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Abstract
In the planted bisection model a random graph G(n, p+, p−) with n vertices is created by parti-
tioning the vertices randomly into two classes of equal size (up to ±1). Any two vertices that
belong to the same class are linked by an edge with probability p+ and any two that belong
to different classes with probability p− < p+ independently. The planted bisection model has
been used extensively to benchmark graph partitioning algorithms. If p± = 2d±/n for numbers
0 ≤ d− < d+ that remain fixed as n→∞, then w.h.p. the “planted” bisection (the one used to
construct the graph) will not be a minimum bisection. In this paper we derive an asymptotic
formula for the minimum bisection width under the assumption that d+ − d− > c

√
d+ ln d+ for

a certain constant c > 0.
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1 Introduction

1.1 Background and motivation
Since the early days of computational complexity graph partitioning problems have played a
central role in computer science [18, 24]. Over the years they have inspired some of the most
important algorithmic techniques that we have at our disposal today, such as network flows
or semidefinite programming [3, 17, 19, 25, 38].

In the context of the probabilistic analysis of algorithms, it is hard to think of a more
intensely studied problem than the planted bisection model. In this model a random graph
G = G(n, p+1, p−1) on [n] = {1, . . . , n} is created by choosing a map σ : V → {−1, 1}
uniformly at random subject to ||σ−1(1)| − |σ−1(−1)|| ≤ 1 and connecting any two vertices
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v 6= w with probability pσ(v)σ(w) independently, where 0 ≤ p−1 < p+1 ≤ 1. To ease notation,
we often write p+ for p+1 and p− for p−1, and handle subscripts similarly for other parameters.

Given the random graph G (but not the planted bisection σ), the task is to find a
minimum bisection of G, i.e., to partition the vertices into two disjoint sets S, S̄ = [n] \ S
whose sizes satisfy ||S| − |S̄|| ≤ 1 such that the number of S-S̄-edges is minimum. The
planted bisection model has been employed to gauge algorithms based on spectral, semidefinite
programming, flow and local search techniques, to name but a few [5, 6, 7, 8, 9, 11, 14, 15,
16, 22, 23, 27, 31, 29].

Remarkably, for a long time the algorithm with the widest range of n, p± for which a
minimum bisection can be found efficiently was one of the earliest ones, namely Boppana’s
spectral algorithm [6]. It succeeds if

n(p+ − p−) ≥ c
√
np+ lnn

for a certain constant c > 0. Under this assumption the planted bisection is minimum w.h.p.
In fact, recently the critical value c∗ > 0 for which this statement is true was identified
explicitly [36]. In particular, for n(p+ − p−) > c∗

√
np+ lnn the minimum bisection width

simply equals ( 1
4 + o(1))n2p− w.h.p.

But if n(p+−p−) < c∗
√
np+ lnn, then the minimum bisection width will be strictly smaller

than the width of the planted bisection w.h.p. Yet there is another spectral algorithm [9]
that finds a minimum bisection w.h.p. under the weaker assumption that

n(p+ − p−) ≥ c
√
np+ ln(np+), (1.1)

for a certain constant c > 0, and even certifies the optimality of its solution. However, [9]
does not answer what is arguably the most immediate question: what is the typical value of
the minimum bisection width?

In this paper we derive the value to which the (suitably scaled) minimum bisection width
converges in probability. We confine ourselves to the case that n

2 p± = d± remain fixed as
n→∞. Hence, the random graph G has bounded average degree. This is arguably the most
interesting case because the discrepancy between the planted and the minimum bisection gets
larger as the graphs get sparser. In fact, it is easy to see that in the case of fixed n

2 p± = d±
the difference between the planted and the minimum bisection width is Θ(n) as the planted
bisection is not even locally optimal w.h.p.

Although we build upon some of the insights from [9], it seems difficult to prove our
main result by tracing the fairly complicated algorithm from that paper. Instead, our
main tool is an elegant message passing algorithm called Warning Propagation that plays
an important role in the study of random constraint satisfaction problems via ideas from
statistical physics [32]. Running Warning Propagation on G naturally corresponds to a fixed
point problem on the 2-simplex, and the minimum bisection width can be cast as a function
of the fixed point.

1.2 The main result
To state the fixed point problem, we consider the functions

ψ : R→ R, x 7→


−1 if x < −1
x if − 1 ≤ x ≤ 1
1 if x > 1,

ψ̃ : R→ R, x 7→

{
−1 if x ≤ −1
1 if x > −1.

APPROX/RANDOM’15
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Let P({−1, 0, 1}) be the set of probability measures on {−1, 0, 1}. Clearly, we can identify
P({−1, 0, 1}) with the set of all maps p : {−1, 0, 1} → [0, 1] such that p(−1)+p(0)+p(1) = 1,
i.e., the 2-simplex. Further, let us define a map

Td+,d− : P({−1, 0, 1})→ P({−1, 0, 1}) (1.2)

as follows. Given p ∈ P({−1, 0, 1}), let (ηp,i)i≥1 be a family of i.i.d. {−1, 0, 1}-valued random
variables with distribution p. Moreover, let γ± = Po(d±) be Poisson variables that are
independent of each other and of the ηp,i. Let

Zp,d+,d− :=
γ+∑
i=1

ηp,i −
γ++γ−∑
i=γ++1

ηp,i. (1.3)

Then we let Td+,d−(p) ∈ P({−1, 0, 1}) be the distribution of ψ(Zp,d+,d−). Further, with
(ηp,i)i≥1 and γ± as before, let

ϕd+,d− :P({−1, 0, 1})→ R,

p 7→ 1
2E

 γ+∑
i=1

1
{
ηp,i = −ψ̃(Zp,d+,d−)

}
+

γ++γ−∑
i=γ++1

1
{
ηp,i = ψ̃(Zp,d+,d−)

} .
Moreover, let us call p ∈ P({−1, 0, 1}) skewed if p(1) ≥ 1 − d−10

+ . Finally, we denote the
minimum bisection width of a graph G by bis(G).

I Theorem 1.1. There exists a constant c > 0 such that for any d± > 0 satisfying d+ ≥ 2
and d+−d− ≥ c

√
d+ ln d+ the map Td+,d− has a unique skewed fixed point p∗ and n−1bis(G)

converges in probability to ϕd+,d−(p∗).

Note that Td+,d− may have further fixed points besides p∗, but p∗ is the only fixed point
which is skewed. We also note that the condition d+ ≥ 2 is not optimised – any constant
larger than 1 would do as a lower bound, but then in any case the condition d+ ≥ 2 follows
from the lower bound on d+ − d− for sufficiently large c.

In the following sections we will use that the assumptions of Theorem 1.1 allow us to
assume that also d+ is sufficiently large.

1.3 Further related work
Determining the minimum bisection width of a graph is NP-hard [18] and there is evidence
that the problem does not even admit a PTAS [26]. On the positive side, it is possible to
approximate the minimum bisection width within a factor of O(lnn) for graphs on n vertices
in polynomial time [38].

The planted bisection model has been studied in statistics under the name “stochastic
block model” [20]. However, in the context of statistical inference the aim is to recover
the planted partition σ as best as possible given G rather than to determine the minimum
bisection width. Recently there has been a lot of progress, much of it inspired by non-rigorous
work [12], on the statistical inference problem. The current status of the problem is that
matching upper and lower bounds are known for the values of d± for which it is possible to
obtain a partition that is non-trivially correlated with σ [30, 33, 35]. Furthermore, there
are algorithms that recover a best possible approximation to σ under certain conditions on
d± [1, 34, 36]. But since our objective is different, the methods employed in the present
paper are somewhat different and, indeed, rather simpler.
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Finally, there has been recent progress on determining the minimum bisection width
on the Erdős-Rényi random graph. Although its precise asymptotics remain unknown in
the case of bounded average degrees d, it was proved in [13] that the main correction term
corresponds to the “Parisi formula” in the Sherrington-Kirkpartrick model [39]. Additionally,
regarding the case of very sparse random graphs (i.e. with constant average degree), there is
a sharp threshold (at np = ln 4) for the minimum bisection width to be linear in n [28].

Generally speaking, the approach that we pursue is somewhat related to the notion of
“local weak convergence” of graph sequences as it was used in [2]. More specifically, we are
going to argue that the minimum bisection width of G is governed by the “limiting local
structure” of the graph, which is a two-type Galton-Watson tree. The fixed point problem in
Theorem 1.1 mirrors the execution of a message passing algorithm on the Galton-Watson
tree. The study of this fixed point problem, for which we use the contraction method [37], is
the key technical ingredient of our proof. We believe that this strategy provides an elegant
framework for tackling many other problems in the theory of random graphs as well. In
fact, in a recent paper [10] we combined Warning Propagation with a fixed point analysis on
Galton-Watson trees to the k-core problem, and in [4] Warning Propagation was applied to
the random graph coloring problem.

2 Outline

From here on we keep the notation and the assumptions of Theorem 1.1. In particular, we
assume that d+ − d− ≥ c

√
d+ ln d+ for a large enough constant c > 0 and that d± remain

fixed as n→∞. Furthermore we assume that d+ is bounded from below by a large enough
constant. Throughout the paper all graphs will be locally finite and of countable size.

Three main insights enable the proof of Theorem 1.1. The first one, which we borrow
from [9], is that w.h.p. G features a fairly large set C of vertices such that for any two optimal
bisections τ1, τ2 of G (i.e. maps τ1, τ2 : V (G)→ {±1}), we either have τ1(v) = τ2(v) for all
v ∈ C or τ1(v) = −τ2(v) for all v ∈ C. In the language of random constraint satisfaction
problems, the vertices in C are “frozen”. While there remain Ω(n) unfrozen vertices, the
subgraph that they induce is subcritical, i.e., all components are of size O(lnn) and indeed
most are of bounded size.

The second main ingredient is an efficient message passing algorithm called Warning
Propagation, (cf. [32, Chapter 19]). We will show that a bounded number of Warning
Propagation iterations suffice to arrange almost all of the unfrozen vertices optimally (i.e. to
assign almost all of the vertices to two classes such that there is a minimum bisection respecting
this assignment) and thus to obtain a very good approximation to the minimum bisection
w.h.p. (Proposition 2.2). This insight reduces our task to tracing Warning Propagation for a
bounded number of rounds.

This last problem can be solved by studying Warning Propagation on a suitable Galton-
Watson tree, because G only contains a negligible number of short cycles w.h.p. (Lemma 2.3).
Thus, the analysis of Warning Propagation on the random tree is the third main ingredient
of the proof. This task will turn out to be equivalent to studying the fixed point problem
from Section 1.2 (Proposition 2.5). We proceed to outline the three main components of the
proof.

APPROX/RANDOM’15



714 The Minimum Bisection in the Planted Bisection Model

2.1 The core
Given a vertex u of a graph G let ∂Gu denote the neighbourhood of u in G. We sometimes
omit the subscript G when the graph is clear from the context. More particularly, in the
random graph G, let ∂±u denote the set of all neighbours w of u in G with σ(w)σ(v) = ±1.
Following [9], we define C as the largest subset U ⊂ [n] such that

||∂±u| − d±| ≤
c

4
√
d+ ln d+ and |∂u \ U | ≤ 100 for all u ∈ U. (2.1)

Clearly, the set C, which we call the core, is uniquely defined because any union of sets U
that satisfy (2.1) also has the property. Let σC : C → {±1}, v 7→ σ(v) be the restriction of
the “planted assignment” to C.

Furthermore, for a graph G, a set U ⊂ V (G) and a map σ : U → {−1, 1} we let

cut(G, σ) := min
{ ∑
{v,w}∈E(G)

1− τ(v)τ(w)
2

∣∣∣∣
τ : V (G)→ {±1} satisfies τ(v) = σ(v) for all v ∈ U

}
.

In words, cut(G, σ) is the smallest number of edges in a cut of G that separates the vertices
in U ∩ σ−1(−1) from those in U ∩ σ−1(1). In particular, cut(G, σC) is the smallest cut of G
that separates the vertices in the core C that are frozen to −1 from those that are frozen to 1.

Finally, for any vertex v we define a set Cv = Cv(G, σ) of vertices via the following process.
C1 Let C(0)

v = {v} ∪ ∂Gv.
C2 Inductively, let C(t+1)

v = C(t)
v ∪

⋃
u∈C(t)

v \C
∂Gu and let Cv =

⋃
t≥0 C

(t)
v .

I Lemma 2.1 ([9], Proposition 19 and Section 3.6). We have bis(G) = cut(G,σC) and
|C| ≥ n(1 − d−100

+ ) w.h.p. Furthermore, for any ε > 0 there exists ω > 0 such that w.h.p.∑
v∈[n] |Cv| · 1 {|Cv| ≥ ω} ≤ εn.

2.2 Warning Propagation
To calculate cut(G,σC) we adopt the Warning Propagation (“WP”) message passing al-
gorithm1. Let us first introduce WP for a generic graph G = (V (G), E(G)) and a map
σ : U ⊂ V (G) → {−1, 1}. At each time t ≥ 0, WP sends a “message” µv→w(t|G, σ) ∈
{−1, 0, 1} from v to w for any edge {v, w} ∈ E(G). The messages are directed objects, i.e.,
µv→w(t|G, σ) and µw→v(t|G, σ) may differ. They are defined inductively by

µv→w(0|G, σ) :=
{
σ(v) if v ∈ U,
0 otherwise,

µv→w(t+ 1|G, σ) := ψ

 ∑
u∈∂v\w

µu→v(t|G, σ)

 .

(2.2)

Note that U does not appear explicitly in the notation µv→w(t|G, σ) despite being integral
to the definition – it is however implicit in the notation since U is the domain of σ.

Thus, the WP messages are initialised according to σ. Subsequently, v sends message ±1
to w if it receives more ±1 than ∓1 messages from its neighbours u 6= w. If there is a tie, v

1 A discussion of Warning Propagation in the context of the “cavity method” from statistical physics can
be found in [32].



A. Coja-Oghlan, O. Cooley, M. Kang, and K. Skubch 715

sends out 0. Finally, for t ≥ 0 define

µv(t|G, σ) :=
∑
w∈∂v

µw→v(t|G, σ).

The intuition is that the message µv→w which v sends to w indicates which class v is most
likely to be in based on the current local information it receives from its other neighbours.
To minimise the cut, we would like to place v into the class in which most of its neighbours
lie. The initialisation is given by the set U , which we will choose to be the core.

I Proposition 2.2. For any ε > 0 there exists t0 = t0(ε, d+, d−) such that for all t ≥ t0
w.h.p. ∣∣∣∣∣∣cut(G,σC)−

1
2
∑
v∈[n]

∑
w∈∂v

1
{
µw→v(t|G,σ) = −ψ̃ (µv(t|G,σ))

}∣∣∣∣∣∣ ≤ εn.
We defer the proof of Proposition 2.2 to Section 3.

2.3 The local structure
Proposition 2.2 shows that w.h.p. in order to approximate cut(G,σC) up to a small error
of εn we merely need to run WP for a number t0 of rounds that is bounded in terms of
ε. The upshot is that the WP messages µw→v(t|G,σ) that are required to figure out the
minimum bisection width are determined by the local structure of G. We show that the local
structure of G “converges to” a suitable Galton-Watson tree. For this purpose, for simplicity
we always say that the number of potential neighbours of any vertex in each class is n/2.
This ignores the fact that if n is odd the classes do not have quite this size and the fact that
a vertex cannot be adjacent to itself. However, ignoring these difficulties will not affect our
calculations in any significant way.

Our task boils down to studying WP on that Galton-Watson tree. Specifically, let
T = T d+,d− be the Galton-Watson tree with two types +1,−1 and offspring matrix(

Po(d+) Po(d−)
Po(d−) Po(d+)

)
. (2.3)

Hence, a vertex of type ±1 spawns Po(d+) vertices of type ±1 and independently Po(d−)
vertices of type ∓1. Moreover, the type of the root vertex rT is chosen uniformly at random.
Let τ = τ d+,d− : V (T )→ {±1} assign each vertex of T its type.

The random graph (G,σ) “converges to” (T , τ ) in the following sense. For two triples
(G, r, σ), (G′, r′, σ′) of graphs G,G′, root vertices r ∈ V (G), r′ ∈ V (G′) and maps σ :
V (G)→ {±1}, σ′ : V (G′)→ {±1} we write (G, σ) ∼= (G′, σ′) if there is a graph isomorphism
ϕ : G → G′ such that ϕ(r) = r′ and σ = σ′ ◦ ϕ. Further, we denote by ∂t(G, r, σ) the
rooted graph obtained from (G, r) by deleting all vertices at distance greater than t from r

together with the restriction of σ to this subgraph. The following lemma characterises the
local structure of (G,σ).

I Lemma 2.3. Let t > 0 be an integer and let T be any tree with root r and map τ : V (T )→
{±1}. Then

1
n

∑
v∈[n]

1
{
∂t(G, v,σ) ∼= ∂t(T, r, τ)

} n→∞→ P
[
∂t(T , rT , τ ) ∼= ∂t(T, r, τ)

]
in probability.

Furthermore, w.h.p. G does not contain more than lnn vertices v such that ∂t(G, v,σ)
contains a cycle.

APPROX/RANDOM’15
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Proof. Given a tree T with root r and map τ : V (T )→ {±1}, let

Xt = Xt(T, r, τ) = 1
n

∑
v∈[n]

1
{
∂t(G, v,σ) ∼= ∂t(T, r, τ)

}
and

pt = pt(T, r, τ) = P
[
∂t(T , rT , τ ) ∼= ∂t(T, r, τ)

]
.

The proof proceeds by induction on t. If t = 0, pick a vertex v ∈ [n] uniformly at random,
then X0 = Pv (σ(v) = τ(r)) = 1

2 and p0 = PT (τ (rT ) = τ(r)) = 1
2 for any τ(r) ∈ {±1}. To

proceed from t to t+ 1, let d denote the number of children v1, . . . , vd of r in T . For each
i = 1, . . . , d, let Ti denote the tree rooted at vi in the forest obtained from T by removing r and
let τi : V (Ti)→ {±1} denote the restriction of τ to the vertex set of Ti. Finally, let C1, . . . , Cd̃
for some d̃ ≤ d denote the distinct isomorphism classes among {∂t(Ti, vi, τi) : i = 1, . . . , d},
and let cj = |{i : ∂t(Ti, vi, τi) ∈ Cj}|. Let v ∈ [n] be an arbitrary vertex in G. Our aim is to
determine the probability of the event {∂t+1(G, v,σ) ∼= ∂t+1(T, r, τ)}. Therefore, we think
of G as being created in three rounds. First, partition [n] in two classes. Second, randomly
insert edges between vertices in [n] \ {v} according to their planted sign. Finally, reveal the
neighbours of v. For the above event to happen, v must have d neighbours in G. Since |∂±v|
are independent binomially distributed random variables with parameters n

2 and p± and
because n

2 p± = d±, we may approximate |∂±v| with a poisson distribution, and v has degree
d with probability

(d+ + d−)d

d! exp(d+ + d−) + o(1).

Conditioned on v having degree d, by induction v is adjacent to precisely cj vertices with
neighbourhood isomorphic to ∂t(Ti, vi, τi) ∈ Cj with probability

(
d

c1 . . . cd̃

) d̃∏
j=1

pt(Cj) + o(1).

The number of cycles of length ` ≤ 2t+ 3 in G is stochastically bounded by the number of
such cycles in G(n, d+/n) (the standard 1-type binomial random graph). For each `, this
number tends in distribution to a poisson variable with bounded mean (see e.g. Theorem 3.19
in [21]) and so the total number of such cycles is bounded w.h.p. Thus all the pairwise
distances (in G− v) between neighbours of v are at least 2t+ 1 w.h.p. (and in particular
this proves the second part of the lemma). Therefore

EG[Xt+1] = (d+ + d−)d

d! exp(d+ + d−)

(
d

c1 . . . cd̃

) d̃∏
j=1

pt(Cj) + o(1).

By definition of T , we obtain E[Xt+1] = pt+1 + o(1). To apply Chebyshev’s inequality, it
remains to determine E[X2

t+1]. Let v,w ∈ [n] be two randomly choosen vertices. Then
w.h.p. v and w have distance at least 2t+ 3 in G, conditioned on which ∂t+1(G,v,σ) and
∂t+1(G,w,σ) are independent. Therefore we obtain

Pv,w
(
∂t+1(G,v,σ) ∼= ∂t+1(T, r, τ) ∧ ∂t+1(G,w,σ) ∼= ∂t+1(T, r, τ)

)
= Pv

(
∂t+1(G,v,σ) ∼= ∂t+1(T, r, τ)

)
Pw
(
∂t+1(G,w,σ) ∼= ∂t+1(T, r, τ)

)
+ o(1)
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And finally

EG[X2
t+1] =EG

[
Pv
(
∂t+1(G,v,σ) ∼= ∂t+1(T, r, τ)

)
Pw
(
∂t+1(G,w,σ) ∼= ∂t+1(T, r, τ)

)]
+ 1
n
EG[Xt+1] + o(1)

=EG[Xt+1]2 + o(1).

The first assertion follows from Chebyshev’s inequality. J

2.4 The fixed point
Let (T, r, τ) be a rooted tree together with a map τ : V (T ) → {±1}. Then for any pair
v, w of adjacent vertices we have the WP messages µv→w(t|T, τ), t ≥ 0, as defined in (2.2).
Since we are going to be particularly interested in the messages directed towards the root,
we introduce the following notation. Given the root r, any vertex v 6= r of T has a unique
parent vertex w (the neighbour of v on the unique path from v to r). Initially, let

µv↑(0|T, r, τ) = τ(v) (2.4)

and define

µv↑(t|T, r, τ) = µv→w(t|T, τ) (2.5)

for t > 0. In addition, set µr↑(0|T, r, τ) = τ(r) and let

µr↑(t+ 1|T, r, τ) = ψ

( ∑
v∈∂T r

µv↑(t|T, r, τ)
)

(t ≥ 0) (2.6)

be the message that r would send to its parent if there was one.
For p = (p(−1), p(0), p(1)) ∈ P({−1, 0, 1}) we let p̄ = (p(1), p(0), p(−1)). Remembering

the map
T = Td+,d− : P({−1, 0, 1})→ P({−1, 0, 1})

from Section 1.2 and writing T t for its t-fold iteration, we observe the following.

I Lemma 2.4. Let pt = T t(0, 0, 1).
1. Given that τ (rT ) = +1, the message µrT ↑(t|T , rT , τ ) has distribution pt.
2. Given that τ (rT ) = −1, the message µrT ↑(t|T , rT , τ ) has distribution p̄t.

Proof. The proof is by induction on t. In the case t = 0 the assertion holds because
µrT ↑(0|T , rT , τ ) = τ (rT ). Now, assume that the assertion holds for t. To prove it for
t + 1, let C± be the set of all children v of rT with τ (rT )τ (v) = ±1. By construction,
|C±| has distribution Po(d±). Furthermore, let (T v, v, τv) signify the subtree pending on a
child v of rT . Because T is a Galton-Watson tree, the random subtrees T v are mutually
independent. Moreover, each T v is distributed as a Galton-Watson tree with offspring matrix
(2.3) and a root vertex of type ±τ (rT ) for each v ∈ C±. Therefore, by induction the message
µv↑(t|T v, v, τ v) has distribution pt if τ (v) = 1 resp. p̄t if τ (v) = −1. As a consequence,

µrT ↑(t+ 1|T , rT , τ ) = ψ

∑
v∈C+

µv↑(t|T v, v, τ v) +
∑
v∈C−

µv↑(t|T v, v, τ v)


has distribution pt+1 if τ (rT ) = 1 and p̄t+1 otherwise. J
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Lemma 2.4 shows that the operator T mimics WP on the Galton-Watson tree (T , rT , τ ).
Hence, to understand the behaviour of WP after a large enough number of iterations we
need to investigate the fixed point to which T t(0, 0, 1) converges as t→∞. In Section 4 we
will establish the following.

I Proposition 2.5. The operator T has a unique skewed fixed point p∗ and
limt→∞ T t(0, 0, 1) = p∗.

Proof of Theorem 1.1. Consider the random variables

Xn := 1
n

bis(G), Y (t)
n := 1

2
1
n

∑
v∈[n]

∑
w∈∂Gv

1
{
µw→v(t|G,σ) = −ψ̃ (µv(t|G,σ))

}
.

Then Lemma 2.1 and Proposition 2.2 imply that for any ε > 0,

lim
t→∞

lim
n→∞

P
[
|Xn − Y (t)

n | > ε
]

= 0. (2.7)

By Definition (2.2), µw→v(t|G,σ) and µv(t|G,σ) are determined by ∂tGv and the initialisation
µu→w(0|G,σ) for all u,w ∈ ∂tGv, {u,w} ∈ E(G). Since (2.5) and (2.6) match the recursive
definition (2.2) of µw→v(t|G,σ) and µv(t|G,σ), Lemma 2.3 implies that for any fixed t > 0
(as n tends to infinity),

Y (t)
n

n→∞→ x(t) := 1
2E
[ ∑
w∈∂T rT

1{µw↑(t|T , rT , τ ) = −ψ(µrT
(t|T , rT , τ ))}

]
in probability. (2.8)

Now let p∗ denote the unique skewed fixed point of T guaranteed by Proposition 2.5. Since
each child of rT can be considered a root of an independent instance of T to which we can apply
Lemma 2.4, we obtain that given (τ (w))w∈∂rT

the sequence (µw↑(t|T , rT , τ ))w∈∂rT
converges

to a sequence of independent random variables (ηw)w∈∂rT
with distribution p∗ (if τ (w) = 1)

and p̄∗ (if τ (w) = −1). By definition µrT
(t|T , rT , τ ) converges to

∑
w∈∂rT ,τ (w)=1 ηw +∑

w∈∂rT ,τ (w)=−1 ηw. Considering the offspring distributions of rT in both cases, i.e. τ (rT ) =
±1, we obtain from ϕd+,d−(p) = ϕd+,d−(p̄) for all p ∈ P({−1, 0, 1}) that

lim
t→∞

x(t) = ϕd+,d−(p∗). (2.9)

Finally, combining (2.7)–(2.9) completes the proof. J

3 Proof of Proposition 2.2

I Lemma 3.1. If v ∈ C and w ∈ ∂Gv, then µv→w(t|G,σ) = σ(v) = µv→w(t|G,σC) for all
t ≥ 0.

Proof. We proceed by induction on t. For t = 0 the assertion is immediate from the
initialisation of the messages. To go from t to t+ 1, consider v ∈ C and w ∈ ∂Gv. We may
assume without loss of generality that σ(v) = 1. By the definition of the WP message,

µv→w(t+ 1|G,σ) = ψ

 ∑
u∈∂Gv\{w}

µu→v(t|G,σ)

 = ψ (S+ + S− + S0) (3.1)
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where

S+ :=
∑

u∈C∩σ−1(+1)∩∂Gv\{w}

µu→v(t|G,σ),

S− :=
∑

u∈C∩σ−1(−1)∩∂Gv\{w}

µu→v(t|G,σ),

S0 :=
∑

u∈∂Gv\(C∪{w})

µu→v(t|G,σ).

Now, (2.1) ensures that

S+ ≥ d+ −
c

4
√
d+ ln d+, S− ≥ −d− −

c

4
√
d+ ln d+, S0 ≤ 100 ≤ c

4
√
d+ ln d+, (3.2)

provided that the constant c > 0 is chosen large enough. Combining (3.1) and (3.2), we see
that S+ + S− + S0 ≥ 1 and thus µv→w(t+ 1|G,σ) = 1. The exact same argument works for
µv→w(t+ 1|G,σC) = 1. J

Let Gv denote the subgraph of G induced on Cv. To prove Proposition 2.2, fix s > 0
large enough. Let S = S(s) be the set of all vertices such that either |Cv| >

√
s or Gv is

cyclic. Then Lemma 2.1 (with slightly smaller ε) and Lemma 2.3 imply that |S| ≤ εn w.h.p.
For the rest of this section, let v 6∈ S be fixed.

For w ∈ Cv \ {v} we let w↑v be the neighbour of w on the path from w to v. We
define Gw→v as the component of w in the graph obtained from Gv by removing the edge
{w,w↑v}. The vertex set of Gw→v will be denoted by Cw→v. Further, hw→v is the maximum
distance between w and any other vertex in Gw→v. Additionally, hv is the maximum distance
between v and any other vertex in Gv. Finally, let σv : Cv → {±1}, w 7→ σ(w) and let
σC,v : Cv ∩ C → {±1}, w 7→ σC(w).

I Lemma 3.2.
1. For any w ∈ Cv \ {v} and any t > hw→v we have

µw→w↑v
(t|G,σ) = µw→w↑v

(hw→v + 1|G,σ) = µw→w↑v
(t|G,σC).

2. For any t ≥ hv we have µv(t|G,σ) = µv(hv + 1|G,σ) = µv(t|G,σC).

Proof. The proof of (1) proceeds by induction on hw→v. The construction C1–C2 of Cv
ensures that any w ∈ Cv with hw→v = 0 either belongs to C or has no neighbour besides
w↑v. Hence for the first case the assumption follows from Lemma 3.1. If ∂Gw \ {w↑v} = ∅
we obtain that µw→w↑v

(t|G,σ) = µw→w↑v
(t|G,σC) = 0 for all t ≥ 1 by the definition of the

WP messages. Now, assume that hw→v > 0 and let t > hw→v. Then all neighbours u 6= w↑v
of w in Gw→v satisfy hu→v < hw→v. Thus, by induction

µw→w↑v
(t|G,σ) = ψ

 ∑
u∈∂Gw\{w↑v}

µu→w(t− 1|G,σ)


= ψ

 ∑
u∈∂Gw\{w↑v}

µu→w(hu→v + 1|G,σ)

 = µw→w↑v
(hw→v + 1|G,σ).

An analogous argument applies to µw→w↑v
(t|G,σC). The proof of (2) is similar. J

For each vertex w ∈ Cv, w 6= v, let µ∗w→v = µw→w↑v
(s|G,σ). Further, let µ∗w =

µw(s|G,σ). In addition, for z ∈ {±1} let

σzw→v : Cw→v ∩ ({w} ∪ C)→ {±1} , u 7→

{
z if u = w,

σ(u) otherwise.
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In words, σzw→v freezes w to z and all other u ∈ Cw→v that belong to the core to σ(u).
Analogously, let

σzv : Cv ∩ ({v} ∪ C)→ {±1} , u 7→

{
z if u = v,

σ(u) otherwise.

I Lemma 3.3. Suppose that u ∈ Cv \ {v}, such that hu→v ≥ 1.
1. If z = µ∗u→v ∈ {−1, 1}, then

cut(Gu→v,σ
z
u→v) < cut(Gu→v,σ

−z
u→v). (3.3)

Similarly, if z = ψ(µ∗v) ∈ {−1, 1}, then

cut(Gv,σ
z
v) < cut(Gv,σ

−z
v ). (3.4)

2. If µ∗u→v = 0, then

cut(Gu→v,σ
+1
u→v) = cut(Gu→v,σ

−1
u→v). (3.5)

Similarly, if µ∗v = 0, then

cut(Gv,σ
+1
v ) = cut(Gv,σ

−1
v ). (3.6)

Proof. We prove (3.3) and (3.5) by induction on hu→v. If hu→v = 1 then we have that
all neighbours w ∈ ∂Cu→vu of u with µ∗u→v 6= 0 are in C, i.e. fixed under σzu→v. Since
Cu→v = ∂Gu \ {u↑v} ∪ {u}, we obtain

cut(Cu→v,σ−zu→v)− cut(Cu→v,σzu→v) =

∣∣∣∣∣∣
∑

w∈∂Gu\{u↑v}

µ∗w→v

∣∣∣∣∣∣ (3.7)

by definition of z. By the induction hypothesis and because Gu→v is a tree (as v 6∈ S) we
have that (3.7) holds for hu→v > 1 as well. A similar argument yields (3.4) and (3.6). J

Now, let Uv be the set of all w ∈ Cv such that µ∗w→v 6= 0. Furthermore, let

σ↑v : Uv ∪ {v} → {−1,+1} , w 7→

{
ψ̃(µ∗v) if w = v,

µ∗w→v otherwise.

Thus, σ↑v sets all w ∈ Cv∩C \{v} to their planted sign and all w ∈ Uv \C to µ∗w→v. Moreover,
σ↑v sets v to ψ(µ∗v) if ψ(µ∗v) 6= 0 and to 1 if there is a tie.

I Corollary 3.4. We have cut(Gv,σC) = cut(Gv,σ↑v).

Proof. This is immediate from Lemma 3.3. J

Hence, in order to determine an optimal cut of Gv we merely need to figure out the
assignment of the vertices in Cv \ ({v} ∪ Uv). Suppose that σ∗↑v : Cv → {±1} is an optimal
extension of σ↑v to a cut of Gv, i.e.,

cut(Gv,σ↑v) =
∑

{u,w}∈E(Gv)

1
2(1− σ∗v↑(u)σ∗v↑(w)).

I Corollary 3.5. It holds that
∑
w∈∂Gv

1
2 (1−σ∗v↑(v)σ∗v↑(w)) =

∑
w∈∂Gv

1
{
µ∗w→v = −ψ̃ (µv)

}
.
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Proof. Part (2) of Lemma 3.3 implies that σ∗v↑(v)σ∗v↑(w) = 1 for all w ∈ ∂Gv such that
µ∗w→v = 0. J

Proof of Proposition 2.2. Given ε > 0 choose δ = δ(ε, d+, d−) sufficiently small and s =
s(ε, δ, d+, d−) > 0 sufficiently large. In particular, pick s large enough so that

P (|S| ≥ δn) < ε. (3.8)

Provided that δ is suitable small, the Chernoff bound implies that for large n

P

(
1
2
∑
v∈S
|∂Gv| ≥ εn

∣∣∣∣∣ |S| < δn

)
< ε. (3.9)

Now, suppose that σ∗C is an optimal extension of σC to a cut of G and let v 6∈ S. Then using
the definition of Cv, Corollary 3.4 implies that∑

w∈∂Gv

(1− σ∗C(v)σ∗C(w)) =
∑

w∈∂Gv

(1− σ∗v↑(v)σ∗v↑(w)).

Therefore, we obtain

P

∣∣∣∣∣∣cut(G,σC)−
1
2
∑
v 6∈S

∑
w∈∂Gv

(1− σ∗v↑(v)σ∗v↑(w))

∣∣∣∣∣∣ ≥ εn
 ≤ P

(
1
2
∑
v∈S
|∂Gv| ≥ εn

)
≤ 2ε.

The assertion follows from Lemma 3.2 for t ≥ s. J

4 Proof of Proposition 2.5

We continue to denote the set of probability measures on X ⊂ Rk by P(X ). For a X -valued
random variable X we denote by L(X) ∈ P(X ) the distribution of X. Furthermore, if
p, q ∈ P(X ), then Pp,q(X ) denotes the set of all probability measures µ on X × X such that
the marginal distribution of the first (resp. second) component coincides with p (resp. q). The
space P({−1, 0, 1}) is complete with respect to (any and in particular) the L1-Wasserstein
metric, defined by

`1(p, q) = inf {E|X − Y | : X,Y are random variables with L(X,Y ) ∈ Pp,q({−1, 0, 1})} .

In words, the infimum of E|X − Y | is over all couplings (X,Y ) of the distributions p, q. Such
a coupling (X,Y ) is optimal if `1(p, q) = E|X − Y |. Finally, let P∗({−1, 0, 1}) be the set
of all skewed probability measures on {−1, 0, 1}. Being a closed subset of P({−1, 0, 1}),
P∗({−1, 0, 1}) is complete with respect to `1( · , · ).

As in the definition (1.2)-(1.3) of the operator T = Td+,d− for p ∈ P({−1, 0, 1}) we
let (ηp,i)i≥1 be a family of independent random variables with distribution p. Further, let
γ± = Po(d±) be independent of each other and of the (ηp,i)i≥1. We introduce the shorthands

Zp = Zp,d+,d− , Zp,+ =
γ+∑
i=1

ηp,i, Zp,− =
γ++γ−∑
i=γ++1

ηp,i so that Zp = Zp,+ − Zp,−.

Also set λ = c
√
d+ ln d+ and recall that c > 0 is a constant that we assume to be sufficiently

large.

I Lemma 4.1. The operator T maps P∗({−1, 0, 1}) into itself.
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Proof. Suppose that p ∈ P({−1, 0, 1}) is skewed. Then

P (Zp < 1) ≤ P
(
Zp,+ ≤ d+ −

λ− 1
2

)
+ P

(
Zp,− ≥ d− + λ− 1

2

)
. (4.1)

Since |ηp,i| ≤ 1 for all i, we can bound the second summand from above by invoking the
Chernoff bound on a binomial approximation of the Poisson distribution to obtain

P
(
γ− ≥ d− + c

2
√
d+ ln d+ −

1
2

)
<

1
3d
−10
+ , (4.2)

provided c is large enough. To bound the other summand from above we use that (ηp,i)i≥1
is a sequence of independent skewed random variables, whence by the Chernoff bound

P
(
Zp,+ ≤ d+ −

λ− 1
2

)
≤ P (|γ+ − d+| > λ/8) + P

(
Zp,− ≤ d+ −

λ− 1
2

∣∣∣∣γ+ ≥ d+ − λ/8
)

≤ 1
3d
−10
+ + P

[
Bin(d+ − λ/8, 1− d−10

+ ) ≤ d+ − λ/7
]
<

2
3d
−10
+ , (4.3)

provided that c is sufficiently big. Combining (4.1)–(4.3) completes the proof. J

I Lemma 4.2. The operator T is `1-contracting on P∗({−1, 0, 1}).

Proof. Let p, q ∈ P∗({−1, 0, 1}). We aim to show that `1(T (p), T (q)) ≤ 1
2`1(p, q). To this

end, we let (ηp,i, ηq,i)i≥1 be a family of random variables with distribution p resp. q such
that (ηp,i)i≥1 are independent and (ηq,i)i≥1 are independent but such that the pair (ηp,i, ηq,i)
is an optimal coupling for every i. Then by the definition of `1( · , · ),

`1(T (p), T (q)) ≤ E |ψ(Zp)− ψ(Zq)| . (4.4)

To estimate the r.h.s., let η̃p,i = 1{ηp,i = 1}, η̃q,i = 1{ηq,i = 1}. Further, let Fi be the
σ-algebra generated by η̃p,i, η̃q,i and let F be the σ-algebra generated by γ+, γ− and the
random variables (η̃p,i, η̃q,i)i≥1. Additionally, let γ = γ+ + γ− and consider the three events

A1 =
{

γ∑
i=1

η̃p,iη̃q,i ≥ γ − 10
}
, A2 = {γ ≥ 2d+} , A3 = {γ+ − γ− ≤ 20} .

We are going to bound |ψ(Zp) − ψ(Zq)| on A1 \ (A2 ∪ A3), A1 ∪ A2 ∪ A3, A2 and A3 \ A2
separately. The bound on the first event is immediate: if A1 \ (A2 ∪ A3) occurs, then
ψ(Zp) = ψ(Zq) = 1 with certainty. Hence,

E
[
|ψ(Zp)− ψ(Zq)| · 1A1\(A2∪A3)

]
= 0. (4.5)

Let us turn to the second event A1 ∪ A2 ∪ A3. Because the pairs (ηp,i, ηq,i)i≥1 are mutually
independent, we find

E [ |ηp,i − ηq,i||F] = E [ |ηp,i − ηq,i||Fi] for all i ≥ 1. (4.6)

Clearly, if η̃p,iη̃q,i = 1, then ηp,i − ηq,i = 0. Consequently,

E [ |ηp,i − ηq,i||Fi] ≤
E|ηp,i − ηq,i|
P[η̃p,iη̃q,i = 0] = E|ηp,1 − ηq,1|

P[η̃p,1η̃q,1 = 0] . (4.7)
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Since the events A1,A2,A3 are F-measurable and because Ā2 ensures that γ < 2d+, (4.6)
and (4.7) yield

E[|ψ(Zp)− ψ(Zq)| |F]1A1∪A2∪A3
≤ 2d+E|ηp,1 − ηq,1|

P[η̃p,1η̃q,1 = 0] · 1A1∪A2∪A3
. (4.8)

Further, because the pairs (ηp,i, ηq,i)i≥1 are independent and because p, q are skewed,

P
(
A1 ∪ A2 ∪ A3

)
≤ P

(
γ ≤ 2d+,

γ∑
i=1

η̃p,iη̃q,i ≤ γ − 10
)
≤ (2d+ P (η̃p,1η̃q,1 = 0))10

. (4.9)

Combining (4.8) and (4.9), we obtain

E
[
E [|ψ(Zp)− ψ(Zq)||F] 1A1∪A2∪A3

]
≤ (2d+)11 P (η̃p,1η̃q,1 = 0)9 E|ηp,1 − ηq,1|. (4.10)

Since p, q are skewed, we furthermore obtain P (η̃p,1η̃q,1 = 0) ≤ 2d−10
+ . Therefore

E
[
|ψ(Zp)− ψ(Zq)|1A1∪A2∪A3

]
= E

[
E [|ψ(Zp)− ψ(Zq)||F] 1A1∪A2∪A3

]
≤ 220d−79

+ E|ηp,1 − ηq,1|.

With respect to A2, the triangle inequality yields

E[|ψ(Zp)− ψ(Zq)|1A2 ] ≤ 2E|ηp,1 − ηq,1| · E[γ1A2 ]. (4.11)

Further, since γ = Po(d+ + d−), the Chernoff bound entails that E[γ1A2 ] ≤ d−1
+ if the

constant c is chosen large enough. Combining this estimate with (4.11), we get

E[|ψ(Zp)− ψ(Zq)|1A2 ] ≤ 2d−1
+ E|ηp,1 − ηq,1|. (4.12)

Finally, on A3 \ A2 we have

E[|ψ(Zp)− ψ(Zq)|1A3\A2 ] ≤ 4d+E|ηp,1 − ηq,1|P [γ+ − γ− ≤ 20] . (4.13)

Since γ± = Po(d±) and d+ − d− ≥ λ, the Chernoff bound yields P [γ+ − γ− ≤ 20] ≤ d−2
+ , if

c is large enough. Hence, (4.13) implies

E[|ψ(Zp)− ψ(Zq)|1A3\A2 ] ≤ 4d−1
+ E|ηp,1 − ηq,1|. (4.14)

Finally, the assertion follows from (4.4), (4.5), (4.10), (4.12) and (4.14). J

Proof of Proposition 2.5. The assertion follows from Lemmas 4.1 and 4.2 and the Banach
fixed point theorem. J
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