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Abstract
We consider the convex hull Pϕ(G) of all satisfying assignments of a given MSO2 formula ϕ on a
given graph G. We show that there exists an extended formulation of the polytope Pϕ(G) that
can be described by f(|ϕ|, τ) · n inequalities, where n is the number of vertices in G, τ is the
treewidth of G and f is a computable function depending only on ϕ and τ.

In other words, we prove that the extension complexity of Pϕ(G) is linear in the size of the
graph G, with a constant depending on the treewidth of G and the formula ϕ. This provides a
very general yet very simple meta-theorem about the extension complexity of polytopes related
to a wide class of problems and graphs.
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1 Introduction

In the ’70s and ’80s, it was repeatedly observed that various NP-hard problems are solvable
in polynomial time on graphs resembling trees. The graph property of resembling a tree was
eventually formalized as having bounded treewidth, and in the beginning of the ’90s, the
class of problems efficiently solvable on graphs of bounded treewidth was shown to contain
the class of problems definable by the Monadic Second Order Logic (MSO2) (Courcelle [11],
Arnborg et al. [1], Courcelle and Mosbah [13]). Using similar techniques, analogous results for
weaker logics were then proven for wider graph classes such as graphs of bounded cliquewidth
and rankwidth [12]. Results of this kind are usually referred to as Courcelle’s theorem for a
specific class of structures.

In this paper we study the class of problems definable by the MSO logic from the
perspective of extension complexity. While small extended formulations are known for
various special classes of polytopes, we are not aware of any other result in the theory of
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extended formulations that works on a wide class of polytopes the way Courcelle’s theorem
works for a wide class of problems and graphs.

Our Contribution. We prove that satisfying assignments of an MSO2 formula ϕ on a graph
of bounded treewidth can be expressed by a “small” linear program. More precisely, there
exists a computable function f such that the convex hull – Pϕ(G) – of satisfying assignments
of ϕ on a graph G on n vertices with treewidth τ can be obtained as the projection of a
polytope described by f(|ϕ|, τ) · n linear inequalities; we call Pϕ(G) the MSO polytope. All
our results can be extended to general finite structures where the restriction on treewidth
applies to the treewidth of their Gaifman graph [30].

Our proof essentially works by “merging the common wisdom” from the areas of extended
formulations and fixed parameter tractability. It is known that dynamic programming can
be turned into a compact extended formulation [32, 18], and that Courcelle’s theorem can
be seen as an instance of dynamic programming [26]; therefore one can expect the polytope
of satisfying assignments of an MSO formula of a bounded treewidth graph to be compact.

However, there are a few roadblocks in trying to merge these two folklore wisdoms. For
one, while Courcelle’s theorem being an instance of dynamic programming in some sense
may be obvious to an FPT theorist, it is far from clear to anyone else what that sentence
may even mean. On the other hand, being able to turn a dynamic program into a compact
polytope may be a theoretical possibility for an expert on extended formulations, but it
is by no means an easy statement for an outsider to comprehend. What complicates the
matters even further is that the result of Martin et al. [32] is not a result that can be used
in a black box fashion. That is, a certain condition must be satisfied to get a compact
extended formulation out of a dynamic program. This is far from a trivial task, especially
for a theorem like Courcelle’s theorem.

The rest of the article is organized as follows. In Section 2 we review some previous
work related to Courcelle’s theorem and extended formulations. In Section 3 we describe
the relevant notions related to polytopes, extended formulations, graphs, treewidth and
MSO logic. In Section 4 we prove the existence of compact extended formulations for MSO
polytopes parameterized by the length of the given MSO formula and the treewidth of the
given graph. In Section 5 we describe how to efficiently construct such a polytope given a
tree decomposition of a graph.

2 Related Work

2.1 MSO Logic vs. Treewidth
Because of the wide relevance of the treewidth parameter in many areas (cf. the survey of
Bodlaender [5]) and the large expressivity of the MSO and its extensions (cf. the survey of
Langer et al. [27]), considerable attention was given to Courcelle’s theorem by theorists from
various fields, reinterpreting it into their own setting. These reinterpretations helped uncover
several interesting connections.

The classical way of proving Courcelle’s theorem is constructing a tree automaton A in
time only dependent on ϕ and the treewidth τ , such that A accepts a tree decomposition of
a graph of treewidth τ if and only if the corresponding graph satisfies ϕ; this is the automata
theory perspective [11]. Another perspective comes from finite model theory where one can
prove that a certain equivalence on the set of graphs of treewidth at most τ has only finitely
many (depending on ϕ and τ) equivalence classes and that it behaves well [16]. Another
approach proves that a quite different equivalence on so-called extended model checking
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games has finitely many equivalence classes [23] as well; this is the game-theoretic perspective.
It can be observed that the finiteness in either perspective stems from the same roots.

Another related result is an expressivity result: Gottlob et al. [16] prove that on bounded
treewidth graphs, a certain subset of the database query language Datalog has the same
expressive power as the MSO. This provides an interesting connection between the automata
theory and the database theory.

2.2 Extended Formulations
Sellmann, Mercier, and Leventhal [34] claimed to show compact extended formulation for
binary Constraint Satisfaction Problems (CSP) for graphs of bounded treewidth, but their
proof is not correct [33]. The first two authors of this paper gave extended formulations for
CSP that has polynomial size for instances whose constraint graph has bounded treewidth [25]
using a different technique. Bienstock and Munoz [3] prove similar results for the approximate
and exact version of the problem. In the exact case, Bienstock and Munoz’s bounds are
slightly worse than those of Kolman and Koutecký [25]. It is worth noting that CSPs are a
restricted subclass of problems that can be modeled using MSO logic. Laurent [28] provides
extended formulations for the independent set and max cut polytopes of size O(2τn) for
n-vertex graphs of treewidth τ and, independently, Buchanan and Butenko [8] provide an
extended formulation for the independent set polytope of the same size.

A lot of recent work on extended formulations has focussed on establishing lower bounds
in various settings: exact, approximate, linear vs. semidefinite, etc. (See for example
[15, 2, 6, 29]). A wide variety of tools have been developed and used for these results includ-
ing connections to nonnegative matrix factorizations [37], communication complexity [14],
information theory [7], and quantum communication [15] among others.

For proving upper bounds on extended formulations, several authors have proposed
various tools as well. Kaibel and Loos [19] describe a setting of branched polyhedral systems
which was later used by Kaibel and Pashkovich [20] to provide a way to construct polytopes
using reflection relations.

A particularly specific composition rule, which we term glued product (cf. Subsection 3.1),
was studied by Margot in his PhD thesis [31]. Margot showed that a property called the
projected face property suffices to glue two polytopes efficiently. Conforti and Pashkovich [10]
describe and strengthen Margot’s result to make the projected face property to be a necessary
and sufficient condition to describe the glued product in a particularly efficient way.

Martin et al. [32] have shown that under certain conditions, an efficient dynamic pro-
gramming based algorithm can be turned into a compact extended formulation. Kaibel [18]
summarizes this and various other methods.

3 Preliminaries

3.1 Polytopes, Extended Formulations and Extension Complexity
For background on polytopes we refer the reader to Grünbaum [17] and Ziegler [38]. To
simplify reading of the paper for the audience that is not working often in the area of
polyhedral combinatorics, we provide here a brief glossary of common polyhedral notions
that are used in this article.

A hyperplane in Rn is a closed convex set of the form {x|aᵀx = b} where a ∈ Rn, b ∈ R.
A halfspace in Rn is a closed convex set of the form {x|aᵀx 6 b} where a ∈ Rn, b ∈ R.
The inequality aᵀx 6 b is said to define the corresponding halfspace. A polytope P ⊆ Rn
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is a bounded subset defined by intersection of finite number of halfspaces. A result of
Minkowsky-Weyl states that equivalently, every polytope is the convex hull of a finite number
of points. Let h be a halfspace defined by an inequality aᵀx 6 b; the inequality is said to
be valid for a polytope P if P = P ∩ h. Let h be a halfspace defined by a valid inequality
aᵀx 6 b; then, P ∩ {x|aᵀx = b} is said to be a face of P .

Note that, taking a to be the zero vector and b = 0 results in the face being P itself. Also,
taking a to be the zero vector and b = 1 results in the empty set. These two faces are often
called the trivial faces and they are polytopes “living in” dimensions n and −1, respectively.
Every face - that is not trivial - is itself a polytope of dimension d where 0 6 d 6 n− 1. The
zero dimensional faces of a polytope are called its vertices, and the (n− 1)-dimensional faces
are called its facets.

It is not uncommon to refer to three separate (but related) objects as a face: the actual
face as defined above, the valid inequality defining it, and the equation corresponding to the
valid inequality. While this is clearly a misuse of notation, the context usually makes it clear
as to exactly which object is being referred to.

Let P be a polytope in Rd. A polytope Q in Rd+r is called an extended formulation or
an extension of P if P is a projection of Q onto the first d coordinates. Note that for any
linear map π : Rd+r → Rd such that P = π(Q), a polytope Q′ exists such that P is obtained
by dropping all but the first d coordinates on Q′ and, moreover, Q and Q′ have the same
number of facets.

The size of a polytope is defined to be the number of its facet-defining inequalities.
Finally, the extension complexity of a polytope P , denoted by xc(P ), is the size of its
smallest extended formulation. We refer the readers to the surveys [9, 35, 18, 36] for details
and background of the subject and we only state three basic propositions about extended
formulations here.

I Proposition 1. Let P be a polytope with a vertex set V = {v1, . . . , vn}. Then xc(P ) 6 n.

Proof. Let P = conv ({v1, . . . , vn}) be a polytope. Then, P is the projection of

Q =
{

(x, λ)

∣∣∣∣∣x =
n∑
i=1

λivi;
n∑
i=1

λi = 1;λi > 0 for i ∈ {1, . . . , n}
}
.

It is clear that Q has at most n facets and therefore xc(P ) 6 n. J

I Proposition 2. Let P be a polytope obtained by intersecting a set H of hyperplanes with a
polytope Q. Then xc(P ) 6 xc(Q).

Proof. Note that any extended formulation of Q, when intersected with H, gives an extended
formulation of P . Intersecting a polytope with hyperplanes does not increase the number of
facet-defining inequalities (and only possibly reduces it). J

The (cartesian) product of two polytopes P1 and P2 is defined as

P1 × P2 = conv ({(x, y) | x ∈ P1, y ∈ P2}) .

I Proposition 3. Let P1, P2 be two polytopes. Then

xc(P1 × P2) 6 xc(P1) + xc(P2) .
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Proof. Let Q1 and Q2 be extended formulations of P1 and P2, respectively. Then, Q1 ×Q2
is an extended formulation of P1 × P2. Now assume that Q1 = {x | Ax 6 b} and Q2 =
{y | Cy 6 d} and that these are the smallest extended formulations of P1 and P2, resp. Then

Q1 ×Q2 = {(x, y) | Ax 6 b, Cy 6 d} .

That is, we have an extended formulation of P1 × P2 of size at most xc(P1) + xc(P2). J

We are going to define the glued product of polytopes, a slight generalization of the usual
product of polytopes. We use a case where the extension complexity of the glued product
of two polytopes is upper bounded by the sum of the extension complexities of the two
polytopes, and use it in Section 4 to describe a small extended formulation for the MSO
polytope Pϕ(G) on graphs with bounded treewidth.

Let P ⊆ Rd1+k and Q ⊆ Rd2+k be 0/1-polytopes defined by m1 and m2 inequalities
and with vertex sets vert(P ) and vert(Q), respectively. Let IP ⊆ {1, . . . d1 + k} be a subset
of coordinates of size k, IQ ⊆ {1, . . . d2 + k} be a subset of coordinates of size k, and let
I ′P = {1, . . . d1 + k} \ IP . For a vector x, and a subset I of coordinates, we denote by x|I the
subvector of x specified by the coordinates I. The glued product of P and Q, (glued) with
respect to the k coordinates IP and IQ, denoted by P ×k Q, is defined as

P ×k Q = conv
({

(x|I′
P
, y) ∈ Rd1+d2+k | x ∈ vert(P ), y ∈ vert(Q), x|IP

= y|IQ

})
.

We adopt the following convention while discussing glued products in the rest of this
article. In the above scenario, we say that P ×k Q is obtained by gluing P and Q along the
k coordinates IP of P with the k coordinates IQ of Q. If, for example, these coordinates
are named z in P and w in Q, then we also say that P and Q have been glued along the z
and w coordinates and we refer to the coordinates z and w as the glued coordinates. In the
special case that we glue along the last k coordinates, the definition of the glued product
simplifies to

P ×k Q = conv
({

(x, y, z) ∈ Rd1+d2+k | (x, z) ∈ vert(P ), (y, z) ∈ vert(Q)
})
.

This notion was studied by Margot [31] who provided a sufficient condition for being able
to write the glued product in a specific (and efficient) way from the descriptions of P and Q.
We will use this particular way in Lemma 1. The existing work [31, 10], however, is more
focused on characterizing exactly when this particular method works. We do not need the
result in its full generality and therefore we only state a very specific version of it that is
relevant for our purposes; for the sake of completeness, we also provide a proof of it.

I Lemma 1 (Gluing lemma). Let P and Q be 0/1-polytopes and let the k (glued) coordinates
in P be labeled z1, . . . , zk, and the k (glued) coordinates in Q be labeled w1, . . . , wk. Suppose
that 1ᵀz 6 1 is valid for P and 1ᵀw 6 1 is valid for Q. Then xc(P ×k Q) 6 xc(P ) + xc(Q).

Proof. Let (x′, z′, y′, w′) be a point from P × Q ∩ {(x, z, y, w)|z = w}. Observe that the
point (x′, z′) is a convex combination of points (x′, 0), (x′, e1), . . . , (x′, ek) from P with
coefficients (1−

∑k
i=1 z

′
i), z′1, z′2, . . . , z′k where ei is the i-th unit vector. Similarly, the point

(y′, w′) is a convex combination of points (y′, 0), (y′, e1), . . . , (y′, ek) from Q with coefficients
(1−

∑k
i=1 w

′
i), w′1, w′2, . . . , w′k. Notice that for every j ∈ [k], (x′j , ej , y′j) is a point from the

glued product. As wi = zi for every i ∈ [k], we conclude that (x′, w′, z′) ∈ P ×k Q. Thus, by
Proposition 2 the extension complexity of P ×k Q is at most that of P ×Q which is at most
xc(P ) + xc(Q) by Proposition 3. J
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3.2 Graphs and Treewidth
For notions related to the treewidth of a graph and nice tree decomposition, in most cases
we stick to the standard terminology as given in the book by Kloks [22]; the only deviation
is in the leaf nodes of the nice tree decomposition where we assume that the bags are empty.
For a vertex v ∈ V of a graph G = (V,E), we denote by δ(v) the set of neighbors of v in G,
that is, δ(v) = {u ∈ V | {u, v} ∈ E}.

A tree decomposition of a graph G = (V,E) is a tree T in which each node a ∈ T has an
assigned set of vertices B(a) ⊆ V (called a bag) such that

⋃
a∈T B(a) = V with the following

properties:
for any {u, v} ∈ E, there exists a node a ∈ T such that u, v ∈ B(a).
if v ∈ B(a) and v ∈ B(b), then v ∈ B(c) for all nodes c on the path from a to b in T .

The treewidth tw(T ) of a tree decomposition T is the size of the largest bag of T minus
one. The treewidth tw(G) of a graph G is the minimum treewidth over all possible tree
decompositions of G.

A nice tree decomposition is a tree decomposition with one special node r called the root
in which each node is one of the following types:

Leaf node: a leaf a of T with B(a) = ∅.
Introduce node: an internal node a of T with one child b for which B(a) = B(b) ∪ {v} for
some v ∈ B(a).
Forget node: an internal node a of T with one child b for which B(a) = B(b) \ {v} for
some v ∈ B(b).
Join node: an internal node a with two children b and c with B(a) = B(b) = B(c).

For a vertex v ∈ V , we denote by top(v) the topmost node of the nice tree decomposition T
that contains v in its bag. For any graph G on n vertices, a nice tree decomposition of G
with at most 8n nodes can be computed in time O(n) [4, 22].

Given a graph G = (V,E) and a subset of vertices {v1, . . . , vd} ⊆ V , we denote by
G[v1, . . . , vd] the subgraph of G induced by the vertices v1, . . . , vd. Given a tree decomposition
T and a node a ∈ V (T ), we denote by Ta the subtree of T rooted in a, and by Ga the subgraph
of G induced by all vertices in bags of Ta, that is, Ga = G[

⋃
b∈V (Ta) B(b)]. Throughout

this paper we assume that for every graph, its vertex set is a subset of N. We define the
following operator σ: for any set U = {v1, v2, . . . , vl} ⊆ N, σ(U) = (vi1 , vi2 , . . . , vil) such
that vi1 < vi2 · · · < vil .

For an integer m ≥ 0, an [m]-colored graph is a pair (G, ~V ) where G = (V,E) is a graph
and ~V = (V1, . . . , Vm) is an m-tuple of subsets of vertices of G called an [m]-coloring of
G. For integers m ≥ 0 and τ ≥ 0, an [m]-colored τ -boundaried graph is a triple (G, ~V , ~p)
where (G, ~V ) is an [m]-colored graph and ~p = (p1, . . . , pτ ) is a τ -tuple of vertices of G called
a boundary of G. If the tuples ~V and ~p are clear from the context or if their content is
not important, we simply denote an [m]-colored τ -boundaried graph by G[m],τ . For a tuple
~p = (p1, . . . , pτ ), we denote by p the corresponding set, that is, p = {p1, . . . , pτ}.

Two [m]-colored τ -boundaried graphs (G1, ~V , ~p) and (G2, ~U, ~q) are compatible if the
function h : ~p → ~q, defined by h(pi) = qi for each i, is an isomorphism of the induced
subgraphs G1[p1, . . . , pτ ] and G2[q1, . . . , qτ ], and if for each i and j, pi ∈ Vj ⇔ qi ∈ Uj .

Given two compatible [m]-colored τ -boundaried graphs G[m],τ
1 = (G1, ~U, ~p) and G[m],τ

2 =
(G2, ~W, ~q), the join of G[m],τ

1 and G
[m],τ
2 , denoted by G

[m],τ
1 ⊕ G[m],τ

2 , is the [m]-colored
τ -boundaried graph G[m],τ = (G, ~V , ~p) where

G is the graph obtained by taking the disjoint union of G1 and G2, and for each i,
identifying the vertex pi with the vertex qi and keeping the label pi for it;
~V = (V1, . . . , Vm) with Vj = Uj ∪Wj and every qi replaced by pi, for each j;
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~p = (p1, . . . , pτ ) with pi being the node in V (G) obtained by the identification of
pi ∈ V (G1) and qi ∈ V (G2), for each i.

Because of the choice of referring to the boundary vertices by their names in G[m],τ
1 , it does

not always hold that G[m],τ
1 ⊕ G[m],τ

2 = G
[m],τ
2 ⊕ G[m],τ

1 ; however, the two structures are
isomorphic and equivalent for our purposes (see below).

3.3 Monadic Second Order Logic and Types of Graphs

In most cases, we stick to standard notation as given by Libkin [30]. A vocabulary σ is a
finite collection of constant symbols c1, c2, . . . and relation symbols P1, P2, . . .. Each relation
symbol Pi has an associated arity ri. A σ-structure is a tuple A = (A, {cAi }, {PAi }) that
consists of a universe A together with an interpretation of the constant and relation symbols:
each constant symbol ci from σ is associated with an element cAi ∈ A and each relation
symbol Pi from σ is associated with an ri-ary relation PAi ⊆ Ari .

To give an example, a graph G = (V,E) can be viewed as a σ1-structure (V, ∅, {E})
where E is a symmetric binary relation on V × V and the vocabulary σ1 contains a single
relation symbol. Alternatively, for another vocabulary σ2 containing three relation symbols,
one of arity two and two of arity one, one can view a graph G = (V,E) also as a σ2-structure
I(G) = (VI , ∅, {EI , LV , LE}), with VI = V ∪ E, EI = {{v, e} | v ∈ e, e ∈ E}, LV = V and
LE = E; we will call I(G) the incidence graph of G. In our approach we will make use of the
well known fact that the treewidths of G and I(G), viewed as a σ1- and σ2- structures as
explained above, differ by one at most [24].

The main subject of this paper are formulas for graphs in monadic second order logic
(MSO) which is an extension of first order logic that allows quantification over monadic
predicates (i.e., over sets of vertices). By MSO2 we denote the extension of MSO that allows
in addition quantification over sets of edges. As every MSO2 formula ϕ over σ1 can be
turned into an MSO formula ϕ′ over σ2 such that for every graph G, G |= ϕ if and only if
I(G) |= ϕ′ [folklore], for the sake of presentation we restrict our attention, without loss of
generality, to MSO formulae over the σ2 vocabulary. To further simplify the presentation,
without loss of generality (cf. [21]) we assume that the input formulae are given in a variant
of MSO that uses only set variables (and no element variables).

An important kind of structures that are necessary in the proofs in this paper are the [m]-
colored τ -boundaried graphs. An [m]-colored τ -boundaried graph G = (V,E) with boundary
p1, . . . , pτ colored with V1, . . . , Vm is viewed as a structure (VI , {p1, . . . , pτ}, {EI , LV , LE ,
V1, . . . , Vm}); for notational simplicity, we stick to the notation G[m],τ or (G, ~V , ~p). The
corresponding vocabulary is denoted by σm,τ .

A variable X is free in ϕ if it does not appear in any quantification in ϕ. If ~X is the tuple
of all free variables in ϕ, we write ϕ( ~X). A variable X is bound in ϕ if it is not free. By qr(ϕ)
we denote the quantifier rank of ϕ which is the number of quantifiers of ϕ when transformed
into the prenex form (i.e., all quantifiers are at the beginning of the formula). We denote by
MSO[k, τ,m] the set of all MSO formulae ϕ over the vocabulary στ,m with qr(ϕ) ≤ k.

Two [m]-colored τ -boundaried graphs G[m],τ
1 and G[m],τ

2 are MSO[k]-elementarily equiva-
lent if they satisfy the same MSO[k, τ,m] formulae; this is denoted by G[m],τ

1 ≡MSO
k G

[m],τ
2 .

The main tool in the model theoretic approach to Courcelle’s theorem, that will also play a
crucial role in our approach, can be stated as the following theorem.

I Theorem 2 (follows from Proposition 7.5 and Theorem 7.7 [30]). For any fixed τ, k,m ∈ N,
the equivalence relation ≡MSO

k has a finite number of equivalence classes.

SWAT 2016
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Let us denote the equivalence classes of the relation ≡MSO
k by C = {α1 . . . , αw}, fixing

an ordering such that α1 is the class containing the empty graph. Note that the size of
C depends only on k, m and τ , that is, |C| = f(k,m, τ) for some computable function
f . For a given MSO formula ϕ with m free variables, we define an indicator function
ρϕ : {1, . . . , |C|} → {0, 1} as follows: for every i, if there exists a graph G[m],τ ∈ αi such that
G[m],τ |= ϕ, we set ρϕ(i) = 1, and we set ρϕ(i) = 0 otherwise; note that if there exists a
graph G[m],τ ∈ αi such that G[m],τ |= ϕ, then G′[m],τ |= ϕ for every G′[m],τ ∈ αi.

For every [m]-colored τ -boundaried graph G[m],τ , its type, with respect to the relation
≡MSO
k , is the class to which G[m],τ belongs. We say that types αi and αj are compatible if

there exist two [m]-colored τ -boundaried graphs of types αi and αj that are compatible;
note that this is well defined as all [m]-colored τ -boundaried graphs of a given type are
compatible. For every i ≥ 1, we will encode the type αi naturally as a binary vector {0, 1}|C|
with exactly one 1, namely with 1 on the position i.

An important property of the types and the join operation is that the type of a join of
two [m]-colored τ -boundaried graphs depends on their types only.

I Lemma 3 (Lemma 7.11 [30] and Lemma 3.5 [16]). Let G[m],τ
a , G[m],τ

a′ , G[m],τ
b and G[m],τ

b′

be [m]-colored τ -boundaried graphs such that G[m],τ
a ≡MSO

k G
[m],τ
a′ and G[m],τ

b ≡MSO
k G

[m],τ
b′ .

Then (G[m],τ
a ⊕G[m],τ

b ) ≡MSO
k (G[m],τ

a′ ⊕G[m],τ
b′ ).

The importance of the lemma rests in the fact that for determination of the type of a join of
two [m]-colored τ -boundaried graphs, it suffices to know only a small amount of information
about the two graphs, namely their types. The following two lemmas deal in a similar way
with the type of a graph in other situations.

I Lemma 4 (implicitly in [16]). Let (Ga, ~X, ~p), (Gb, ~Y , ~q) be [m]-colored τ -boundaried graphs
and let (Ga′ , ~X ′, ~p′), (Gb′ , ~Y ′, ~q′) be [m]-colored (τ + 1)-boundaried graphs with Ga = (V,E),
Ga′ = (V ′, E′), Gb = (W,F ), Gb′ = (W ′, F ′) such that for some v 6∈ V and w 6∈W
1. (Ga, ~X, ~p) ≡MSO

k (Gb, ~Y , ~q);
2. V ′ = V ∪ {v}, δ(v) ⊆ p, ~p is a subtuple of ~p′ and (Ga′ [V ], ~X ′[V ], ~p′[V ]) = (Ga, ~X, ~p);
3. W ′ = W ∪ {w}, δ(w) ⊆ q, ~q is a subtuple of ~q′ and (Gb′ [W ], ~Y ′[W ], ~q′[W ]) = (Gb, ~Y , ~q);
4. (Ga′ , ~X ′, ~p′) and (Gb′ , ~Y ′, ~q′) are compatible.
Then (Ga′ , ~X ′, ~p′) ≡MSO

k (Gb′ , ~Y ′, ~q′).

I Lemma 5 (implicitly in [16]). Let (Ga, ~X, ~p), (Gb, ~Y , ~q) be [m]-colored τ -boundaried graphs
and let (Ga′ , ~X ′, ~p′), (Gb′ , ~Y ′, ~q′) be [m]-colored (τ + 1)-boundaried graphs with Ga = (V,E),
Ga′ = (V ′, E′), Gb = (W,F ), Gb′ = (W ′, F ′) such that
1. (Ga′ , ~X ′, ~p′) ≡MSO

k (Gb′ , ~Y ′, ~q′);
2. V ⊆ V ′, |V ′| = |V |+ 1, ~p is a subtuple of ~p′ and (Ga′ [V ], ~X ′[V ], ~p′[V ]) = (Ga, ~X, ~p);
3. W ⊆W ′, |W ′| = |W |+ 1, ~q is a subtuple of ~q′ and (Gb′ [W ], ~Y ′[W ], ~q′[W ]) = (Gb, ~Y , ~q).
Then (Ga, ~X, ~p) ≡MSO

k (Gb, ~Y , ~q).

3.4 Feasible Types
Suppose that we are given an MSO formula ϕ over σ2 with m free variables and a quantifier
rank at most k, a graph G of treewidth at most τ , and a nice tree decomposition T of the
graph G.

For every node of T we are going to define certain types and tuples of types as feasible.
For a node b ∈ V (T ) of any kind (leaf, introduce, forget, join) and for α ∈ C, we say that α
is a feasible type of the node b if there exist an [m]-coloring ~X = (X1, . . . , Xm) of Gb such
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that (Gb, ~X, σ(B(b))) is of type α; we say that ~X realizes type α on the node b. We denote
the set of feasible types of the node b by F(b).

For an introduce node b ∈ V (T ) with a child a ∈ V (T ) (assuming that v is the new
vertex), for α ∈ F(a) and β ∈ F(b), we say that (α, β) is a feasible pair of types for b if there
exist ~X = (X1, . . . , Xm) and ~X ′ = (X ′1, . . . , X ′m) realizing types α and β on the nodes a and
b, respectively, such that for each i, either X ′i = Xi or X ′i = Xi ∪ {v}. We denote the set of
feasible pairs of types of the introduce node b by Fp(b).

For a forget node b ∈ V (T ) with a child a ∈ V (T ) and for β ∈ F(b) and α ∈ F(a), we
say (α, β) is a feasible pair of types for b if there exists ~X realizing β on b and α on a. We
denote the set of feasible pairs of types of the forget node b by Fp(b).

For a join node c ∈ V (T ) with children a, b ∈ V (T ) and for α ∈ F(c), γ1 ∈ F(a) and
γ2 ∈ F(b), we say that (γ1, γ2, α) is a feasible triple of types for c if γ1, γ2 and α are mutually
compatible and there exist ~X1, ~X2 realizing γ1 and γ2 on a and b, respectively, such that
~X = (X1

1 ∪X2
1 , . . . , X

1
m ∪X2

m) realizes α on c. We denote the set of feasible triples of types
of the join node c by Ft(c).

We define an indicator function µ : C×V (G)×{1, . . . ,m} → {0, 1} such that µ(β, v, i) = 1
if and only if there exists ~X = (X1, . . . , Xm) realizing the type β on the node top(v) ∈ V (T )
and v ∈ Xi.

4 Extension Complexity of the MSO Polytope

For a given MSO formula ϕ( ~X) over σ2 with m free set variables X1, . . . , Xm, we define
a polytope of satisfying assignments on a given graph G, represented as a σ2 structure
I(G) = (VI , ∅, {EI , LV , LE}) with domain of size n, in a natural way. We encode any
assignment of elements of I(G) to the sets X1, . . . , Xm as follows. For each Xi in ϕ and each
v in VI , we introduce a binary variable yvi . We set yvi to be one if v ∈ Xi and zero otherwise.
For a given 0/1 vector y, we say that y satisfies ϕ if interpreting the coordinates of y as
described above yields a satisfying assignment for ϕ. The polytope of satisfying assignments,
also called the MSO polytope, is defined as

Pϕ(G) = conv ({y ∈ {0, 1}nm | y satisfies ϕ}) .

I Theorem 6 (Extension Complexity of the MSO Polytope). For every graph G and for every
MSO formula ϕ, xc(Pϕ(G)) = f(|ϕ|, τ) · n where f is some computable function, τ = tw(G)
and n = |VI |.

Proof. Let T be a fixed nice tree decomposition of treewidth τ of the given graph G

represented as I(G) and let k denote the quantifier rank of ϕ and m the number of free
variables of ϕ. Let C be the set of equivalence classes of the relation ≡MSO

k . For each node b
of T we introduce |C| binary variables that will represent a feasible type of the node b; we
denote the vector of them by tb (i.e., tb ∈ {0, 1}|C|). For each introduce and each forget node
b of T , we introduce additional |C| binary variables that will represent a feasible type of the
child (descendant) of b; we denote the vector of them by db (i.e., db ∈ {0, 1}|C|). Similarly,
for each join node b we introduce additional |C| binary variables, denoted by lb, that will
represent a feasible type of the left child of b, and other |C| binary variables, denoted by rb,
that will represent a feasible type of the right child of b (i.e., lb, rb ∈ {0, 1}|C|).

We are going to describe inductively a polytope in the dimension given (roughly) by all
the binary variables of all nodes of the given nice tree decomposition. Then we show that its
extension complexity is small and that a properly chosen face of it is an extension of Pϕ(G).

First, for each node b of T , depending on its type, we define a polytope Pb as follows:
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b is a leaf. Pb consists of a single point Pb = {
|C|︷ ︸︸ ︷

100 . . . 0}.
b is an introduce or forget node. For each feasible pair of types (αi, αj) ∈ Fp(b) of the node
b, we create a vector (db, tb) ∈ {0, 1}2|C| with db[i] = tb[j] = 1 and all other coordinates
zero. Pb is defined as the convex hull of all such vectors.
b is a join node. For each feasible triple of types (αh, αi, αj) ∈ Ft(b) of the node b,
we create a vector (lb, rb, tb) ∈ {0, 1}3|C| with lb[h] = rb[i] = tb[j] = 1 and all other
coordinates zero. Pb is defined as the convex hull of all such vectors.

It is clear that for every node b in T , the polytope Pb contains at most |C|3 vertices, and,
thus, by Proposition 1 it has extension complexity at most xc(Pb) 6 |C|3. Recalling our
discussion in Section 3 about the size of C, we conclude that there exists a function f such
that for every b ∈ V (T ), it holds that xc(Pb) 6 f(|ϕ|, τ).

To obtain an extended formulation for Pϕ(G), we first glue these polytopes together,
starting in the leaves of T and processing T in a bottom up fashion. We create polytopes Qb
for each node b in T recursively as follows:

If b is a leaf then Qb = Pb.
If b is an introduce or forget node, then Qb = Qa ×|C| Pb where a is the child of b and the
gluing is done along the coordinates ta in Qa and db in Pb.
If b is a join node, then we first define Rb = Qa ×|C| Pb where a is the left child of b and
the gluing is done along the coordinates ta in Qa and lb in Pb. Then Qb is obtained by
gluing Rb with Qc along the coordinates tc in Qc and rb in Rb where c is the right child
of b.

The following lemma states the key property of the polytopes Qb’s.

I Lemma 7. For every vertex y of the polytope Qb there exist an [m]-coloring ~X =
(X1, . . . , Xm) of Gb such that (Gb, ~X, σ(B(b))) is of type α where α is the unique type
such that the coordinate of y corresponding to the binary variable tb(α) is equal to one.

Proof. The proof is by induction, starting in the leaves of T and going up towards the root.
For leaves, the lemma easily follows from the definition of the polytopes Pb’s.

For the inductive step, we consider an inner node b of T and we distinguish three cases:
If b is a join node, then the claim for b follows from the inductive assumptions for the
children of b, definition of a feasible triple, definition of the polytope Pb, Lemma 3 and
the construction of the polytope Qb.
If b is an introduce node or a forget node, respectively, then, analogously, the claim for
b follows from the inductive assumption for the child of b, definition of a feasible pair,
definition of the polytope Pb, Lemma 4 or Lemma 5, respectively, and the construction of
the polytope Qb. J

Let c be the root node of the tree decomposition T . Consider the polytope Qc. From
the construction of Qc, our previous discussion and the Gluing lemma, it follows that
xc(Qc) 6

∑
b∈V (T ) xc(Pb) 6 f(|ϕ|, τ) · O(n). It remains to show that a properly chosen

face of Qc is an extension of Pϕ(G). We start by observing that
∑|C|
i=1 tc[i] ≤ 1 and∑|C|

i=1 ρϕ(i)·tc[i] ≤ 1, where ρϕ is the indicator function, are valid inequalities for Qc.
Let Qϕ be the face of Qc corresponding to the valid inequality

∑|C|
i=1 ρϕ(i)·tc[i] ≤ 1.

Then, by Lemma 7, the polytope Qϕ represents those [m]-colorings of G for which ϕ holds.
The corresponding feasible assignments of ϕ on G are obtained as follows: for every vertex
v ∈ V (G) and every i ∈ {1, . . . ,m} we set yvi =

∑|C|
j=1 µ(αj , v, i)·ttop(v)[j]. The sum is 1 if
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and only if there exists a type j such that ttop(v)[j] = 1 and at the same time µ(αj , v, i) = 1;
by the definition of the indicator function µ in Subsection 3.4, this implies that v ∈ Xi. Thus,
by applying the above projection to Qϕ we obtain Pϕ(G), as desired.

It is worth mentioning at this point that the polytope Qc depends only on the quantifier
rank k of ϕ and the number of free variables of ϕ. The dependence on the formula ϕ itself
only manifests in the choice of the face Qϕ of Qc that projects to Pϕ(G). J

I Corollary 8. The extension complexity of the convex hull of all satisfying assignments of a
given MSO2 formula ϕ on a given graph G of bounded treewidth is linear in the size of the
graph G.

5 Efficient Construction of the MSO Polytope

In the previous section we have proven that Pϕ(G) has a compact extended formulation
but our definition of feasible tuples and the indicator functions µ and ρϕ did not explicitly
provide a way how to actually obtain it efficiently. That is what we do in this section. We
also briefly mention some implications of our results for optimization versions of Courcelle’s
theorem.

As in the previous section we assume that we are given a graph G of treewidth τ and an
MSO formula ϕ with m free variables and quantifier rank k. We start by constructing a nice
tree decomposition T of G of treewidth τ in linear time.

Let C denote the set of equivalence classes of ≡MSO
k . Because C is finite and its size is

independent of the size of G (Theorem 2), for each class α ∈ C, there exists an [m]-colored
τ -boundaried graph (Gα, ~Xα, ~pα) of type α whose size is upper-bounded by a function of
k,m and τ . For each α ∈ C, we fix one such graph, denote it by W (α) and call it the witness
of α. Let W = {W (α) | α ∈ C}. The witnesses make it possible to compute the indicator
function ρϕ: for every α ∈ C, we set ρϕ(α) = 1 if and only ifW (α) |= ϕ, and we set ρϕ(α) = 0
otherwise.

I Lemma 9 (implicitly in [16] in the proof of Theorem 4.6 and Corollary 4.7). The set W and
the indicator function ρϕ can be computed in time f(k,m, τ), for some computable function f .

It will be important to have an efficient algorithmic test for MSO[k, τ ]-elementary equiva-
lence. This can be done using the Ehrenfeucht-Fraïssé games:

I Lemma 10 (Theorem 7.7 [30]). Given two [m]-colored τ -boundaried graph G
[m],τ
1 and

G
[m],τ
2 , it can be decided in time f(m, k, τ, |G1|, |G2|) whether G[m],τ

1 ≡MSO
k G

[m],τ
2 , for some

computable function f .

I Corollary 11. Recognizing the type of an [m]-colored τ -boundaried graph G[m],τ can be
done in time f(m, k, τ, |G|), for some computable function f .

Now we describe a linear time construction of the sets of feasible types, pairs and triples
of types F(b), Fp(b) and Ft(b) for all relevant nodes b in T . In the initialization phase, we
construct the set W and the indicator function ρϕ using the algorithm from Lemma 9. The
rest of the construction is inductive, starting in the leaves of T and advancing in a bottom
up fashion towards the root of T . The idea is to always replace a possibly large graph G[m],τ

a

of type α by the small witness W (α) when computing the set of feasible types for the parent
of the node a.

Leaf node. For every leaf node a ∈ V (T ) we set F(a) = {α1}. Obviously, this corresponds
to the definition in Section 3.
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Introduce node. Assume that b ∈ V (T ) is an introduce node with a child a ∈ V (T )
for which F(a) has already been computed, and v ∈ V (G) is the new vertex. For every
α ∈ F(a), we first produce a τ ′-boundaried graph Hτ ′ = (Hα, ~q) from W (α) = (Gα, ~Xα, ~pα)
as follows: let τ ′ = | ~pα|+ 1 and Hα be obtained from Gα by attaching to it a new vertex
in the same way as v is attached to Ga. The boundary ~q is obtained from the boundary
~pα by inserting in it the new vertex at the same position that v has in the boundary of

(Ga, σ(B(a))). For every subset I ⊆ {1, . . . ,m} we construct an [m]-coloring ~Y α,I from ~Xα

by setting Y α,Ii = Xα
i ∪ {v}, for every i ∈ I, and Y

α,I
i = Xα

i , for every i 6∈ I. Each of these
[m]-colorings ~Y α,I is used to produce an [m]-colored τ ′-boundaried graph (Hα, ~Y α,I , ~q) and
the types of all these [m]-colored τ ′-boundaried graphs are added to the set F(b) of feasible
types of b, and, similarly, the pairs (α, β) where β is a feasible type of some of the [m]-colored
τ ′-boundaried graph (Hα, ~Y α,I , ~q), are added to the set Fp(b) of all feasible pairs of types of
b. The correctness of the construction of the sets F(b) and Fp(b) for the node b of T follows
from Lemma 4.

Forget node. Assume that b ∈ V (T ) is a forget node with a child a ∈ V (T ) for which
F(a) has already been computed and that the d-th vertex of the boundary σ(B(a)) is
the vertex being forgotten. We proceed in a similar way as in the case of the introduce
node. For every α ∈ F(a) we produce an [m]-colored τ ′-boundaried graph (Hα, ~Y α, ~q)
from W (α) = (Gα, ~Xα, ~pα) as follows: let τ ′ = | ~pα| − 1, Hα = Gα, ~Y α = ~Xα and ~q =
(p1, . . . , pd−1, pd+1, . . . , pτ ′+1). For every α ∈ F(a), the type β of the constructed graph is
added to F(b), and, similarly, the pairs (α, β) are added to Fp(b). The correctness of the
construction of the sets F(b) and Fp(b) for the node b of T follows from Lemma 5.

Join node. Assume that c ∈ V (T ) is a join node with children a, b ∈ V (T ) for which F(a)
and F(b) have already been computed. For every pair of compatible types α ∈ F(a) and
β ∈ F(b), we add the type γ of W (α)⊕W (β) to F(c), and the triple (α, β, γ) to Ft(c). The
correctness of the construction of the sets F(c) and Ft(c) for the node b of T follows from
Lemma 3.

It remains to construct the indicator function µ. We do it during the construction of
the sets of feasible types as follows. We initialize µ to zero. Then, every time we process a
node b in T and we find a new feasible type β of b, for every v ∈ B(b) and for every i for
which d-th vertex in the boundary of W (β) = (Gβ , ~X, ~p) belongs to Xi, we set µ(β, v, i) = 1
where d is the order of v in the boundary of (Gb, σ(B(b)). The correctness follows from the
definition of µ and the definition of feasible types.

Concerning the time complexity of the inductive construction, we observe, exploiting
Corollary 11, that for every node b in T , the number of steps, the sizes of graphs that we
worked with when dealing with the node b, and the time needed for each of the steps, depends
on k, m and τ only. We summarize the main result of this section in the following theorem.

I Theorem 12. Under the assumptions of Theorem 6, the polytope Pϕ(G) can be constructed
in time f ′(|ϕ|, τ) · n, for some computable function f ′.

5.1 Courcelle’s Theorem and Optimization
It is worth noting that even though linear time optimization versions of Courcelle’s theorem
are known, our result provides a linear size LP for these problems out of the box. Together
with a polynomial algorithm for solving linear programming we immediately get the following:
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I Theorem 13. Given a graph G on n vertices with treewidth τ , a formula ϕ ∈ MSO with
m free variables and real weights wiv, for every v ∈ V (G) and i ∈ {1, . . . ,m}, the problem

opt

 ∑
v∈V (G)

m∑
i=1

wiv · yiv
∣∣∣∣ y satisfies ϕ


where opt is min or max, is solvable in time polynomial in the input size.
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