a (relative)
simplicity and symmetry in the relevant quantities.

APPROX/RANDOM’15

464 A Chasm Between Identity and Equivalence Testing with Conditional Queries

Proof. This proof is by induction. We will have three inductive hypotheses, E1(t),E2(t),
and E3(t). Assuming all three hold for all t < i, we prove E1(i). Additionally assuming
E1(i), we prove E2(i) and E3(i).

Roughly, the first inductive hypothesis states that the query sets behave similarly to
as if we had picked a random set of that size. It also implies that whether or not we get
an element we have seen before is “obvious” based on past observances and the size of the
query we perform. The second states that we never observe two distinct elements from the
same bucket-pair. The third states that the next sample is distributed similarly in either
a yes-instance or a no-instance. Note that this distribution includes both features which
our algorithm can observe (i.e., the atom which the sample belongs to and if it collides
with a previously seen sample), as well as those which it can not (i.e., which bucket-pair
the observed sample belongs to). It is necessary to show the latter, since the bucket-pair a
sample belongs to may determine the outcome of future queries.

More precisely, the three inductive hypotheses are as follows:
E1(i): In either a yes-instance or a no-instance, the following occurs: For an atom S in
the partition generated by A1, . . . , Ai, let S′ = S \ {s(1)

1 , s
(2)
1 , . . . , s

(1)
i−1, s

(2)
i−1}. For every

such S′, let `S′ be the largest index ` ∈ {0, . . . , 2r} such that |S
′|bρ`

n ≤ 1
α , or 0 if no such

` exists. We claim that `S′ ∈ {0, . . . , 2r − ϕ− 2} ∪ {2r}, and say S′ is small if `S′ = 2r
and large otherwise. Additionally:

for j ≤ `S′ , |S′ ∩Bj | = 0;
for j > `S

′ , |S′ ∩Bj | lies in [1− iγ, 1 + iγ] |S
′|bρj

n .
Furthermore, let p1 and p2 be the probability mass contained in Λi and Γi, respectively.
Then p1

p1+p2
≤ O

(
1
q2

)
or p2

p1+p2
≤ O

(
1
q2

)
(that is, either almost all the probability mass

comes from elements which we have not yet observed, or almost all of it comes from
previously seen ones).
E2(i): No two elements from the set {s(1)

1 , s
(2)
1 , . . . , s

(1)
i , s

(2)
i } belong to the same bucket-

pair.
E3(i): Let T yes

i be the random variable representing the atoms and bucket-pairs6 con-
taining (s(1)

i , s
(2)
i), as well as which of the previous samples they intersect with, when the

i-th query is performed on a yes-instance, and define T no
i similarly for no-instances. Then

dTV(T yes
i , T no

i) ≤ O
(

1
q2 + 1

ρ + γ + 1
ϕ

)
= o(1).

We state the lemmata, whose proofs are deferred to the full version of this paper:

I Lemma 3.11. Assuming that E1(t),E2(t),E3(t) hold for all 1 ≤ t ≤ i − 1, then E1(i)
holds with probability at least 1−O

(
2i exp

(
− 2γ2α

3

))
= 1− 2i−Ω(q2).

I Lemma 3.12. Assuming that E1(t),E2(t),E3(t) hold for all 1 ≤ t ≤ i−1 and additionally
E1(i), then E2(i) holds with probability at least 1−O

(
i
ϕ

)
.

I Lemma 3.13. Assuming that E1(t),E2(t),E3(t) hold for all 1 ≤ t ≤ i−1 and additionally
E1(i), then E3(i) holds.

Let T yes be the random variable representing the q-configuration and the bucket-pairs
containing each of the observed samples in a yes-instance, and define T no similarly for a
no-instance. We note that this random variable determines which leaf of the decision tree

6 If a sample s(k)
i does not belong to any bucket (if the corresponding i-th query did not intersect the

support), it is marked in T yes
i with a “dummy label” to indicate so.

J. Acharya, C. L. Canonne, and G. Kamath 465

we reach. By a union bound over all q queries of the algorithm, a coupling argument, and
the triangle inequality, the above lemmata imply that the total variation distance between
T yes and T no will be O

(
2q exp

(
− 2γ2α

3

)
+ q2

ϕ + 1
q + q

ρ + qγ + q
ϕ

)
= o(1) (from our choice of

α, γ, ϕ), concluding the proof of Lemma 3.10. J

With this lemma in hand, the proof of the main theorem is straightforward:

Proof of Theorem 1.1. Conditioned on Lemma 3.9, Lemma 3.10 implies that the distribu-
tion over the leaves in a yes-instance vs. a no-instance is o(1). Since an algorithm’s choice to
accept or reject depends deterministically on which leaf is reached, this bounds the difference
between the conditional probability of reaching a leaf which accepts. Since Lemma 3.9
occurs with probability 1− o(1), the difference between the unconditional probabilities is
also o(1). J

Acknowledgments. Clément Canonne would like to thank Dana Ron and Rocco Servedio
for the many helpful discussions and remarks that influenced the lower bound construction
of Section 3.

References
1 Jayadev Acharya, Clément L. Canonne, and Gautam Kamath. A chasm between identity

and equivalence testing with conditional queries. ArXiV, abs/1411.7346, April 2015.
2 Jayadev Acharya, Hirakendu Das, Ashkan Jafarpour, Alon Orlitsky, and Shengjun Pan.

Competitive closeness testing. In Proceedings of 24th COLT, pages 47–68, 2011.
3 Jayadev Acharya, Hirakendu Das, Ashkan Jafarpour, Alon Orlitsky, Shengjun Pan, and

Ananda Theertha Suresh. Competitive classification and closeness testing. In Proceedings
of 25th COLT, pages 1–18, 2012.

4 Tuğkan Batu, Eldar Fischer, Lance Fortnow, Ravi Kumar, Ronitt Rubinfeld, and Patrick
White. Testing random variables for independence and identity. In Proceedings of FOCS,
pages 442–451, 2001.

5 Tuğkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and Patrick White.
Testing closeness of discrete distributions. Journal of the ACM, 60(1):1–25, 2013.

6 Tuğkan Batu, Ravi Kumar, and Ronitt Rubinfeld. Sublinear algorithms for testing mono-
tone and unimodal distributions. In Proceedings of STOC, pages 381–390, New York, NY,
USA, 2004. ACM.

7 Arnab Bhattacharyya, Eldar Fischer, Ronitt Rubinfeld, and Paul Valiant. Testing mono-
tonicity of distributions over general partial orders. In Proceedings of ITCS, pages 239–252,
2011.

8 Clément L. Canonne. A Survey on Distribution Testing: your data is Big, but is it Blue?
Electronic Colloquium on Computational Complexity (ECCC), TR15-063, April 2015.

9 Clément L. Canonne, Dana Ron, and Rocco A. Servedio. Testing probability distributions
using conditional samples. SIAM Journal on Computing, 44(3), 2015.

10 Clément L. Canonne and Ronitt Rubinfeld. Testing probability distributions underlying
aggregated data. In Proceedings of ICALP, pages 283–295, 2014.

11 Sourav Chakraborty, Eldar Fischer, Yonatan Goldhirsh, and Arie Matsliah. On the power
of conditional samples in distribution testing. In Proceedings of ITCS, pages 561–580, New
York, NY, USA, 2013. ACM.

12 Siu-On Chan, Ilias Diakonikolas, Gregory Valiant, and Paul Valiant. Optimal algorithms
for testing closeness of discrete distributions. In Proceedings of SODA, pages 1193–1203.
Society for Industrial and Applied Mathematics (SIAM), 2014.

APPROX/RANDOM’15

466 A Chasm Between Identity and Equivalence Testing with Conditional Queries

13 Moein Falahatgar, Ashkan Jafarpour, Alon Orlitsky, Venkatadheeraj Pichapathi, and
Ananda Theertha Suresh. Faster algorithms for testing under conditional sampling. In
Proceedings of 28th COLT, 2015.

14 Eldar Fischer. List of Open Problems in Sublinear Algorithms: Problem 66. http://
sublinear.info/66. Suggested by Fischer at Bertinoro Workshop on Sublinear Algorithms
2014.

15 Oded Goldreich and Dana Ron. On testing expansion in bounded-degree graphs. Electronic
Colloquium on Computational Complexity (ECCC), TR00-020, March 2000.

16 Sudipto Guha, Andrew McGregor, and Suresh Venkatasubramanian. Streaming and sub-
linear approximation of entropy and information distances. In Proceedings of SODA, pages
733–742. Society for Industrial and Applied Mathematics (SIAM), 2006.

17 Piotr Indyk, Reut Levi, and Ronitt Rubinfeld. Approximating and Testing k-Histogram
Distributions in Sub-linear Time. In Proceedings of PODS, pages 15–22, 2012.

18 Reut Levi, Dana Ron, and Ronitt Rubinfeld. Testing properties of collections of distribu-
tions. Theory of Computing, 9(8):295–347, 2013.

19 Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, New York, NY, USA, 1995.

20 Liam Paninski. A coincidence-based test for uniformity given very sparsely sampled discrete
data. IEEE Transactions on Information Theory, 54(10):4750–4755, 2008.

21 Sofya Raskhodnikova, Dana Ron, Amir Shpilka, and Adam Smith. Strong lower bounds for
approximating distributions support size and the distinct elements problem. SIAM Journal
on Computing, 39(3):813–842, 2009.

22 Dana Ron and Gilad Tsur. The power of an example: Hidden set size approximation using
group queries and conditional sampling. ArXiV, abs/1404.5568, 2014.

23 Ronitt Rubinfeld. Taming Big Probability Distributions. XRDS, 19(1):24–28, September
2012.

24 Ronitt Rubinfeld and Rocco A. Servedio. Testing monotone high-dimensional distributions.
Random Structures and Algorithms, 34(1):24–44, January 2009.

25 L. Stockmeyer. On approximation algorithms for #P. SIAM Journal on Computing,
14(4):849–861, 1985.

26 Gregory Valiant and Paul Valiant. A CLT and tight lower bounds for estimating entropy.
Electronic Colloquium on Computational Complexity (ECCC), TR10-179, 2010.

27 Gregory Valiant and Paul Valiant. Estimating the unseen: A sublinear-sample canonical
estimator of distributions. Electronic Colloquium on Computational Complexity (ECCC),
TR10-180, 2010.

28 Gregory Valiant and Paul Valiant. The power of linear estimators. In Proceedings of FOCS,
pages 403–412, October 2011. See also [26] and [27].

29 Gregory Valiant and Paul Valiant. An automatic inequality prover and instance optimal
identity testing. In Proceedings of FOCS, 2014.

30 Paul Valiant. Testing symmetric properties of distributions. SIAM Journal on Computing,
40(6):1927–1968, 2011.

http://sublinear.info/66
http://sublinear.info/66

	Introduction
	Background and previous work
	Our results
	Relation to the Ron-Tsur model

	Techniques and proof ideas

	Preliminaries
	Notation and sampling models
	Adaptive Core Testers
	On the use of Yao's Principle in our lower bounds

	A Lower Bound for Equivalence Testing
	Construction
	Analysis
	Banning ``bad queries''
	Key lemma: bounding the variation distance between decision trees

