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Abstract
Contextuality is a key feature of quantum mechanics that provides an important non-classical
resource for quantum information and computation. Abramsky and Brandenburger used sheaf
theory to give a general treatment of contextuality in quantum theory [New Journal of Physics
13 (2011) 113036]. However, contextual phenomena are found in other fields as well, for example
database theory. In this paper, we shall develop this unified view of contextuality. We provide
two main contributions: first, we expose a remarkable connection between contexuality and
logical paradoxes; secondly, we show that an important class of contextuality arguments has a
topological origin. More specifically, we show that “All-vs-Nothing” proofs of contextuality are
witnessed by cohomological obstructions.
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1 Introduction

Contextuality is one of the key characteristic features of quantum mechanics. It has been
argued that it provides the “magic” ingredient enabling quantum computation [14]. There
have been a number of recent experimental verifications that Nature does indeed exhibit this
highly non-classical form of behaviour [33, 32].

The study of quantum contextuality has largely been carried out in a concrete, example-
driven fashion, which makes it appear highly specific to quantum mechanics. Recent work by
the present authors [3, 5] and others [8] has exposed the general mathematical structure of
contextuality, enabling more general and systematic results. It has also made apparent that
contextuality is a general and indeed pervasive phenomenon, which can be found in many
areas of classical computation, such as databases [1] and constraints [4]. The work in [3]
makes extensive use of methods developed within the logic and semantics of computation.

The key idea from [3] is to understand contextuality as arising where we have a family
of data which is locally consistent, but globally inconsistent. This can be understood, and
very effectively visualised (see Fig. 3) in topological terms: we have a base space of contexts
(typically sets of variables which can be jointly measured or observed), a space of data or
observations fibred over this space, and a family of local sections (typically valuations of the
variables in the context) in these fibres. This data is consistent locally, but not globally:
there is no global section defined on all the variables which reconciles all the local data.
In topological language, we can say that the space is “twisted”, and hence provides an
obstruction to forming a global section.
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This provides a unifying description of a number of phenomena which at first sight seem
very different:

Quantum contextuality. The local data arises from performing measurements on compat-
ible sets of observables. The fact that there is no global section corresponds to a no-go
result for a hidden-variable theory to explain the observable data.
Databases. The local data are the relation tables of the database. The fact that there is
no global section corresponds to the failure in general of the universal relation assumption
[11, 18].
Constraint satisfaction. The local data corresponds to the constraints, defined on subsets
of the variables. The fact that there is no global section corresponds to the non-existence
of a solution for the CSP.

In the present paper, we shall develop this unified viewpoint to give a logical perspective
on contextuality. In particular, we shall look at contextuality in relation to logical paradoxes:

We find a direct connection between the structure of quantum contextuality and classic
semantic paradoxes such as “Liar cycles” [10, 30].
Conversely, contextuality offers a novel perspective on these paradoxes. Contradict-
ory cycles of references give rise to exactly the form of local consistency and global
inconsistency we find in contextuality.

Mathematical structure
Sheaf theory [17] provides the natural mathematical setting for our analysis, since it is
directly concerned with the passage from local to global. In this setting, it is furthermore
natural to use sheaf cohomology to characterise contextuality. Cohomology is one of the
major tools of modern mathematics, which has until now largely been conspicuous by its
absence, both in theoretical computer science, and in quantum information. The use of
cohomology to characterise contextuality was initiated in [5]. In the present paper, we take
the cohomological approach considerably further, taking advantage of situations in which
the outcomes of observations have an algebraic structure. This applies, for example, in the
case of the standard Pauli spin observables, which have eigenvalues in Z2.

We study a strong form of contextuality arising from so-called “All-vs-Nothing” arguments
[20]. We give a much more general formulation of such arguments than has appeared
previously, in terms of local consistency and global inconsistency of systems of linear equations.
We also show how an extensive class of examples of such arguments arises in the stabiliser
fragment of quantum mechanics, which plays an important rôle in quantum error correction
[23] and measurement-based quantum computation [28].

We then show how all such All-vs-Nothing arguments are witnessed by the cohomological
obstruction to the extension of local sections to global ones previously studied in [5]. This
obstruction is characterised in more abstract terms than previously, using the connecting
homomorphism of the long exact sequence. Our main theorem establishes a hierarchy of
properties of probability models, relating their algebraic, logical and topological structures.

For further details and development of the ideas, see the full version of the paper [2].

2 The many faces of contextuality

We begin with the following scenario, depicted in Fig. 1 (a). Alice and Bob are agents
positioned at nodes of a network. Alice can access local bit registers a1 and a2, while Bob
can access local bit registers b1, b2. Alice can load one of her bit registers into a processing
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Figure 1 (a) Alice and Bob look at bits. (b) A source.

unit, and test whether it is 0 or 1. Bob can perform the same operations with respect to his
bit registers. They send the outcomes of these operations to a common target, which keeps a
record of the joint outcomes.

We now suppose that Alice and Bob perform repeated rounds of these operations. On
different rounds, they may make different choices of which bit registers to access, and they
may observe different outcomes for a given choice of register. The target can compile statistics
for this series of data, and infer probability distributions on the outcomes.

2.1 Logical forms of contextuality
While contextuality can exhibit itself at the level of probability distributions (see [3, 2]), here
we consider a stronger form of contextuality which exhibits itself at the level of the supports
of the distributions, highlighting a direct connection with logic.

Consider the tables in Fig. 2, which depict the kind of scenario we have been considering.
The entries are either 0 or 1. The idea is that a 1 entry represents a positive probability.
Thus we are distinguishing only between possible (positive probability) and impossible (zero
probability). In other words, the rows correspond to the supports of some (otherwise
unspecified) probability distributions. Note that only four entries of the Hardy table are filled
in. Our claim is that just from these entries, referring only to the supports, we can deduce
that there is no classical explanation for the behaviour recorded in the table. Moreover,
this behaviour can be realised in quantum mechanics [13], yielding a stronger form of Bell’s
theorem [6], due to Hardy [13].

What do “observables” observe?
Classically, we would take the view that physical observables directly reflect properties of
the physical system we are observing. These are objective properties of the system, which
are independent of our choice of which measurements to perform, i.e. of our measurement
context. More precisely, this would say that for each possible state of the system, there is
a function λ which for each measurement m specifies an outcome λ(m), independently of
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A B (0, 0) (1, 0) (0, 1) (1, 1)

a1 b1 1

a1 b2 0

a2 b1 0

a2 b2 0

A B (0, 0) (1, 0) (0, 1) (1, 1)

a1 b1 1 0 0 1

a1 b2 1 0 0 1

a2 b1 1 0 0 1

a2 b2 0 1 1 0

Figure 2 The Hardy paradox (left) and the PR box (right).

which other measurements may be performed. This point of view is called non-contextuality,
and may seem self-evident. However, this view is impossible to sustain in the light of our
actual observations of (micro)-physical reality.

Consider once again the Hardy table depicted in Fig. 2. Suppose there is a function λ
which accounts for the possibility of Alice observing value 0 for a1 and Bob observing 0
for b1, as asserted by the entry in the top left position in the table. Then this function λ
must satisfy λ(a1) = 0, λ(b1) = 0. Now consider the value of λ at b2. If λ(b2) = 0, then
this would imply that the event that a1 has value 0 and b2 has value 0 is possible. However,
this is precluded by the 0 entry in the table for this event. The only other possibility is that
λ(b2) = 1. Reasoning similarly with respect to the joint values of a2 and b2, we conclude,
using the bottom right entry in the table, that we must have λ(a2) = 0. Thus the only
possibility for λ consistent with these entries is λ :: a1 7→ 0, a2 7→ 0, b1 7→ 0, b2 7→ 1. But
this would require the outcome (0, 0) for measurements (a2, b1) to be possible, and this is
precluded by the table.

We are thus forced to conclude that the Hardy models are contextual. Moreover, we
can say that they are contextual in a logical sense, stronger than the probabilistic form we
saw with the Bell tables, since we only needed information about possibilities to infer the
contextuality of this behaviour.

Strong contextuality

Logical contextuality as exhibited by the Hardy paradox can be expressed in the following
form: there is a local assignment (in the Hardy case, the assignment a1 7→ 0, b1 7→ 0) which
is in the support, but which cannot be extended to a global assignment which is compatible
with the support. This says that the support cannot be covered by the projections of global
assignments. A stronger form of contextuality is when no global assignments are consistent
with the support at all. Note that this stronger form does not hold for the Hardy paradox.

Several much-studied constructions from the quantum information literature exemplify
strong contextuality. An important example is the Popescu–Rohrlich (PR) box [27] shown in
Fig. 2.

This is a behaviour which satisfies the no-signalling principle [27], meaning that the
probability of Alice observing a particular outcome for her choice of measurement (e.g.
a1 = 0), is independent of whether Bob chooses measurement b1 or b2; and vice versa. That
is, Alice and Bob cannot signal to one another, enforcing compatibility with relativistic
constraints.

In fact, there is provably no bipartite quantum-realisable behaviour of this kind which
is strongly contextual [15, 19]. However, as soon as we go to three or more parties, strong
contextuality does arise from entangled quantum states, as we shall see in §4.
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Figure 3 The Hardy table and the PR box as bundles.

Visualizing contextuality
The tables which have appeared in our examples can be displayed in a visually appealing
way which makes the fibred topological structure apparent, and forms an intuitive bridge to
the formal development of the sheaf-theoretic ideas in the next section.

First, we look at the Hardy table from Fig. 2, displayed as a “bundle diagram” on the
left of Fig. 3. Note that all unspecified entries of the Hardy table are set to 1.

What we see in this representation is the base space of the variables a1, a2, b1, b2. There
is an edge between two variables when they can be measured together. The pairs of co-
measurable variables correspond to the rows of the table. In terms of quantum theory, these
correspond to pairs of compatible observables. Above each vertex is a fibre of those values
which can be assigned to the variable – in this example, 0 and 1 in each fibre. There is an
edge between values in adjacent fibres precisely when the corresponding joint outcome is
possible, i.e. has a 1 entry in the table. Thus there are three edges for each of the pairs
{a1, b2}, {a2, b1} and {a2, b2}.

A global assignment corresponds to a closed path traversing all the fibres exactly once.
We call such a path univocal since it assigns a unique value to each variable. Note that there
is such a path, marked in blue; thus the Hardy model is not strongly contextual. However,
there is no such path which includes the edge displayed in red. This shows the logical
contextuality of the model.

Next, we consider the PR box displayed as a bundle on the right of Fig. 3. In this case,
the model is strongly contextual, and accordingly there is no univocal closed path.

Contextuality, logic and paradoxes
The arguments for quantum contextuality we have discussed may be said to skirt the borders
of paradox, but they do not cross those borders. The information we can gather from
observing the co-measurable variables is locally consistent, but it cannot in general be pieced
together into a globally consistent assignment of values to all the variables simultaneously.
Thus we must give up the idea that physically observable variables have objective, “real”
values independent of the measurement context being considered. This is very disturbing
for our understanding of the nature of physical reality, but there is no direct contradiction
between logic and experience. We shall now show that a similar analysis can be applied to
some of the fundamental logical paradoxes.
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A Liar cycle of length N is a sequence of statements of the following kind.

S1 : S2 is true, S2 : S3 is true, . . . , SN−1 : SN is true, SN : S1 is false.

For N = 1, this is the classic Liar sentence S : S is false. These sentences contain two features
which go beyond standard logic: references to other sentences, and a truth predicate. While
it would be possible to make a more refined analysis directly modelling these features, we
will not pursue this here, noting that it has been argued extensively and rather compellingly
in much of the recent literature on the paradoxes that the essential content is preserved
by replacing statements with these features by boolean equations [31, 10, 30]. For the Liar
cycles, we introduce boolean variables x1, . . . , xn, and consider the equations x1 = x2, . . . ,
xn−1 = xn, xn = ¬x1. The “paradoxical” nature of the original statements is now captured
by the inconsistency of these equations.

Note that we can regard each of these equations as fibered over the set of variables which
occur in it:

{x1, x2} : x1 = x2, . . . , {xn−1, xn} : xn−1 = xn, {xn, x1} : xn = ¬x1.

Any subset of up to n− 1 of these equations is consistent; while the whole set is inconsistent.
Up to rearrangement, the Liar cycle of length 4 corresponds exactly to the PR box. The

usual reasoning to derive a contradiction from the Liar cycle corresponds precisely to the
attempt to find a univocal path in the bundle diagram on the right of Fig. 3. To relate the
notations, we make the following correspondences between the variables of Fig. 3 and those
of the boolean equations: x1 ∼ a2, x2 ∼ b1, x3 ∼ a1, x4 ∼ b2. Thus we can read the equation
x1 = x2 as “a2 is correlated with b1”, and x4 = ¬x1 as “a2 is anti-correlated with b2”.

Now suppose that we try to set a2 to 1. Following the path in Fig. 3 on the right leads
to the following local propagation of values:

a2 = 1  b1 = 1  a1 = 1  b2 = 1  a2 = 0
a2 = 0  b1 = 0  a1 = 0  b2 = 0  a2 = 1

The first half of the path corresponds to the usual derivation of a contradiction from
the assumption that S1 is true, and the second half to deriving a contradiction from the
assumption that S1 is false.

We have discussed a specific case here, but the analysis can be generalised to a large
class of examples along the lines of [10, 30]. The tools from sheaf cohomology which we will
develop in the remainder of the paper can be applied to these examples. We plan to give an
extended treatment of these ideas in future work.

3 Sheaf formulation of contextuality

In this section we summarise the main ideas of the sheaf-theoretic formalism from [3]. In
§2.1 we saw that logical contextuality can be expressed in terms of a bundle of outcomes
over a base space of measurements and contexts. This idea can be formalized by regarding
the bundle as a sheaf.

For our purposes, it will be sufficient to view the base space as the discrete space on a finite
set X of variables.1 In the quantum case, these variables will be labels for measurements.

1 The fact that our examples involve a discrete base space X does not trivialise our approach, and
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The measurement contexts will be represented by a family M = {Ci}i∈I of subsets of X.
These are the sets of variables which can be measured together – in quantum terms, the
compatible families of observables. We assume thatM covers X, i.e.

⋃
M = X; hence we

callM a measurement cover. We shall also assume thatM forms an antichain, so these are
the maximal contexts. We also assume that all the variables have the same fibre, O, of values
or outcomes that can be assigned to them. Such a triple 〈X,M, O〉 is called a measurement
scenario. We define a presheaf of sets over P(X), namely E :: U 7−→ OU with restriction
E(U ⊆ U ′) : E(U ′) −→ E(U) :: s 7−→ s|U . This presheaf E is in fact a sheaf, called the sheaf
of events. Each s ∈ E(U) is a section, and, in particular, g ∈ E(X) is a global section.

Note that a probability table can be represented by a family {pC}C∈M with pC a
probability distribution on E(C) = OC , where contexts C correspond to the rows of the table.
Similarly, “possibility tables” such as the Hardy model and the PR box (Figs. 2 and 3) can
be represented by boolean distributions. This latter case, with which the logical and strong
forms of contextuality are concerned, can equivalently be represented by a subpresheaf S of
E , where for each context U ⊆ X, S(U) ⊆ OU is the set of all possible outcomes. Explicitly,
S is defined as follows, where supp (pC |U∩C) is the support of the marginal of pC at U ∩ C.

S(U) :=
{
s ∈ OU

∣∣ ∀C ∈M. s|U∩C ∈ supp (pC |U∩C)
}

Abstracting from this situation, we assume we are dealing with a sub-presheaf S of E with
the following properties:
E1. S(C) 6= ∅ for all C ∈M

(i.e. that any possible joint measurement yields some joint outcome), and moreover that
E2. S is flasque beneath the cover, meaning that S(U ⊆ U ′) : S(U ′) −→ S(U) is surjective

whenever U ⊆ U ′ ⊆ C for some C ∈M,
which by [3] amounts to saying that the underlying empirical model satisfies no-signalling.

E3. A compatible family for the coverM is a family {sC}C∈M with sC ∈ S(C), and such
that, for all C,C ′ ∈M: sC |C∩C′ = sC′ |C∩C′ . We assume that such a family induces a
global section in S(X). (This global section must be unique, since S is a subpresheaf of
E , hence separated).

What these conditions say is that S is determined by its values S(C) at the contexts C ∈M,
belowM by being flasque, and aboveM by the sheaf condition.

I Definition 1. By an empirical model on 〈X,M, O〉, we mean a subpresheaf S of E satisfying
(E1), (E2), and (E3).

In [3], we used the term “empirical model” for the probability table {pC}C∈M. In the
present paper, we shall only work with the associated support presheaf S, and so it is more
convenient to refer to this as the model.

We can use this formalisation to characterize contextuality as follows.

I Definition 2. For any empirical model S:
For C ∈M and s ∈ S(C), S is logically contextual at s, written LC(S, s), if s belongs to
no compatible family. S is logically contextual, written LC(S), if LC(S, s) for some s.

certainly does not mean that we are taking the cohomology of a discrete space! It is standard that in a
topological bundle, the interesting twisting occurs in the fibres, not in the base. A classic example is
the Möbius strip, displayed as a fibre bundle over the circle. The circle is not twisted! In our case, it is
clear from our examples that non-trivial twisting does occur. Moreover, our results in Section 6 will
clearly show the non-triviality of our cohomological obstructions.
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S is strongly contextual, written SC(S), if LC(S, s) for all s. Equivalently, it is strongly
contextual if it has no global section, i.e. if S(X) = ∅.

Note that, for every probability table {pC}C∈M that satisfies the no-signalling principle,
the supports of the distributions pC induce an empirical model S, and therefore logical or
strong contextuality can be characterized as above. This formulation of contextuality makes
it natural to use sheaf cohomology, as we will see in §5.

4 All-vs-Nothing arguments

Quantum theory provides many instances of strong contextuality. Among the first to observe
quantum strong contextuality (though not in the general terms that we do) was Mermin [21],
who showed the GHZ state to be strongly contextual using a kind of argument he dubbed
‘all versus nothing’. We show in §4.1 that arguments of this type can in fact be used to prove
strong contextuality for a large class of states in quantum theory, particularly in stabiliser
quantum mechanics, which plays a crucial rôle in quantum computation. Moreover, in §4.2,
we give a much more general formulation of this type of argument that can be used to show
strong contextuality for a much larger class of models.

4.1 All-vs-Nothing for quantum theory
The GHZ state is a tripartite state of qubits, defined as (|↑↑↑〉+ |↓↓↓〉)/

√
2. We assume that

each party i = 1, 2, 3 can perform Pauli measurements in {Xi, Yi}, and each measurement
has outcomes in O = Z2 = {0, 1}.2 Then, following Mermin’s argument, the possible joint
outcomes satisfy these parity equations:

X1 ⊕ Y2 ⊕ Y3 = 1, Y1 ⊕ Y2 ⊕X3 = 1, Y1 ⊕X2 ⊕ Y3 = 1, X1 ⊕X2 ⊕X3 = 0.

These equations are inconsistent because, regardless of the outcomes assigned to the observ-
ables X1, . . . , Y3, the left-hand sides sum to 0 (since each variable occurs twice) whereas the
right-hand sides sum to 1. This shows that the model is strongly contextual, as there is no
global assignment of outcomes to observables consistent with the observed local assignments.

The essence of the argument is that the possible local assignments satisfy systems of
parity equations that admit no global solution. We call this an All-vs-Nothing argument.

In fact, such arguments arise naturally from a much larger class of states in stabiliser
quantum theory [23]. Consider the Pauli n-group Pn, whose elements are n-tuples of Pauli
operators (from {X,Y, Z, I}) with a global phase from {±1,±i}.

I Definition 3. An AvN triple in Pn is a triple 〈e, f, g〉 of elements of Pn with global phases
+1, which pairwise commute, and which satisfy the following conditions:
A1. For each i = 1, . . . , n, at least two of ei, fi, gi are equal.
A2. The number of i such that ei = gi 6= fi, all distinct from I, is odd.

Mermin’s argument, and the other All-vs-Nothing arguments which have appeared in the
literature, can be seen to come down to exhibiting AvN triples.

2 Although the eigenvalues of the Pauli matrices are +1 and −1, we relabel +1, −1, × as 0, 1, ⊕,
respectively. The eigenvalues of a joint measurements A1 ⊗A2 ⊗A3 are the products of the eigenvalues
of the measurements at each site, so they are also ±1. As such, in the usual representation, these joint
measurements are still dichotomic and only distinguish joint outcomes up to parity. Mermin’s argument
shows that this information is sufficient to derive strong contextuality.
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I Theorem 4. Let S be the subgroup of Pn generated by an AvN triple, and VS the subspace
stabilised by S. For every state |ψ〉 in VS, the empirical model realised by |ψ〉 under the Pauli
measurements admits an All-vs-Nothing argument.

Proof. First, we recall the quantum mechanics formula for the expected value of an observable
A on a state v:

〈A〉v = 〈v|A|v〉.

Note that

〈v|A|v〉 = 1 ⇐⇒ A|v〉 = |v〉.

Thus A stabilises the state v iff the expected value is 1. Suppose that A is a dichotomic
observable, with eigenvalues +1, −1 (see footnote 3), and v is a state it stabilises. The
support of the distribution on joint outcomes obtained by measuring A on v must contain
only outcomes of even parity; while if −A stabilises v, then the support will contain only
outcomes of odd parity. If A = P1 · · ·Pn in Pn, the former case translates into the equation

x1 ⊕ · · · ⊕ xn = 0

where we associate the variable xi with Pi; while in the latter case, it corresponds to the
equation

x1 ⊕ · · · ⊕ xn = 1.

If the set of equations satisfied by a state v stabilised by a subgroup S of Pn is inconsistent,
we say that v admits an All-vs-Nothing argument with respect to the measurements h with
global phase +1 such that either h or −h is in S.

We now show that any state v in the subspace VS stabilised by the subgroup S generated
by an AvN triple 〈e, f, g〉 admits an All-vs-Nothing argument. First, by the algebra of the
Pauli matrices, we see from (A1) that if {ei, fi, gi} = {P,Q}, with at least two equal to P ,
the componentwise product eifigi will, disregarding global phase, be Q. By (A2), we see
that the product efg = −h, an element of Pn with global phase −1, which translates into
a condition of odd parity on the support of any state stabilised by these operators for the
measurement h. On the other hand, condition (A1) implies that under any global assignment
to the variables, we can cancel the repeated items in each column, and deduce an even parity
for h. J

If e, f, g have linearly independent check vectors, they generate a subgroup S such that VS
has dimension 2n−3 [23, 9]. Thus we obtain a large class of states admitting All-vs-Nothing
arguments.

4.2 Generalized All-vs-Nothing arguments
Despite their established use in the quantum literature, All-vs-Nothing arguments as con-
sidered above do not exist for all strongly contextual models. However, a natural generalization
applies to more models. For instance, the model called ‘box 25’ in [26] admits no parity
AvN argument, but it still satisfies the following equations, in which the coefficients of each
variable on the left-hand sides add up to a multiple of 3, whereas the right-hand sides do not:

a0 + 2b0 ≡ 0 mod 3 a1 + 2c0 ≡ 0 mod 3
a0 + b1 + c0 ≡ 2 mod 3 a0 + b1 + c1 ≡ 2 mod 3
a1 + b0 + c1 ≡ 2 mod 3 a1 + b1 + c1 ≡ 2 mod 3

CSL 2015
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This example suggests using a general Zn instead of just Z2. But once we realize that it
is the ring structure of Zn which plays the key rôle, we can obtain an even more general
version.

Fix a ring3 R, and a measurement scenario 〈X,M, R〉.

I Definition 5. An R-linear equation is a triple φ = 〈C, a, b〉 with C ∈M, a : C −→ R and
b ∈ R. Write Vφ := C. An assignment s ∈ E(C) satisfies φ, written s |= φ, if∑

m∈C
a(m)s(m) = b .

This lifts to the level of systems of equations, or theories, and sets of assignments, or “models”:
A system of equations Γ has a set of satisfying assignments,M(Γ) := {s ∈ E(C) | ∀φ ∈ Γ. s |= φ}.
A set of assignments S ⊆ E(C) determines anR-linear theory, TR(S) := {φ | ∀s ∈ S. s |= φ}.

I Definition 6. Given an empirical model S, define its R-linear theory to be

TR(S) :=
⋃
C∈M

TR(S(C)) = {φ | ∀s ∈ S(Vφ). s |= φ} .

We say that S is AvNR, written AvNR(S), if TR(S) is inconsistent, meaning that there is no
global assignment g : X −→ R such that ∀φ ∈ TR(S). g|Vφ |= φ.

I Proposition 7. An AvNR model is strongly contextual.

Proof. Suppose S is not strongly contextual, i.e. that there is some g ∈ S(X). Then, for
each φ ∈ TR(S), g|Vφ ∈ S(Vφ), hence g|Vφ |= φ. Thus, TR(S) is consistent. J

4.3 Affine closures
We now consider the relationship between R-linear theories and empirical models more closely.
First, we focus on a single context, or set of variables, U ⊆ X. The maps between theories
and models, T : PE(U) −−→←−− Theories : M, form a Galois connection, S ⊆M(Γ) iff T(S) ⊇ Γ,
corresponding to the lifting of the satisfaction relation to the powersets.

We consider the closure operator M ◦ T, which gives the largest set of assignments whose
theory is still the same. First, note that E(U) = RU is a (free) R-module (and, when R

is a field, a vector space over R). Given solutions s1, . . . , st to a linear equation, an affine
combination of them is again a solution4. In other words, the set of solutions M(Γ) to a
system of equations Γ is an affine submodule of E(U). This means that aff ≤M ◦ T, where
aff S stands for the affine closure of a set S ⊆ E(U):

aff S :=
{

t∑
i=1

cisi

∣∣∣∣∣ si ∈ S, ci ∈ R,
t∑
i=1

ci = 1
}

.

In the particular case of vector spaces (i.e. when R is a field), then aff = M ◦ T; affine
subspaces are exactly the possible solution sets of a theory, and there cannot exist two
different affine subspaces with the same theory, as may happen for general rings R.

We now lift this discussion to the level of empirical models. The natural thing to do is to
take the affine closure at each context C ∈M. However, one must be careful to ensure that

3 All rings considered in this paper will be commutative and with unit.
4 Affineness is required because the equations may be inhomogeneous.



S. Abramsky, R. S. Barbosa, K. Kishida, R. Lal, and S. Mansfield 221

this yields a well-defined empirical model. First, note that the affine closure operation above
is natural on U : it gives a natural transformation aff : P ◦ E −→ P ◦ E , meaning that

(aff S)|U ′ = aff (S|U ′) . (1)

This follows easily from the coordinatewise definitions of the module operations on E(U).

I Definition 8. Let S be an empirical model on the scenario 〈X,M, R〉. We define its affine
closure, Aff S, as the empirical model given by (Aff S)(C) := aff (S(C)) at each C ∈M.

The property (1) guarantees that Aff S can be consistently defined to be flasque below the
cover as (Aff S)(U) = aff (S(U)). This equality, however, does not hold for U above the
cover. In particular, it may be that S(X) = ∅ (S strongly contextual), but (Aff S)(X) 6= ∅.

Since TR(S) is given as the union of the theories at each maximal context, the Galois
connection above lifts to the level of empirical models. One can therefore relate the notion
of S being AvNR to the strong contextuality of the affine closure of S.

I Proposition 9. Let S be an empirical model on 〈X,M, R〉. Then, AvN(S)⇒ SC(Aff S).
If R is a field, the converse also holds.

Proof. From aff ≤M◦T, TR(S) = TR(Aff S). Hence, if S is AvNR, then so is Aff S, implying
by Proposition 7 that it is strongly contextual.

For the converse in the case that R is a field, suppose that TR(S) is consistent. This
means that there is a global assignment g : X −→ R satisfying all the equations in TR(S).
But since for fields MTR(S) = Aff S, we have that g ∈ (Aff S)(X), hence the model Aff S is
not strongly contextual. J

5 Cohomology witnesses contextuality

The logical forms of contextuality are characterised by the existence of obstructions to the
extension of local sections to global compatible families. Thus, it seems natural to apply
the tools of sheaf cohomology, which are well-suited to identifying obstructions of this kind,
in order to provide cohomological witnesses for contextuality. This idea was put forward in
previous work by the authors [5], the main points of which we now summarise. In the next
section, we shall prove that such cohomological witnesses of contextuality exist for the whole
class of AvNR models.

5.1 Čech cohomology
Let X be a topological space,M be an open cover of X, and let F : O(X)op −→ AbGrp be a
presheaf of abelian groups on X. We shall be particularly concerned with the case where X
is a set of measurements, andM is the cover of maximal contexts of a measurement scenario.

I Definition 10. A q-simplex of the nerve of M, is a tuple σ = 〈C0, . . . , Cq〉 of elements
of M with non-empty intersection, |σ| := ∩qi=0Ci 6= ∅. We write N (M)q for the set of
q-simplices.

The 0-simplices are simply the elements of the coverM, and the 1-simplices are the pairs
〈Ci, Cj〉 of intersecting elements of the cover. Given a q + 1-simplex σ = 〈C0, . . . , Cq+1〉, we
can obtain q-simplices

∂j(σ) := 〈C0, . . . , Ĉj , . . . , Cq+1〉, 0 ≤ j ≤ q + 1

by omitting one of the elements. Note that |σ| ⊆ |∂j(σ)|, and so the presheaf F has a
restriction map ρ|∂j(σ)|

|σ| : F(|∂j(σ)|) −→ F(|σ|). We now define the Čech cochain complex.
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I Definition 11. For each q ≥ 0, the abelian group of q-cochains is defined by:

Cq(M,F) :=
∏

σ∈N (M)q
F(|σ|) .

The q-coboundary map, δq : Cq(M,F) −→ Cq+1(M,F), is defined as follows: for each
ω = (ω(τ))τ∈N (M)q ∈ Cq(M,F), and σ ∈ N (M)q+1,

δq(ω)(σ) :=
q+1∑
j=0

(−1)jρ|∂j(σ)|
|σ| ω(∂jσ) .

The augmented Čech cochain complex is the sequence

0 // C0(M,F) // C1(M,F) // · · · .

I Proposition 12. For each q, δq is a group homomorphism, and we have δq+1 ◦ δq = 0.

I Definition 13. For each q ≥ 0, we define:
the q-cocycles Zq(M,F) := ker δq;
the q-coboundaries Bq(M,F) := im δq−1.

By Proposition 12, these are subgroups of Cq(M,F) with Bq(M,F) ⊆ Zq(M,F).

I Definition 14. Ȟq(M,F), the q-th Čech cohomology group, is defined as the quotient
Zq(M,F)/Bq(M,F).

Note that B0(M,F) = 0, and hence Ȟ0(M,F) ∼= Z0(M,F). A 0-cochain ω is a family
{rC ∈ F(C)}C∈M. Since, for each 1-simplex σ = (C,C ′),

δ0(ω)(σ) = rC |C∩C′ − rC′ |C∩C′ ,

ω is a cocycle (i.e. satisfies δ0(c) = 0) if and only if rC |C∩C′ = rC′ |C∩C′ for all maximal
contexts C,C ′ ∈M with non-empty intersection.5

5.2 Relative cohomology and obstructions
In order to solve the problem of extending a local section to a global compatible family, we
need to consider the relative cohomology of F with respect to an open subset U ⊆ X. We
will assume that the presheaf is flasque beneath the cover (as is the case with S).

We define two auxiliary presheaves related to F . First, F|U is defined by

F|U (V ) := F(U ∩ V ) .

5 The condition for a 0-cochain ω = {rC} to be a cocycle almost states that r is a compatible family,
except that it does not require compatibility over restrictions to the empty context. For our present
purposes, we are only interested in connected covers (since one can always reduce the analysis of a
scenario to its connected components), in which case the exception is irrelevant. This is because, given
any two contexts C and C′ with empty intersection, there exists a sequence of contexts

C = C0, C1, . . . , Cn = C′

such that Ci ∩ Ci+1 6= ∅ for all i. Then, for any i, we have

rCi |∅ = rCi |Ci∩Ci+1 |∅ = rCi+1 |Ci∩Ci+1 |∅ = rCi+1 |∅ .

Consequently, rC |C∩C′ = rC |∅ = rC′ |∅ = rC′ |C∩C′ , and so the family is compatible.
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There is an evident presheaf map p : F −→ F|U given as

pV : F(V ) −→ F(U ∩ V ) :: r 7−→ r|U∩V .

Secondly, FŪ is defined by FŪ (V ) := ker (pV ). Thus, we have an exact sequence of presheaves

0 // FŪ // F
p // F|U . (2)

The relative cohomology of F with respect to U is defined to be the cohomology of the presheaf
FŪ .

We now see how this can be used to identify cohomological obstructions to the ex-
tension of a local section. First, recall that in light of Proposition 12, the image of δ0,
B1(M,F), is contained in Z1(M,F). Therefore, the map δ0 can be corestricted to a map
δ̃0 : C0(M,F) −→ Z1(M,F), whose kernel is Z0(M,F) ∼= Ȟ0(M,F) and whose cokernel
is Z1(M,F)/B1(M,F) ∼= Ȟ1(M,F). In summary, we have:

Ȟ0(M,F) ker δ̃0
// C0(M,F) δ̃0

// Z1(M,F) coker δ̃0
// Ȟ1(M,F) .

We now lift the exact sequence of presheaves (2) considered above to the level of cochains. The
map C0(M,F) −→ C0(M,F|U ) is surjective due to flaccidity beneath the cover. Putting
this together with the previous observation, we obtain the diagram below:

0 // C0(M,FŨ ) //

δ̃0

��

C0(M,F) //

δ̃0

��

C0(M,F|U ) //

δ̃0

��

0

0 // Z1(M,FŨ ) // Z1(M,F) // Z1(M,F|U )

whose two rows are short exact sequences. The snake lemma of homological algebra says
that there exists a connecting homomorphism turning the kernels of the first row followed by
the cokernels of the second into a long exact sequence, as shown by the following diagram.

Ȟ0(M,FŨ ) //

��

Ȟ0(M,F) //

��

Ȟ0(M,F|U )

��

//

0 // C0(M,FŨ ) //

��

C0(M,F) //

��

C0(M,F|U ) //

��

0

0 // Z1(M,FŨ ) //

��

Z1(M,F) //

��

Z1(M,F|U )

��
Ȟ1(M,FŨ ) // Ȟ1(M,F) // Ȟ1(M,F|U )

We are interested in the case where U is an element C0 of the coverM. Then Ȟ0(M,F|C0)
is clearly isomorphic to F(C0), meaning that its elements are the local sections at C0.

I Definition 15. Let C0 be an element of the coverM and r0 ∈ F(C0). Then, the cohomo-
logical obstruction of r0 is the element γ(r0) of Ȟ1(M,FC̃0

), where γ : Ȟ0(M,F|U ) −→
Ȟ1(M,FŨ ) is the connecting homomorphism.
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The following proposition justifies regarding these as obstructions.

I Proposition 16. Let the coverM be connected, C0 ∈M, and r0 ∈ F(C0). Then, γ(r0) = 0
if and only if there is a compatible family {rC ∈ F(C)}C∈M such that rC0 = r0.

For a proof of this proposition, see [2].

I Remark. Note that our cohomology obstruction lives in the first cohomology group. In
ordinary homology, the lower groups capture low-dimensional behaviour, and to capture
higher-dimensional behaviour, one must pass to the higher homology groups. The situation
is quite different in sheaf cohomology; there, it is standard that it is the first cohomology
group which captures obstructions to extending local sections to global ones. Of course, it
would also be of interest to find natural uses for the higher cohomology groups.

5.3 Witnessing contextuality
We now apply these tools to analyse the possibilistic structure of empirical models. The
cohomological obstructions of Definition 15 would appear to be ideally suited to the problem
of identifying contextuality. The caveat is that, in order to apply those tools, it is necessary
to work over a presheaf of abelian groups, whereas we are concerned with S, which is merely
a presheaf of sets. We first consider how to build an abelian group from a set.

I Definition 17. Given a ring R, we define a functor FR : Set −→ R-Mod to the category
of R-modules (and thus, in particular, to the category of abelian groups). For each set X,
FR(X) is the set of functions φ : X −→ R of finite support. Given a function f : X −→ Y ,

FRf : FRX −→ FRY :: φ 7−→ λy.
∑

f(x)=y

φ(x) .

This is easily seen to be functorial. We regard a function φ ∈ FR(X) as a formal R-linear
combination of elements of X:

∑
x∈X φ(x) · x. There is a natural embedding x 7→ 1 · x of X

into FR(X), which we shall use implicitly throughout. In fact, FR(X) is the free R-module
generated by X; and in particular, FZ(X) is the free abelian group generated by X.

Given an empirical model S defined on the measurement scenario 〈X,M, O〉, we shall
work with the (relative) Čech cohomology for the abelian presheaf FRS for some ring R.

I Definition 18. With each local section, s ∈ S(C), in the support of an empirical model,
we associate the cohomological obstruction γFRS(s).

If there exists some local section s0 ∈ S(C0) such that γFRS(s0) 6= 0, we say that S is
cohomologically logically contextual, or CLCR(S). We also use the more specific notation
CLCR(S, s0).
If γFRS(s) 6= 0 for all local sections, we say that e is cohomologically strongly contextual,
or CSCR.

The following justifies considering cohomological obstructions as witnessing contextuality.

I Proposition 19 ([5, Proposition 4.3]). CLCR implies LC, and CSCR implies SC.

Proof. Suppose an empirical model e is not logically contextual. Then for every maximal
context C0 ∈M and every s0 ∈ S(C0), there is a compatible family {sC ∈ S(C)}C∈M with
sc0 = s0. As S(C) embeds into FRS(C), {sC} is also a compatible family in FRS. Hence,
by Proposition 16, we conclude that γ(s) = 0. The same argument can be applied to a single
section witnessing the failure of strong contextuality. J
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Thus we have a sufficient condition for contextuality in the existence of a cohomological
obstruction. Unfortunately, this condition is not, in general, necessary. It is possible that
“false positives” arise in the form of families {rC ∈ FRS(C)}C∈M which are not bona fide
global sections in S(X) in which genuine global sections do not exist.

Several examples are discussed in detail in [5]. It is shown that cohomological obstructions
over Z provide witnesses of strong contextuality for a number of well-studied models, including:
the GHZ model [12], the Peres–Mermin “magic” square [25, 22], and the 18-vector Kochen–
Specker model [7], the PR box [27], and the Specker triangle [29, 16]. These results will be
subsumed and greatly generalised in §6.

The coefficients for cohomology can be taken from any commutative ring R. Here is how
the cohomological obstructions obtained with different rings relate to each other:

I Proposition 20. Let h : R′ −→ R be a ring homomorphism. Then, for any C ∈ M and
s ∈ S(C), γFR′S(s) = 0 implies γFRS(s) = 0, and so CSCR ⇒ CSCR′ and CLCR ⇒ CLCR′ .

Proof. If h : R −→ R′ is a ring homomorphism, then for any set X there is a map

Fh : FRX −→ FR′X :: r 7−→ h ◦ r .

which is a group homomorphism. Moreover, this assignment is natural in X. Hence, this
determines a presheaf map FRS −→ FR′S, and compatible families on the former are
mapped to compatible families on the latter. Since the map Fh above leaves the elements
of the generating set fixed, the condition that the family agrees with s0 at context C0 is
preserved. J

We conclude this section with a remark. If {rC ∈ FRS(C)}C∈M is a compatible family,
then the sum of the coefficients of the formal linear combinations rC is the same for all C.
This holds because S(∅) = E(∅) = {?}; so that for any C ∈M, we have

rC |∅(?) =
∑

s∈S(C)

rC(s) ;

i.e. compatibility forces all these restrictions to the empty context to be the same. Therefore,
when the obstruction of a section s0 ∈ S(C0) (more precisely, of the linear combination 1 ·s0 ∈
FRS(C0)) vanishes, the corresponding family of linear combinations {rC ∈ FRS(C)}C∈M
must in fact contain only affine combinations – those whose coefficients sum to one.

6 Cohomology and AvN arguments

The aim of this section is to show that if an empirical model is AvNR, then the cohomological
obstructions witness its strong contextuality. Moreover, it is enough to consider cohomology
with coefficients in the ring R itself.

The result is stated as follows.

I Theorem 21. Let S be an empirical model on 〈X,M, R〉. Then:

AvNR(S) ⇒ SC(Aff S) ⇒ CSCR(S) ⇒ CSCZ(S) ⇒ SC(S) .

The first of the implications was already established in Proposition 9, the third in
Proposition 20, and the fourth in Proposition 19.

In order to prove the second, we use the properties of the functor FR : Set −→ R-Mod
that constructs the R-module of formal R-linear combinations of elements of a set X. As
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already mentioned, FRX is the free R-module generated by X. This means that it is the left
adjoint of the forgetful functor U : R-Mod −→ Set.

Set

FR
**

⊥ R-Mod
U

ii

The unit η of this adjunction is the obvious embedding, which we have been using, taking an
element x ∈ X to the formal linear combination 1 ·x. The counit is the natural transformation
ε : FR ◦ U ⇒ IdR-Mod given, for each R-module M , by the evaluation map

εM : FRU(M) −→M :: r 7−→
∑
x∈M

r(x)x .

We are interested in taking formal linear combinations of subsets of elements. Let us fix
a module M and a subset S ⊆ U(M). Then the map εM , by virtue of being an R-module
homomorphism, maps the formal linear combinations of elements of S, FR(S), which coincide
with the linear span in FRU(M) of η[S] = {1 · s | s ∈ S}, to the linear span of S in M ,
spanM S. Moreover, it maps the formal affine combinations F aff

R (S) = affFRU(M) η[S] to the
affine closure affM S.

Recall that we are dealing with measurement scenarios whose outcomes are identified
with a ring R, hence where E(U) are themselves R-modules, i.e. E : P(X)op −→ R-Mod. As
such, the counit can be horizontally composed to yield a natural transformation, or map of
presheaves, idE ∗ ε : FR ◦ U ◦ E −→ E , given at each context U ⊆ X by εE(U) : FRUE(U) −→
E(U). Now, given an empirical model S, we can apply the observation regarding subsets of
the module at each context. But, since affE(U) S(U) = (Aff S)(U) by definition for U beneath
the cover, and since containment still holds above it, we conclude that the presheaf map
restricts as follows:

F aff
R US

��

// // FRUS

��

// // FRUE

ε

��
Aff S // // SpanS // // E

Proof of Theorem 21. We show the contrapositive. Suppose that S is not CSCR, i.e. that
γFRS(s0) = 0 for some s0 ∈ S(C0). Then, by Proposition 16, this is equivalent to the
existence of a compatible family {rC ∈ FRS(C)}C∈M with rC0 = s0. As observed at the end
of §5.3, all these rC must be formal affine combinations of elements in S(C). But then the
presheaf map F aff

R US −→ Aff S above pushes this compatible family to a compatible family
of Aff S, implying that the model Aff S is not strongly contextual. J

Essentially the same strategy can be used to prove an analogous result for logical
contextuality. The notion of inconsistent theory has to be adapted: instead of asking whether
there is a global assignment satisfying all the equations in the theory, we can ask, given a
partial assignment s0 ∈ E(C0) whether there is such a global assignment with the additional
requirement that it restricts to s0. This can be seen as a generalisation of the notion of robust
constraint satisfaction studied in [4] from the complexity perspective. We write AvNR(e, s0)
if the theory of S has no solution extending s0. Then we have:

AvNR(e, s0) ⇒ LC(Aff S, s0) ⇒ CLCR(S, s0) ⇒ CLCZ(S, s0) ⇒ LC(S, s0) .
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Our results show that, where there is an cohomological obstruction, it witnesses genuine
contextuality. On the other hand, the important class of AvN examples are all captured by
cohomology. It is worth emphasising that all known quantum examples of strong contextuality
are of AvN type, hence all such examples are captured by cohomology.

Discussion
We have shown that for a large class of models, their logical or strong contextuality is
witnessed by cohomology. This subsumes and greatly generalises the results in [5]. Moreover,
these models include a large class of concrete constructions arising from stabiliser quantum
mechanics, going well beyond existing results of this kind in the quantum information
literature. It remains an objective for future work to achieve a precise characterisation of
what cohomology detects, and more generally full equivalences between the various ways of
expressing contextuality. Note that, as already mentioned, the first implication in Theorem 21
can be reversed under the assumption that R is a field. If we use a more abstract notion of
equational consistency, in terms of quotient modules rather than equations expressed in a
“coordinatized” form, then it can be reversed even for general rings. The point of taking the
ground ring to be a field is exactly that it allows coordinatization.

We also remark that the cohomological methods we have developed can be applied to an
elaborated version of the treatment of logical paradoxes we gave in §2, following the lines
of [10, 30]. We aim to give a detailed treatment of this “cohomology of paradox” in future
work. We also note the intriguing resemblances, on the conceptual level at least, to the work
of Roger Penrose in [24].
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