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Abstract
The Subset Sum problem asks whether a given set of n positive integers contains a subset
of elements that sum up to a given target t. It is an outstanding open question whether the
O∗(2n/2)-time algorithm for Subset Sum by Horowitz and Sahni [J. ACM 1974] can be beaten
in the worst-case setting by a “truly faster”, O∗(2(0.5−δ)n)-time algorithm, with some constant
δ > 0. Continuing an earlier work [STACS 2015], we study Subset Sum parameterized by the
maximum bin size β, defined as the largest number of subsets of the n input integers that yield
the same sum. For every ε > 0 we give a truly faster algorithm for instances with β ≤ 2(0.5−ε)n, as
well as instances with β ≥ 20.661n. Consequently, we also obtain a characterization in terms of the
popular density parameter n/ log2 t: if all instances of density at least 1.003 admit a truly faster
algorithm, then so does every instance. This goes against the current intuition that instances
of density 1 are the hardest, and therefore is a step toward answering the open question in the
affirmative. Our results stem from a novel combinatorial analysis of mixings of earlier algorithms
for Subset Sum and a study of an extremal question in additive combinatorics connected to the
problem of Uniquely Decodable Code Pairs in information theory.
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1 Introduction

The Subset Sum problem and its generalization to the Knapsack problem are two of the
most famous NP-complete problems. In the Subset Sum problem, we are given positive
integers w1, w2, . . . , wn, t ∈ Z as input, and need to decide whether there exists a subset
X ⊆ [n] with

∑
j∈X wj = t. In the Knapsack problem, we are additionally given integers

v1, v2, . . . , vn and are asked to find a subset X ⊆ [n] maximizing
∑
j∈X vj subject to the

constraint
∑
j∈X wj ≤ t. While the study of Subset Sum is, among others, motivated by

cryptographic applications or balancing problems, Knapsack has numerous applications
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in combinatorial optimization. We study the exact worst-case time complexity of these
problems. The earliest and probably most important algorithms for both problems are simple
applications of dynamic programming, pioneered by Bellman [5], solving both problems in
O∗(t) time (where the O∗(·) notation suppresses factors polynomial in the input size). In
terms of n, the best algorithms for both problems are due to Schroeppel and Shamir [18],
using O∗(2n/2) time and O∗(2n/4) space, based on the meet-in-the-middle technique by
Horowitz and Sahni [9]. Nederlof et al. [16] show that there is an O∗(Tn)-time, O∗(Sn)-space
algorithm for Subset Sum if and only if there is an O∗(Tn)-time, O∗(Sn)-space algorithm
for Knapsack. A major open question since the paper by Horowitz and Sahni [9] is whether
we can do “truly faster” for both problems:

Open Question 1: Can Subset Sum be solved in O∗
(
2(0.5−δ)n) time for some constant

δ > 0?

In this paper we discuss Monte Carlo algorithms in the following sense: the algorithm
never returns false positives and constructs solutions of yes-instances with at least inverse
polynomial probability. All randomized algorithms discussed in this paper are of this type,
but for Open Question 1 we would be satisfied with two-sided error as well.

Zooming out, one motivation of this question is as follows. It is commonly believed that
there are no polynomial time or even sub-exponential time algorithms for Subset Sum.
So how fast can the fastest algorithm be? It would be an elegant situation if the simple
meet-in-the-middle algorithm was optimal. But this would also be quite surprising, and so
we aim to show that at least this is not the case.

In 2010, Howgrave-Graham and Joux [10] gave an algorithm that answered Open Question
1 in the affirmative in an average case setting. To state their result, let us describe the
setting where it applies. The density of a Subset Sum instance is defined as n/ log2 t. A
random instance of density d > 0 is constructed by fixing t ≈ 2n/d and picking the integers
w1, . . . , wn, t independently and uniformly at random between 1 and 2n/d. Howgrave-Graham
and Joux [10] showed that random instances of density 1 can be solved in O∗(20.311n) time,
and later this has been improved to O∗(20.291n) time by Becker et al. [4]. These results
resolve Open Question 1 in the average case setting since Impagliazzo and Naor [11] showed
that random instances are the hardest when they have density 1. Indeed, a vast body of
research has given better algorithms for random instances with density deviating from 1, like
reductions of sparse instances to the shortest vector problem (e.g. [14, 6]) and the algorithm
by Flaxman and Przydatek [7].

The algorithms discussed thus far all use exponential space, which can be a serious
bottleneck. Therefore many studies also emphasize the setting where the algorithm is
restricted to using polynomial space. It is known that the running time of the dynamic
programming based algorithms can be achieved also in polynomial space: Lokshtanov and
Nederlof [15] give polynomial space algorithms solving Subset Sum in O∗(t) time and
Knapsack in pseudo-polynomial time. On the other hand, in terms of n, no polynomial
space algorithm significantly faster than naïvely going through all 2n subsets is known, and
the following has been stated as an open problem by a number of researchers (see e.g. [20, 8]):

Open Question 2: Can Subset Sum be solved in polynomial space and O∗
(
2(1−δ)n)

time for some constant δ > 0?
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1.1 Our results
We aim to make progress on Open Question 1, and show that a large class of instances can
be solved truly faster. An optimist may interpret this as an indication that truly faster
algorithms indeed exist, while a pessimist may conclude the remaining instances must be the
(strictly) hardest instances.

Algorithmic Results. To define classes of instances that admit truly faster algorithms, we
consider several natural parameters. The key parameter that seems to capture the range
of our algorithmic technique the best is the maximum bin size β(w) = maxx∈Z |{S ⊆ [n] :∑
i∈S wi = x}|. Our main technical result is:

I Theorem 1.1. There exists a Monte Carlo algorithm that, for any 0 ≤ ε ≤ 1/6, solves all
instances of Subset Sum with β(w) ≤ 2(0.5−ε)n in O∗

(
2(0.5−ε/4+3ε2/4)n) time.

We have not optimized the precise constants in Theorem 1.1 – the main message is that
any instance with bin size up to 2(0.5−ε)n can be solved in time 2(0.5−Ω(ε))n. For ε ≥ 1/6, the
running time of 223n/48 obtained for ε = 1/6 is still valid since 2(0.5−1/6)n remains an upper
bound on β(w). In a previous work [2], we solved Subset Sum in time O∗(20.3399nβ(w)4),
which is faster than Theorem 1.1 for small β(w), but Theorem 1.1 shows that we can beat
the meet-in-the-middle bound for a much wider class of instances.

From the other end, we also prove that when the maximum bin size becomes too large,
we can again solve Subset Sum truly faster:

I Theorem 1.2. There exist a constant δ > 0 and a deterministic algorithm that solves all
instances of Subset Sum with β(w) ≥ 20.661n in O∗

(
2(0.5−δ)n) time.

Combinatorial Results. Given Theorem 1.1, the natural question is how instances with
β(w) ≥ 20.5n look like. This question is an instantiation of the inverse Littlewood-Offord
problem, a subject well-studied in the field of additive combinatorics. Ideally we would like
to find structural properties of instances with β(w) ≥ 20.5n, that can be algorithmically
exploited by other means than Theorem 1.1 in order to resolve Open Question 1 in the
affirmative. While there is a large amount of literature on the inverse Littlewood-Offord
problem, the typical range of β(w) studied there is β(w) = 2n/ poly(n) which is not relevant
for our purposes. However, we did manage to determine additional properties that any
instance that is not solved by Theorem 1.1 must satisfy.

In particular, we study a different natural parameter, the number of distinct sums
generated by w, defined as |w(2[n])| = {w(X) : X ⊆ [n]} (where we denote w(X) =

∑
i∈X wi).

This parameter can be viewed as a measure of the “true” density of an instance, in the
following sense. An instance with density d = n/ log2 t has |w(2[n])| ≤ n2n/d (assuming
without loss of generality that t ≤ maxi wi). On the other hand, by standard hashing
arguments (e.g., Lemma 2.2 with B = 10|w(2[n])|), any instance can be hashed down to an
equivalent instance of density roughly n/ log2 |w(2[n])|.

The relationship between |w(2[n])| and β(w) is more complicated. Intuitively, one would
expect that if one has so much concentration that β(w) ≥ 20.5n, then w should not generate
too many sums. We are not aware of any such results from the additive combinatorics
literature. However, by establishing a new connection to Uniquely Decodable Code Pairs, a
well-studied object in information theory, we can derive the following bound.

I Lemma 1.3. If |w(2[n])| ≥ 20.997n then β(w) ≤ 20.4996n.

STACS 2016
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Unfortunately, we currently do not know how to algorithmically exploit |w(2[n])| ≤ 20.997n.
But we do know how to exploit a set S with |S| ≤ n/2 and |w(2S)| ≤ 20.4999n (see Lemma 3.2).
This suggests the question of how large β(w) can be in instances lacking such an S, and we
prove the following bound.

I Lemma 1.4. There is a universal constant δ > 0 such that the following holds for
all sufficiently large n. Let S, T be a partition of [n] with |S| = |T | = n/2 such that
|w(2S)|, |w(2T )| ≥ 2(1/2−δ)n. Then β(w) ≤ 20.661n.

Further Consequences. Combining Lemma 1.3 and Theorem 1.1, we see directly that
instances that generate almost 2n distinct sums can be solved faster than 20.5n.

I Theorem 1.5. There exists a Monte Carlo algorithm that solves all instances of Subset
Sum with |w(2[n])| ≥ 20.997n in time O∗(20.49991n).

Combining this with the view described above of |w(2[n])| as a refined version of the
density of an instance, we have the following result, to support the title of our paper:

I Theorem 1.6. Suppose there exist a constant ε > 0 and an algorithm that solves all
Subset Sum instances of density at least 1.003 in time O∗(2(0.5−ε)n). Then there exists a
Monte Carlo algorithm that solves Subset Sum in time O∗

(
2max{0.49991,0.5−ε}n).

After the result by Howgrave-Graham and Joux [10], this may be a next step towards
resolving Open Question 1. Intuitively, one should be able to exploit the fact that the integers
in a dense instance have fewer than n bits. For example, even if only the target is picked
uniformly at random, in expectation there will be an exponential number of solutions, which
can easily be exploited.1

Finally, let us note a somewhat curious consequence of our results. As mentioned earlier,
in the context of Open Question 2, it is known that the O∗(2n/d) running time for instances of
density d achieved through dynamic programming can be achieved in polynomial space [15]
(see also [13, Theorem 1(a)]). Combining this with Corollary 1.5 and hashing, we directly
get the following “interleaving” of Open Questions 1 and 2.

I Corollary 1.7. There exist two Monte Carlo algorithms, one running in O∗(20.49991n) time
and the other in O∗(20.999n) time and polynomial space, such that every instance of Subset
Sum is solved by at least one of the algorithms.

Organization of the paper. This paper is organized as follows: In Section 2 we review
some preliminaries. In Section 3, we provide the proofs of our main algorithmic results. In
Section 4 we prove two combinatorial lemmas. In Section 5 we give the proof for Theorem 1.6.
Finally we end with some discussion on in Section 6.

2 Preliminaries

For a modulus m ∈ Z≥1 and x, y ∈ Z, we write x ≡ y (mod m), or x ≡m y for short, to
indicate that m divides x− y. Throughout this paper, w1, w2, . . . , wn, t will denote the input

1 For example, assuming there are at least 2σn solutions for a constant σ ≥ 0, use a dynamic programming
table data structure to randomly sample the subsets in the congruence class t mod q for q a random
prime with about (1−σ)n/2 bits within linear time per sample. A solution is found within O∗(2(1−σ)n/2)
samples with high probability.
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integers of a Subset Sum instance. We associate the set function w : 2[n] → Z with these
integers by letting w(X) =

∑
i∈X wi, and for a set family F ⊆ 2[n] we write w(F) for the

image {w(X) : X ∈ F}.
For 0 ≤ x1, x2, . . . , x` ≤ 1 with

∑`
i=1 xi = 1 we write h(x1, x2, . . . , x`) =

∑`
i=1−xi log2 xi

for the entropy function. Here, 0 log2 0 should be interpreted as 0. We shorthand h(x, 1− x)
with h(x). We routinely use the standard fact (easily proved using Stirling’s formula) that
for non-negative integers n1, . . . , n` (where ` is a constant) summing to n, it holds that(

n
n1,...,n`

)
= 2h(n1/n,...,n`/n)n · poly(n).

I Claim 2.1. For every sufficiently large integer r the following holds. If p is a prime between
r and 2r selected uniformly at random and x is a nonzero integer, then p divides x with
probability at most (log2 x)/r.

I Lemma 2.2 (Bit-length reduction). There exists a randomized algorithm that takes as input
a Subset Sum instance w1, w2, . . . , wn, t ∈ Z and an integer B ∈ Z, and in time O∗(1)
outputs a new Subset Sum instance w′1, w′2, . . . , w′n, t′ ∈ Z such that with probability at least
inversely polynomial in the input size, the following properties all simultaneously hold.
1. 0 ≤ w′1, w′2, . . . , w′n, t′ < 4nB log2B.
2. If B ≥ 10 · |w(2[n])|, then X ⊆ [n] satisfies w(X) = t if and only if w′(X) = t′.
3. If B ≥ 10 · |w(2[n])|, then |w(2[n])|/2 ≤ |w′(2[n])| ≤ n|w(2[n])|.
4. If B ≥ 5 · |w(2[n])|2, then β(w)/n ≤ β(w′) ≤ β(w).

The proofs of Claim 2.1 and Lemma 2.2 use standard techniques and are presented in
the full version [3].

3 Algorithmic Results

This section establishes Theorems 1.1 and 1.2. We begin with two lemmas showing how one
can exploit a subset of the input integers if it generates either many or few distinct sums.
The case of many sums is the main technical challenge and addressed by the following result,
which is our main algorithmic contribution.

I Lemma 3.1. There is a randomized algorithm that, given positive integers w1, . . . , wn, t ≤
2O(n) and a set M ∈

([n]
µn

)
satisfying µ ≤ 0.5 and |w(2M )| ≥ 2γ|M | for some γ ∈ [0, 1], finds a

subset X ⊆ [n] satisfying w(X) = t with probability at least inversely polynomial in the input
size (if such an X exists) in time O∗

(
2(0.5+0.8113µ−γµ)n + β(w)2(1.5−γ)µn).

The proof is given in Section 3.1. Informally, it uses an algorithm that simultaneously
applies the meet-in-the-middle technique of Horowitz and Sahni [9] on the set [n]\M and the
“representation technique” of Howgrave-Graham and Joux [10] on the set M . Specifically,
we pick an arbitrary equi-sized partition L,R of [n] \M and construct lists L ⊆ 2L∪M
and R ⊆ 2R∪M . Note that without restrictions on L and R, one solution X is witnessed
by 2|M∩X| pairs (S, T ) from L × R in the sense that S ∪ T = X. Now the crux is that
since M generates many sums, M ∩ X generates many sums (say 2π|M |): this allows us
to uniformly choose a congruence class tL of Zp where p is a random prime of order 2π|M |
and restrict attention only to sets S ⊆ L ∪M and T ⊆ R ∪M such that w(S) ≡p tL and
w(T ) ≡p t − tL, while still finding solutions with good probability. This ensures that the
to-be-constructed lists L and R are small enough. As an indication for this, note that if
|M ∩X| = |M |/2 and |w(

(
M∩X
|M |/4

)
)| is Ω(2|M |/2), the expected sizes of L and R are at most

2((1−µ)/2+h(1/4)µ−µ/2)n ≤ 2(1/2−0.18µ)n.

STACS 2016



13:6 Dense Subset Sum May Be the Hardest

In contrast to Lemma 3.1, it is straightforward to exploit a small subset that generates
few sums:

I Lemma 3.2. There is a deterministic algorithm that, given positive integers w1, . . . , wn, t

and a set M ∈
([n]
µn

)
satisfying µ ≤ 0.5 and |w(2M )| ≤ 2γ|M | for some γ ∈ [0, 1], finds a subset

X ⊆ [n] satisfying w(X) = t (if such an X exists) in time O∗
(
2

1−µ(1−γ)
2 n

)
.

Proof. Let L be an arbitrary subset of [n] \M of size 1−µ(1−γ)
2 n and let R = [n] \ L. Then

|w(2L)| ≤ 2|L| = 2
1−µ(1−γ)

2 n, and

|w(2R)| ≤ |w(2M )| · |w(2[n]\L\M )| ≤ 2γµn2
(

1− 1−µ(1−γ)
2 −µ

)
n = 2

1−µ(1−γ)
2 n.

Now apply routine dynamic programming to construct w(2L) in time O∗(|w(2L)|) and w(2R)
in time O∗(|w(2R)|); build a look-up table data structure for w(2L), and for each x∈ w(2R),
check in O(n) time whether t− x ∈ w(2L). J

Given these lemmas, we are now in the position to exploit small bins:

Proof of Theorem 1.1. We start by preprocessing the input with Lemma 2.2, taking B =
23n � |w(2[n])|2. Let γ = 1− ε/2, µ = 3ε/2, and partition [n] into 1/µ parts M1, . . . ,M1/µ of
size at most µn arbitrarily. We distinguish two cases. First, suppose that |w(2Mi)| ≥ 2γµn for
some Mi (note that this can be easily determined within the claimed time bound). We then
apply the algorithm of Lemma 3.1 with M = Mi and solve the instance (with probability
Ω∗(1)) in time

O∗
(

2(0.5+0.8113µ−γµ)n + β(w)2(1.5−γ)µn
)
.

The coefficient of the exponent of the first term is 0.5 + 0.8113 · 3ε/2 − (1 − ε/2) · 3ε/2 =
0.5− 0.28305ε+ 0.75ε2. The coefficient of the exponent of the second term is 0.5− ε+ (1.5−
(1− ε/2)) · 3ε/2 = 0.5− ε/4 + 0.75ε2.

Second, suppose that |w(2Mi)| ≤ 2γµn for all i. Let L =
⋃ 1

2µ
i=1Mi and R = [n] \M . We

see that

|w(2L)| ≤
∏
i≤ 1

2µ

|w(2Mi)| ≤ 2γn/2 and |w(2R)| ≤
∏
i> 1

2µ

|w(2Mi)| ≤ 2γn/2 .

Using standard dynamic programming to construct w(2L) and w(2R) in O∗(|w(2L)|) and
O∗(|w(2R)|) time, we can therefore solve the instance within O∗(2γn/2) = O∗(2(0.5−ε/4)n)
time using linear search. J

Exploiting large bins is easy using Lemma 1.4 (the proof of Lemma 1.4 is given in Section 4):

Proof of Theorem 1.2. Pick an arbitrary equi-sized partition S, T of [n]. By the contrapos-
itive of Lemma 1.4, one of S and T generates at most 2(1/2−δ)n sums. Applying Lemma 3.2
with the set in question as M , we get a running time of O∗

(
2(1−δ)n/2). J

3.1 Proof of Lemma 3.1
We now prove Lemma 3.1. Let s := |X ∩M |. Without loss of generality, we may assume that
s ≥ |M |/2 (by considering the actual target t and the complementary target t′ := w([n])− t).
We may further assume that s is known by trying all O(n) possible values. The algorithm is
listed in Algorithm 1.
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Algorithm A(w1, . . . , wn, t,M, s, γ) Assumes |w(2M )| ≥ 2γ|M |
Output: yes, if there exists an X ⊆ [n] with w(X) = t and |X ∩M | = s

1: Let σ = s/|M |
2: Let π = γ − 1 + σ

3: Pick a random prime p satisfying 2π|M | ≤ p ≤ 2π|M |+1

4: Pick a random number 0 ≤ tL ≤ p− 1
5: for all 0 ≤ s1 ≤ s2 ≤ |M | such that s1 + s2 = s do
6: Let σ1 = s1/|M |, σ2 = s2/|M |
7: Let λ = (1− µ)/2 +

(
h(σ/2)− h(σ1)

)
µ

8: Let L,R be an arbitrary partition of [n] \M such that |L| = dλne
9: Construct L = {S ∈ 2L∪M : w(S) ≡p tL and |S ∩M | = s1}

10: Construct R = {T ∈ 2R∪M : w(T ) ≡p t− tL and |T ∩M | = s2}
11: for all (S, T ) ∈ L ×R such that w(S) + w(T ) = t do
12: if S ∩ T = ∅ then return yes
13: return no

Algorithm 1 Exploiting a small subset generating many sums.

Expected Running time. We will analyze the expected running time of Algorithm 1 in
two parts: (i) the generation of the lists L and R on Lines 9 and 10, and (ii) the iteration
over pairs in L ×R in Line 11 (the typical bottleneck). Let WL := 2|L|

(
M
s1

)
≤ 2λn2h(σ1)µn =

2((1−µ)/2+h(σ/2)µ)n denote the size of the search space for L.

I Proposition 3.3. The lists L and R in Lines 9 and 10 can be constructed in expected time
O∗
(
W

1/2
L +WL/2πµn

)
, where the expectation is over the choice of p and tL.

Proof. By splitting the search space for L appropriately, we get two “halves” each of
which has size W 1/2

L . Specifically, we arbitrarily pick a subset L1 ⊆ L of size λ1n with
λ1 = (λ+ h(σ/2)µ)/2 and generate using brute-force w(2L1) and w(L2) where L2 = {Y ∪Z :
Y ⊆ L \ L1 and Z ∈

(
M
s1

)
}. Then we store w(2L1) in a dictionary data structure and, for

each sum x ∈ w(L2), we look up all solutions with sum t − x mod p in the dictionary of
w(2L1) and list for such a pair its union. This yields a running time of O∗(|L|+W

1/2
L ). The

expected size of |L| over the random choices of tL is E[|L|] ≤ O(WL/2πµn).
The analysis for R is analogous and we get a running time of O∗

(
W

1/2
R +WR/2πµn

)
where

WR := 2|R|
(|M |
s2

)
. Let ρ = |R|/n. Since h(·) is concave and, in particular, h(σ1) + h(σ2) ≤

2h(σ/2), we then have (up to a negligible term caused by rounding λn to an integer)

ρ = 1− µ− λ = (1− µ)/2−
(
h(σ/2)− h(σ1)

)
µ ≤ (1− µ)/2 + (h(σ/2)− h(σ2))µ .

Thus the case of R is symmetric to the situation for L and WR ≤ 2((1−µ)/2+h(σ/2)µ)n =
O∗(WL). J

The term WL/2πµn can be bounded by using the definition of π = γ − 1 + σ and we get
WL/2πµn = 2( 1

2 +µ( 1
2 +h(σ/2)−γ−σ))n . Since 1/2 + h(σ/2)− σ subject to 1/2 ≤ σ ≤ 1 is max-

imized at σ = 1/2 where it is h(1/4) ≤ 0.8113, we have that WL/2πµn ≤ 2(0.5+0.8113µ−γµ)n.
The term W

1/2
L is naively bounded by 2(1+µ)n/4, which is dominated by the term

O∗
(
2(0.5+0.8113µ−γµ)n) since µ ≤ 1/2 and γ ≤ 1. It follows that Line 9 and Line 10 in-

deed run within the claimed time bounds.

I Proposition 3.4. The expected number of pairs considered in Line 11 is O∗
(
β(w)2µ(1.5−γ)n),

where the expectation is over the choice of p and tL.

STACS 2016
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Proof. Define B =
{

(P,Q) ∈ 2[n] × 2M : w(P ) + w(Q) = t
}
, and note that the set of pairs

(S, T ) ∈ 2L∪M × 2R∪M satisfying w(S) + w(T ) = t are in one-to-one correspondence with
pairs in B (by the map (S, T ) 7→ (S∪ (T ∩R), T ∩M)). Furthermore, the size of B is bounded
by |B| ≤ β(w)2|M |: for each of the 2|M | possible choices of Q, there are at most β(w) subsets
R that sum to t− w(Q).

Any given pair (S, T ) ∈ 2L∪M × 2R∪M satisfying w(L) + w(R) = t is considered only if
w(S) ≡p tL, which happens with probability O(2−πn) (over the uniformly random choice
of tL). Thus the expected number of pairs considered in Line 11 is upper bounded by
O(|B|/2πµn) = O(β(w)2µ(1−π)n) = O(β(w)2µ(2−σ−γ)n). Using σ ≥ 1/2, the desired bound
follows. J

Succes Probability. To establish Lemma 3.1, we run Algorithm 1 for Ω(|M |) times the
expected number of computation steps and return no if it did not terminate yet. By our
previous analysis it is clear that this algorithm runs within the required time bound, and
clearly it only return yes if a solution is found on Line 12.

Now suppose there exists an X ⊆ [n] with w(X) = t and |X ∩M | = s. It remains to
lower bound the probability that the modified algorithm return yes. Note that by Markov’s
inequality we return no due to premature termination with probability at most O(1/|M |),
so by a union bound it will be sufficient to lower bound the probability that Algorithm 1
returns yes by Ω(1/|M |).

To this end, note that 2γ|M | ≤ |w(2M )| ≤ |w(2M∩X)| · |w(2M\X)|, and since |w(2M\X)| ≤
2|M |−s, we have that |w(2M∩X)| ≥ 2γ|M |−(1−σ)|M | = 2π|M |.

Thus there must exist positive s1 + s2 = s such that |w(
(
M∩X
s1

)
)| ≥ 2π|M |/|M |. Let us

focus on the corresponding iteration of Algorithm 1. Let wL := w(X ∩L) be the contribution
of L to the solution X. We claim that in this iteration, the following holds.

I Proposition 3.5.

Pr
[
∃Q ∈

(
M ∩X
s1

)
: w(Q) ≡p tL − wL

]
≥ Ω

(
1
|M |

)
. (1)

Note that, conditioned on the event ∃Q ∈
(
M∩X
s1

)
: w(Q) ≡p tL − wL, Algorithm 1 will

include S := Q∪ (L∩X) in L and T := X \S in R and recover X. Therefore, this concludes
the proof of Lemma 3.1.

Proof. Let F ⊆
(
M∩X
s1

)
be a maximal injective subset, i.e., satisfying |F| = |w(F)| =

|w
((
M∩X
s1

))
| ≥ Ω∗(2π|M |). Let ci = | {Y ∈ F : w(Y ) ≡p i} | be the number of sets from F

in the i’th bin mod p. Our goal is to lower bound the probability that ctL−wL > 0 (where
tL − wL is taken modulo p). We can bound the expected `2 norm (e.g., the number of
collisions) by

E
[∑

i

c2i

]
=

∑
Y,Z∈F

Pr
[
p divides w(Y )− w(Z)

]
≤ |F|+O∗

(
|F|2/2π|M |

)
, (2)

where the inequality uses Claim 2.1 and the assumption that the wi’s are 2O(n). By Markov’s
inequality,

∑
i c

2
i ≤ O∗(|F|2/2π|M |) with probability at least Ω∗(1) over the choice of p

(here we used |F| = Ω∗(2π|M |) to conclude that the second term in (2) dominates the first).
Conditioned on this, Cauchy-Schwarz implies that the number of non-zero ci’s is at least
|F|2

/∑
i c

2
i ≥ Ω∗(2π|M |). When this happens, the probability that ctL−wL > 0 (over the

uniformly random choice of tL) is Ω∗(1). J
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4 Combinatorial Results (Lemma 1.3 and Lemma 1.4)

In this section we provide two non-trivial quantitative relations between several structural
parameters of the weights. Our results are by no means tight, but will be sufficient for
proving our main results.

For the purposes of this section, it is convenient to use vector notation for subset sums.
In particular, for a vector x ∈ Zn, we write x · w =

∑n
i=1 xiwi, and x−1(j) ⊆ [n] for the set

of i ∈ [n] such that vi = j.
Our approach to relate the number of sums |w(2[n])| to the largest bin size β(w) is to

establish a connection to the notion of Uniquely Decodable Code Pairs from information
theory, defined as follows.

I Definition 4.1 (Uniquely Decodable Code Pair, UDCP). If A,B ⊆ {0, 1}n such that

|A+B| = |{a+ b : a ∈ A, b ∈ B}| = |A| · |B| ,

then (A,B) is called uniquely decodable. Note that here addition is performed over Zn (and
not mod Zn2 ).

UDCP’s capture the zero error region of the so-called binary adder channel, and there is
a fair amount of work on how large the sets A and B can be (for a survey, see [19, §3.5.1]).
The connection between UDCP’s and Subset Sum is that a Subset Sum instance that both
generates many sums and has a large bin yields a large UDCP, as captured in the following
proposition.

I Proposition 4.2. If there exist weights w1, . . . , wn such that |w(2[n])| = a and β(w) = b,
then there exists a UDCP (A,B) with |A| = a and |B| = b.

Proof. Let A ⊆ {0, 1}n be an injective set, i.e., x · w 6= x′ · w for all x, x′ ∈ A with x 6= x′.
Note that there exists such an A with |A| = a. Let B ⊆ {0, 1}n be a bin, i.e., y · w = y′ · w
for all y, y′ ∈ B. Note that we can take these to have sizes |A| = a and |B| = b.

We claim that (A,B) is a UDCP. To see this, let x, x′ ∈ A and y, y′ ∈ B with x+y = x′+y′.
Then

x · w + y · w = (x+ y) · w = (x′ + y′) · w = x′ · w + y′ · w .

Thus x · w = x′ · w, and so by the injectivity property of A, we have x = x′, which in turn
implies y = y′ since x+ y = x′ + y′. J

We have the following result by Ordentlich and Shayevitz [17, Theorem 1, setting
R1 = 0.997 and α = 0.07].

I Theorem 4.3 ([17]). Let A,B ⊆ {0, 1}n such that (A,B) is a UDCP and |A| ≥ 2.997n.
Then |B| ≤ 20.4996n.

With this connection in place, the proof of Lemma 1.3 is immediate.

I Lemma 1.3 (restated). If |w(2[n])| ≥ 20.997n, then β(w) ≤ 20.4996n.

Proof. Combine Theorem 4.3 with the contrapositive of Proposition 4.2. J

The remainder of this section is devoted to Lemma 1.4. The proof also (implictly) uses
a connection to Uniquely Decodable Code Pairs, but here the involved sets of strings are
not binary. There is no reason to believe that the constant 0.661 is tight. However, because
a random instance w of density 2 satisfies the hypothesis for all partitions S, T and has
β(w) ≈ 20.5n with good probability, just improving the constant 0.661 will not suffice for
settling Open Question 1.

STACS 2016
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4.1 Proof of Lemma 1.4
For a subset S ⊆ [n], define a function bS : Z→ Z by letting bS(x) be the number of subsets
S′ ⊆ S such that w(S′) = x. Note that |w(2S)| equals the support size of bS , or ‖bS‖0,
and that βw(S) = maxx bS(x) = ‖bS‖∞. Instead of working with these extremes, it is more
convenient to work with the `2 norm of bS , and the main technical claim to obtain Lemma 1.4
is the following.

I Proposition 4.4. There exists a δ > 0 such that for all sufficiently large |S| the following
holds: if |w(2S)| ≥ 2(1−δ)|S|, then ‖bS‖2 ≤ 20.661|S|.

Proof of Proposition 4.4. Without loss of generality we take S = [n], and to simplify
notation we omit the subscript S from bS and simply write b : Z→ Z for the function such
that b(r) is the number of subsets of w1, . . . , wn summing to r. Note that

‖b‖22 =
∑

U,V⊆[n]
[w(U)=w(V )]

1 =
∑

U,V⊆[n]
U∩V=∅

[w(U)=w(V )]

2n−|U |−|V | =
∑

y∈{−1,0,1}n
[y · w = 0] · 2|y

−1(0)|,

where [p] denotes 1 if p holds and 0 otherwise. Defining Bσ =
{
y ∈ {−1, 0, 1}n : y · w =

0 and ‖y‖1 = σn
}
, we thus have

‖b‖22 =
n∑
i=0
|Bi/n|2n−i ≤ nmax

σ
|Bσ|2(1−σ)n . (3)

We now proceed to bound the size of Bσ by an encoding argument. To this end, let
A ⊆ {0, 1}n be a maximal injective set of vectors. In other words, |A| = |w(2[n])| ≥ 20.99n,
and for all pairs x 6= x′ ∈ A, it holds that x ·w 6= x′ ·w. We claim that |A+Bσ| = |A| · |Bσ|.
To see this note that, similarly to the proof of Proposition 4.2, if x + y = x′ + y′ (with
x, x′ ∈ A and y, y′ ∈ Bσ) then x · w = x′ · w (since y′ · w = 0) and thus x = x′ and y = y′.

Define Pσ to be all pairs (x, y) in A×Bσ that are balanced, in the sense that for some
γ > 0 the following conditions hold:

|x−1(1) ∩ y−1(−1)| = 1
2 |y
−1(−1)| ± γn ,

|x−1(1) ∩ y−1(0)| = 1
2 |y
−1(0)| ± γn ,

|x−1(1) ∩ y−1(1)| = 1
2 |y
−1(1)| ± γn .

(4)

I Claim 4.5. For γ =
√
δ and n sufficiently large, we have that |Pσ| ≥ |A| · |Bσ|/2.

The postponed proof of Claim 4.5 can be found in the full version [3].
Setting γ =

√
δ, we can now proceed to upper bound |Pσ|. Consider the encoding

η : Pσ → {−1, 0, 1, 2}n defined by η(x, y) = x+ y. By the property |A+Bσ| = |A| · |B|, it
follows that η is an injection, and thus |Pσ| equals the size of the image of η. For a pair
(x, y) ∈ Pσ, if y ∈ Bσ has τσn many 1’s, and (1− τ)σn many −1’s, then z = η(x, y) has the
following frequency distribution:

|z−1(−1)|
n

= τσ

2 ± oγ(1) , |z−1(0)|
n

= τσ

2 + 1− σ
2 ± oγ(1) ,

|z−1(1)|
n

= 1− σ
2 + (1− τ)σ

2 ± oγ(1) , |z−1(2)|
n

= (1− τ)σ
2 ± oγ(1) ,
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where, for a variable ε, we write oε(1) to indicate a term that converges to 0 when ε tends to 0.
Since γ =

√
δ, we have oγ(1) = oδ(1). The number of z’s with such a frequency distribution

is bounded by(
n

τσ
2 n, (

τσ
2 + 1−σ

2 )n, ( 1−σ
2 + (1−τ)σ

2 )n, (1−τ)σ
2

)
2oδ(1)n . (5)

Then, |Pσ| is bounded by

log |Pσ| ≤ max
τ∈[0,1]

(
g(σ, τ)+oγ(1)

)
n, where g(σ, τ) = h

(
τσ
2 ,

τσ
2 + 1−σ

2 , 1−σ
2 + (1−τ)σ

2 , (1−τ)σ
2

)
.

It can be verified that g(σ, τ) is maximized for τ = 1/2 and we have

max
τ∈[0,1]

g(σ, τ) = h
(
σ
4 ,

1
2 −

σ
4 ,

1
2 −

σ
4 ,

σ
4
)

= 1 + h
(
σ
2
)
.

Combining this with the bounds |Pσ| ≥ |A| · |B| · 2−O(δ2)n and |A| ≥ 2(1−δ)n, we get that
|Bσ| ≤ 2(h(σ/2)+oδ(1))n. Plugging this into (3) we see that

‖b‖22 ≤ max
σ

2(1+h(σ/2)−σ+oε(1))n .

The expression h(σ/2)− σ is maximized at σ = 2/5, and we obtain

‖b‖22 ≤ 2(h(1/5)+3/5+oε(1)) ≤ 2(1.32195+oδ(1))n .

Thus if δ is sufficiently small, we have ‖b‖22 ≤ 21.322n, as desired. J

Using Proposition 4.4, the desired bound of Lemma 1.4 follows immediately, since

β([n]) = max
x∈Z

∑
y∈Z

bS(y)bT (x− y) ≤ max
x∈Z
‖bS‖2‖bT ‖2 ≤ 20.661n ,

where the first inequality is by Cauchy–Schwarz and the second inequality by Proposition 4.4.

5 Proof of Theorem 1.6

Proof of Theorem 1.6. Given oracle access to an algorithm that solves Subset Sum instance
of density at least 1.003 in O∗(2(0.5−ε)n) time for some ε > 0, we solve an arbitrary instance
w1, w2, . . . , wn, t of Subset Sum in time O∗

(
2max{0.49991,0.5−ε}n) as follows.

As Step 1, run the algorithm of Theorem 1.5 for Θ∗(20.49991n) timesteps. If it terminates
within this number of steps, return YES if it found a solution and NO otherwise. Otherwise,
as Step 2, run the preprocessing of Lemma 2.2 with B = 10 · 20.997n. This yields a new
instance with density 1/0.997 > 1.003, which we solve using the presumed oracle for such
instances. If the oracle returns a solution, we verify that it is indeed a solution to our original
instance and if so return YES. Otherwise we return NO.

If there is no solution this algorithm clearly returns NO. If there is a solution and
|w(2[n])| ≥ 20.997n, we find a solution with inversely polynomial probability in Step 1. If
there is a solution and |w(2[n])| ≤ 20.997n, Property 2 of Lemma 2.2 guarantees that the
solution to the reduced instance is a solution to the original instance with probability at
least polynomial in the input size, and the oracle will then provide us with the solution. J

STACS 2016
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6 Further Discussion

Our original ambition was to resolve Open Question 1 affirmatively by a combination of
two algorithms that exploit small and large concentration of the sums, respectively. Since
we only made some partial progress on this, it remains an intruiging question whether this
approach can fulfill this ambition. In this section we speculate about some further directions
to explore.

Exploiting Large Density. For exploiting a density 1.003 ≤ d ≤ 2, the meet-in-the-middle
technique [9] does not seem directly extendable. A different, potentially more applicable
O∗(2n/2) algorithm works as follows: pick a prime p of order 2n/2, build the dynamic
programming table that counts the number of subsets with sum congruence to t mod p,
and use this as a data structure to uniformly sample solutions mod p with linear delay; try
O∗(2n/2) samples and declare a no-instance if no true solution is found (see also Footnote 1).
As such, this does not exploit large density at all, but to this end one could seek a similar
sampler that is more biased to smaller bins.

Sharper Analysis of Algorithm 1. The analysis of Algorithm 1 in Lemma 3.1, and in
particular the typical bottleneck β(w)2(1.5−γ)µn in the running time, is quite naive. For
example, since we can pick M as we like (and assume it generates many sums), for the
algorithm to fail we need an instance where big bins are encountered by the algorithm for many
choices of M . It might be a good approach to first try to extend the set of instances that can
be solved ‘truly faster’ in this way, e.g. to the set of all instances with β(w) ≤ 2(.5+δ)n for some
small δ > 0. As an illustration of the looseness, let us mention that in a previous version of this
manuscript, we used a more sophisticated analysis to show the following: there exists some
δ > 0, such that if |w(2[n])| ≥ 2(1−δ)n, then |{(P,Q) ∈

( [n]
n/2
)2

: w(P ) +w(Q) = t}| ≤ 20.5254n.
We used this to show that all instances with |w(2[n])| ≥ 2(1−δ)n can be solved via a mild
variant of Algorithm 1 with M = [n], indicating that Algorithm 1 gives non-trivial algorithms
even for large M .

Sharper Combinatorial Bounds. Lemma 1.3 and Lemma 1.4 seem to be rather crude
estimates. In fact, we don’t even know the following (again, borrowing notation from the
proof of Proposition 4.4):

Open Question 3: Suppose |w(2[n])| ≥ 2(1−ε)n. Can β(w) and ‖b[n]‖2 be bounded by
2oε(1)n and 2(0.5+oε(1))n, respectively?

Note that the second bound would follow from the first bound. Furthermore, if the second
bound holds, we would be able to solve, for all ε > 0, all instances with |β(w)| ≥ 2(0.5+ε)n in
time O∗(2(0.5−ε′)n) for some ε′ > 0 depending on ε, via the proof of Theorem 1.2.

In recent work [1] we proved the following modest progress:

I Lemma 6.1. There exists δ > 0 such that if A,B ⊆ {0, 1}n is a UDCP and |A| ≥ 2(1−δ)n,
then |B| ≤ 20.4115n.

Plugging this into the proof of Lemma 1.3, this gives that β(w) ≤ 2(0.4115+oε(1))n in
the setting of Open Question 3. We would like to remark that improving this beyond
2(0.25+oε(1))n via Lemma 1.3 is not possible since UDCP pairs (A,B) with |A| ≥ 2(1−o(1))n

and |B| ≥ 2n/4 do exist [12]. One may also wonder whether we can deal with instances
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with |w(2[n])| ≥ 2(0.5+ε)n, for all ε > 0 by arguing β(w) must be small but this does not
work directly: there are instances with |w(2[n])| = 3n/2 and β(w) = 2n/2 (the instance
1, 1, 3, 3, 9, 9, 27, 27, . . . has this, though it is easily attacked via Lemma 3.2).
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