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Abstract
Hyperproperties, like observational determinism or symmetry, cannot be expressed as properties
of individual computation traces, because they describe a relation between multiple computation
traces. HyperLTL is a temporal logic that captures such relations through trace variables, which
are introduced through existential and universal trace quantifiers and can be used to refer to
multiple computations at the same time. In this paper, we study the satisfiability problem of
HyperLTL. We show that the problem is PSPACE-complete for alternation-free formulas (and,
hence, no more expensive than LTL satisfiability), EXPSPACE-complete for ∃∗∀∗ formulas, and
undecidable for ∀∃ formulas. Many practical hyperproperties can be expressed as alternation-
free formulas. Our results show that both satisfiability and implication are decidable for such
properties.
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1 Introduction

Hyperproperties [4] are system properties that relate multiple computation traces. For
example, in the design of a system that handles sensitive information, we might specify
that a certain secret is kept confidential by requiring that the system is deterministic in its
legitimately observable inputs, i.e., that all computations with the same observable inputs
must have the same observable outputs, independently of the secret [13, 16]. In the design of
an access protocol for a shared resource, we might specify that the access to the resource
is symmetric between multiple clients by requiring that for every computation and every
permutation of the clients, there exists a computation where the access is granted in the
permuted order [7].

To express hyperproperties in a temporal logic, linear-time temporal logic (LTL) has
recently been extended with trace variables and trace quantifiers. In HyperLTL [3], obser-
vational determinism can, for example, be expressed as the formula ∀π.∀π′. (Iπ = Iπ′)→

(Oπ = Oπ′), where I is the set of observable inputs and O is the set of observable outputs.
The universal quantification of the trace variables π and π′ indicates that the property must
hold for all pairs of computation traces. It has been shown that many hyperproperties of
interest can be expressed in HyperLTL [12].
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13:2 Deciding Hyperproperties

In this paper, we study the satisfiability problem of HyperLTL. Unlike the model checking
problem, for which algorithms and tools exist [3, 7], the decidability and complexity of the
satisfiability problem was, so far, left open. The practical demand for a decision procedure
is strong. Often, one considers multiple formalizations of similar, but not necessarily
equivalent hyperproperties. An alternative (and slightly stronger) version of observational
determinism requires, for example, that differences in the observable output may only occur
after differences in the observable input have occurred: ∀π.∀π′. (Oπ = Oπ′) W (Iπ 6= Iπ′).
A decision procedure for HyperLTL would allow us to automatically check whether such
formalizations imply each other. Another important application is to check whether the
functionality of a system, i.e., a standard trace property, is compatible with the desired
hyperproperties, such as confidentiality. Since both types of properties can be expressed in
HyperLTL, a decision procedure for HyperLTL would make it possible to identify inconsistent
system requirements early on, before an attempt is made to implement the requirements.

The fundamental challenge in deciding hyperproperties is that hyperproperties are usually
not ω-regular [1]. HyperLTL formulas thus cannot be translated into equivalent automata [6].
Intuitively, since hyperproperties relate multiple infinite traces, an automaton, which only
considers one trace at a time, would have to memorize an infinite amount of information from
one trace to the next. This means that the standard recipe for checking the satisfiability of a
temporal logic, which is to translate the given formula into an equivalent Büchi automaton and
then check if the language of the automaton is empty [15], cannot be applied to HyperLTL.

In model checking, this problem is sidestepped by verifying the self-composition [2] of
the given system: instead of verifying a hyperproperty that refers to n traces, we verify a
trace property that refers to a single trace of a new system that contains n copies of the
original system. Since the satisfiability problem does not refer to a system, this idea cannot
immediately be applied to obtain a decision procedure for HyperLTL. However, it would
seem natural to define a similar self-composition, on the formula rather than the system, in
order to determine satisfiability.

We organize our investigation according to the quantifier structure of the HyperLTL
formulas. LTL, for which the satisfiablity problem is already solved [14], is the sublogic
of HyperLTL where the formulas have a single universally quantified trace variable, which
is usually left implicit. The next larger fragment consists of the alternation-free formulas,
i.e., formulas with an arbitrary number of trace variables and a quantifier prefix that either
consists of only universal or only existential quantifiers. Many hyperproperties of practical
interest, such as observational determinism, belong to this fragment. It turns out that the
satisfiability of alternation-free formulas can indeed be reduced to the satisfiability of LTL
formulas by replicating the atomic propositions such that there is a separate copy for each
trace variable. This construction is sound, because in an alternation-free formula, the values
for the quantifiers can be chosen independently of each other. The size of the resulting
LTL formula is the same as the given HyperLTL formula; as a result, the satisfiability
problem of the alternation-free fragment has the same complexity, PSPACE-complete, as
LTL satisfiability.

If the formula contains a quantifier alternation, the values of the quantifiers can no
longer be chosen independently of each other. However, if the quantifier structure is of
the form ∃∗∀∗, i.e., the formula begins with an existential quantifier and then has a single
quantifier alternation, then it is still possible to reduce HyperLTL satisfiability to LTL
satisfiability by explicitly considering all possible interactions between the existential and
universal quantifiers. For example, ∃π0∃π1∀π2. ( pπ0) ∧ ( pπ1) ∧ ( pπ2) is equisatisfiable
to ∃π0∃π1. ( pπ0) ∧ ( pπ1) ∧ ( pπ0) ∧ ( pπ1), which is in turn equisatisfiable to the
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Table 1 Complexity results for the satisfiability problem of HyperLTL.

∃∗ ∀∗ ∃∗∀∗ bounded
∃∗∀∗ ∀∃

PSPACE-
complete

PSPACE-
complete

EXPSPACE-
complete

PSPACE-
complete undecidable

LTL formula ( p0) ∧ ( p1) ∧ ( p0) ∧ ( p1). In general, enumerating all combinations
of existential and universal quantifiers causes an exponential blow-up and we show that
the satisfiability problem for the ∃∗∀∗-fragment is indeed EXPSPACE-complete. This high
complexity is, however, relativized by the fact that practical hyperproperties rarely need a
large number of quantifiers. If we bound the number of universal quantifiers by a constant,
the complexity becomes PSPACE again.

Formulas where an existential quantifier occurs in the scope of a universal quantifier
make the logic dramatically more powerful, because they can be used to enforce, inductively,
models with an infinite number of traces. We show that a single pair of quantifers of the
form ∀∃ suffices to encode Post’s correspondence problem. The complete picture is thus as
summarized in Table 1: The largest decidable fragment of HyperLTL is the EXPSPACE-
complete ∃∗∀∗ fragment. Bounding the number of universal quantifiers and in particular
restricting to alternation-free formulas reduces the complexity to PSPACE. Any fragment
that contains the ∀∃ formulas is undecidable.

From a theoretical point of view, the undecidability of the ∀∃ fragment is a noteworthy
result, because it confirms the intuition that hyperproperties are truly more powerful than
trace properties. In practice, already the alternation-free fragment suffices for many important
applications (cf. [7]). From a practical point of view, the key result of the paper is therefore
that both satisfiability of alternation-free formulas and implication between alternation-free
formulas, which can be expressed as unsatisfiability of an ∃∗∀∗ formula, are decidable.

2 HyperLTL

Let AP be a set of atomic propositions. A trace t is an infinite sequence over subsets of
the atomic propositions. We define the set of traces TR := (2AP)ω. A subset T ⊆ TR is
called a trace property. We use the following notation to manipulate traces: let t ∈ TR be
a trace and i ∈ N be a natural number. t[i] denotes the i-th element of t. Therefore, t[0]
represents the starting element of the trace. Let j ∈ N and j ≥ i. t[i, j] denotes the sequence
t[i] t[i+ 1] . . . t[j − 1] t[j]. t[i,∞] denotes the infinite suffix of t starting at position i.

LTL Syntax. Linear-time temporal logic (LTL) [9] combines the usual boolean connectives
with temporal modalities such as the Next operator and the Until operator U . The syntax
of LTL is given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ | ϕ U ϕ

where p ∈ AP is an atomic proposition. ϕ means that ϕ holds in the next position of a
trace; ϕ1 U ϕ2 means that ϕ1 holds until ϕ2 holds. There are several derived operators, such
as ϕ ≡ true U ϕ, ϕ ≡ ¬ ¬ϕ, and ϕ1 Wϕ2 ≡ (ϕ1 U ϕ2) ∨ ϕ1. ϕ states that ϕ will
eventually hold in the future and ϕ states that ϕ holds globally; W is the weak version of
the until operator.

CONCUR 2016



13:4 Deciding Hyperproperties

LTL Semantics. Let p ∈ AP and t ∈ TR. The semantics of an LTL formula is defined as
the smallest relation |= that satisfies the following conditions:

t |= p iff p ∈ t[0]
t |= ¬ψ iff t 6|= ψ

t |= ψ1 ∨ ψ2 iff t |= ψ1 or t |= ψ2

t |= ψ iff t[1,∞] |= ψ

t |= ψ1 U ψ2 iff there exists i ≥ 0 : t[i,∞] |= ψ2

and for all 0 ≤ j < i we have t[j,∞] |= ψ1

LTL-SAT is the problem of deciding whether there exists a trace t ∈ TR such that t |= ψ.

I Theorem 1. LTL-SAT is PSPACE-complete [14].

HyperLTL Syntax. HyperLTL [3] extends LTL with trace variables and trace quantifiers.
Let V be an infinite supply of trace variables. The syntax of HyperLTL is given by the
following grammar:

ψ ::= ∃π. ψ | ∀π. ψ | ϕ
ϕ ::= aπ | ¬ϕ | ϕ ∨ ϕ | ϕ | ϕ U ϕ

where a ∈ AP is an atomic proposition and π ∈ V is a trace variable. Note that atomic
propositions are indexed by trace variables. The quantification over traces makes it possible
to express properties like “on all traces ψ must hold”, which is expressed by ∀π. ψ. Dually,
one can express that “there exists a trace such that ψ holds”, which is denoted by ∃π. ψ.
The derived operators , , and W are defined as for LTL.

HyperLTL Semantics. A HyperLTL formula defines a hyperproperty, i.e., a set of sets of
traces. A set T of traces satisfies the hyperproperty if it is an element of this set of sets.
Formally, the semantics of HyperLTL formulas is given with respect to a trace assignment
Π from V to TR, i.e., a partial function mapping trace variables to actual traces. Π[π 7→ t]
denotes that π is mapped to t, with everything else mapped according to Π. Π[i,∞] denotes
the trace assignment that is equal to Π(π)[i,∞] for all π.

Π |=T ∃π.ψ iff there exists t ∈ T : Π[π 7→ t] |=T ψ

Π |=T ∀π.ψ iff for all t ∈ T : Π[π 7→ t] |=T ψ

Π |=T aπ iff a ∈ Π(π)[0]
Π |=T ¬ψ iff Π 6|=T ψ

Π |=T ψ1 ∨ ψ2 iff Π |=T ψ1 or Π |=T ψ2

Π |=T ψ iff Π[1,∞] |=T ψ

Π |=T ψ1 U ψ2 iff there exists i ≥ 0 : Π[i,∞] |=T ψ2

and for all 0 ≤ j < i we have Π[j,∞] |=T ψ1

HyperLTL-SAT is the problem of deciding whether there exists a non-empty set of traces T
such that Π |=T ψ, where Π is the empty trace assignment and |=T is the smallest relation
satisfying the conditions above. If it is clear from the context, we omit Π and simply write
T |= ψ. If |=T ψ, we call T a model of ψ.
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3 Alternation-free HyperLTL

We begin with the satisfiability problem for the alternation-free fragments of HyperLTL.
We call a HyperLTL formula ψ (quantifier) alternation-free iff the quantifier prefix only
consists of either only universal or only existential quantifiers. We denote the corresponding
fragments as the ∀∗ and ∃∗ fragments, respectively. For both fragments, we show that every
formula can be reduced, as discussed in the introduction, to an equisatisfiable LTL formula
of the same size. As a result, we obtain that the satisfiability problem of alternation-free
HyperLTL is PSPACE-complete, like the satisfiability problem of LTL. In the following,
some proofs are omitted due to space constraints. The proofs can be found in the full version
of this paper [5].

3.1 The ∀∗ Fragment
The ∀∗ fragment is particularly easy to decide, because we can restrict the models, without
loss of generality, to singleton sets of traces: since all quantifiers are universal, every model
with more than one trace could immediately be translated into another one where every trace
except one is omitted. Hence, we can ignore the trace variables and interpret the HyperLTL
formula as a plain LTL formula.

I Example 2. Consider the following HyperLTL formula with atomic propositions {a, b}:

∀π1∀π2. bπ1 ∧ ¬bπ2

Since the trace variables are universally quantified, we are reasoning about every pair of
traces, and thus in particular about the pairs where both variables refer to the same trace. It
is, therefore, sufficient to check the satisfiability of the LTL formula b ∧ ¬b, which turns
out to be unsatisfiable.

The satisfiability of hyperproperties that can be expressed in the ∀∗ fragment, such as
observational determinism, thus immediately reduces to LTL satisfiability.

I Lemma 3. For every ∀∗ HyperLTL formula there exists an equisatisfiable LTL formula of
the same size.

3.2 The ∃∗ Fragment
A model of a formula in the ∃∗ fragment may, in general, have more than one trace. For
example the models of ∃π1∃π2. aπ1 ∧ ¬aπ2 have (at least) two traces. In order to reduce
HyperLTL satisfiability again to LTL satisfiability, we zip such traces together. For this
purpose, we introduce a fresh atomic proposition for every atomic proposition a and every
path variable π that occur as an indexed proposition aπ in the formula. We obtain an
equisatisfiable LTL formula by removing the quantifier prefix and replacing every occurrence
of aπ with the new proposition.

I Example 4. Consider the following HyperLTL formula over the atomic propositions {a, b}:

∃π1∃π2. aπ1 ∧ ¬bπ1 ∧ bπ2

By discarding the quantifier prefix and replacing the indexed propositions with fresh proposi-
tions, we obtain the equisatisfiable LTL formula over the atomic propositions {a1, b1, b2}:

a1 ∧ ¬b1 ∧ b2

CONCUR 2016



13:6 Deciding Hyperproperties

The LTL formula is satisfied by the trace p̃: ({a1, b2})ω. We can map the fresh propositions
back to the original indexed propositions. In this way, we obtain witnesses for π1 and π2 by
splitting p̃ into two traces {a}ω and {b}ω, where for every position in these traces only those
atomic propositions that were labelled with π1 or π2, respectively, hold. Hence, the trace set
satisfying the HyperLTL formula is {{a}ω, {b}ω}.

I Lemma 5. For every ∃∗ HyperLTL formula there exists an equisatisfiable LTL formula of
the same size.

Combining Lemma 3 and Lemma 5, we conclude that HyperLTL-SAT inherits the
complexity of LTL-SAT for the alternation-free fragment.

I Theorem 6. HyperLTL-SAT is PSPACE-complete for the alternation-free fragment.

4 The ∃∗∀∗ Fragment

Allowing quantifier alternation makes the satisfiability problem significantly more difficult,
and even leads to undecidability, as we will see in the next section. In this section, we show
that deciding formulas with a single quantifier alternation is still possible if the quantifiers
start with an existential quantifier. A HyperLTL formula is in the ∃∗∀∗ fragment iff it is
of the form ∃π1 . . . ∃πn∀π′1 . . . ∀π′m. ψ. This fragment is especially interesting, because it
includes implications between alternation-free formulas. The idea of the decision procedure
is to eliminate the universal quantifiers by explicitly enumerating all possible interactions
between the universal and existential quantifiers. This leads to an exponentially larger, but
equisatisfiable ∃∗ formula.

I Lemma 7. For every formula in the ∃∗∀∗ fragment, there is an equisatisfiable formula in
the ∃∗ fragment with exponential size.

Proof. We define a function sp that takes a formula of the form ∃π1 . . . ∃πn∀π′1 . . . ∀π′m. ψ
and yields an ∃∗ HyperLTL formula ψ′ of size O(nm) of the following shape, where ψ[π′i\πi]
denotes that the trace variable π′i in ψ is replaced by πi:

∃π1 . . . ∃πn.
n∧

j1=1
. . .

n∧
jm=1

. ψ[π′1\πj1 ] . . . ψ[π′m\πjm
]

Let ϕ be an ∃∗∀∗ HyperLTL formula satisfied by some model T . Hence, there exist traces
t1, . . . , tn ∈ T such that {t1, . . . , tn} satisfies sp(ϕ). Assume sp(ϕ) is satisfied by some model
T ′. Since sp covers every possible combination of trace assignments for the universally
quantified trace variables, T ′ |= ϕ. J

I Example 8. Consider the ∃∗∀∗ formula ∃π1∃π2∀π′1∀π′2. ( aπ′
1
∧ bπ′

2
) ∧ ( cπ1 ∧ dπ2).

Applying the construction from Lemma 7, we obtain the following ∃∗ formula:

sp(∃π1∃π2∀π′1∀π′2. ( aπ′
1
∧ bπ′

2
) ∧ ( cπ1 ∧ dπ2)) yields :

∃π1∃π2. (( aπ1 ∧ bπ1) ∧ ( cπ1 ∧ dπ2))
∧ (( aπ2 ∧ bπ1) ∧ ( cπ1 ∧ dπ2))
∧ (( aπ1 ∧ bπ2) ∧ ( cπ1 ∧ dπ2))
∧ (( aπ2 ∧ bπ2) ∧ ( cπ1 ∧ dπ2))

Combining the construction from Lemma 7 with the satisfiability check for ∃∗ formulas
from Section 3, we obtain an exponential-space decision procedure for the ∃∗∀∗ fragment.
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I Theorem 9. ∃∗∀∗ HyperLTL-SAT is EXPSPACE-complete.

Proof. Membership in EXPSPACE follows from Lemma 7 and Lemma 5. We show
EXPSPACE-hardness via a reduction from the problem whether an exponential-space
bounded deterministic Turing machine T accepts an input word x. Given T and x, we
construct an ∃∗∀∗ HyperLTL formula ϕ such that T accepts x iff ϕ is satisfiable.

Let T = (Σ, Q, q0, F,→), where Σ is the alphabet, Q is the set of states, q0 ∈ Q is the
initial state, F ⊆ Q is the set of final states, and → ⊆ Q × Σ × Q × Σ × {L,R} is the
transition relation. We use (q, σ)→ (q′, σ′,∆) to indicate that when T is in state q and it
reads the input σ in the current tape cell, it changes its state to q′, writes σ′ in the current
tape cell, and moves its head one cell to the left if ∆ = L and one cell to the right if ∆ = R.
Let n ∈ O(|x|) be such that the working tape of T has 2n cells. We encode each letter of
Σ as a valuation of a set ~s = {s1, . . . , skΣ} of atomic propositions and each state Q as a
valuation of another set ~q = {q1, . . . , qkQ

} of atomic propositions, where kΣ is logarithmic in
|Σ| and kQ is logarithmic in |Q|. We furthermore use the valuations of a set ~a = {a1, . . . , an}
to encode the position of a tape cell in a configuration of T , and the valuations of a set
~h = {h1, . . . , hn} to encode the position of the head of the Turing machine. With these
atomic propositions, we can represent configurations of the Turing machine as sequences
of valuations of the atomic propositions. The state of the Turing machine is encoded as
the valuation of ~q at the position indicated by ~h. Computations of a Turing machine are
sequences of configurations; we thus represent computations as traces.

We begin our encoding into HyperLTL with four quantifier-free formulas over a free trace
variable π: ϕinit(π) encodes that the initial configuration represents x and q0, and places the
head in the first position of the sequence. ϕhead(π) ensures that the position of the head may
only change when a new configuration begins and that the change of the position as well
as the change of the state is as defined by →. ϕcount(π) expresses that the addresses in ~a
continuously count from 1 to 2n. ϕhalt(π) expresses that the Turing machine halts eventually,
i.e., the trace eventually visits a final state at the position of the head.

The more difficult part of the encoding now concerns the comparison of the tape content
from one configuration to the next. We need to enforce that the tape content at the position
represented by ~h changes as defined by→, and that the content of all tape cells except for the
position represented by ~h stays the same. For this purpose, we need to be able to memorize
a position from one configuration to the next. We accomplish the “memorization” with the
following trick: we introduce two existentially quantified trace variables πzero and πone. Let
v be a new atomic proposition. We use a quantifier-free formula ϕzero/one(πzero, πone) to
ensure that v is always false on πzero and always true on πone. We now introduce another
set of n universally quantified trace variables π1, π2, . . . , πn that will serve as memory: if one
of these trace variables is bound to πzero its “memory content” is 0, if it is bound to πone
its memory content is 1. We add a sufficient number of universally quantified variables to
memorize the position of some cell and its content. Our complete encoding of the Turing
machine as a HyperLTL formula then looks, so far, as follows:

∃π, πzero, πone. ∀π1, π2, . . . , πn, π
′
1, π
′
2, . . . , π

′
kΣ
.

ϕinit(π) ∧ ϕhead(π) ∧ ϕcount(π) ∧ ϕhalt(π) ∧ ϕzero/one(πzero, πone)
∧ψ(π, π1, π2, . . . , πn, π

′
1, π
′
2, . . . , π

′
kΣ

)

The missing requirement about the correct contents of the tape cells is encoded in the last
conjunct ψ. We first ensure that all the universally quantified traces have constant values in
v, i.e., v is either always true or always false. To enforce that the tape content changes at
the head position, we specify in ψ that whenever we are at the head position, i.e., whenever
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13:8 Deciding Hyperproperties

ai,π = hi,π for all i = 1, . . . , n, then when we visit the same position in the next configuration,
the tape content must be as specified by →: i.e., if ai,π = vπi

for all i = 1, . . . , n, then when
ai,π = vπi

holds again for all i = 1, . . . , n during the next configuration, the tape content as
represented in ~s must be the one defined by →. To enforce that the tape content is the same
at every position except that encoded in ~h, we specify that for all positions except the head
position, i.e., whenever ai,π 6= hi,π for some i = 1, . . . , n, then if ai,π = vπi for all i = 1, . . . , n,
and si,π = vπ′

i
for all i = 1, . . . , kΣ, then the following must hold: when, during the next

configuration, we visit the same position again, i.e., when again ai,π = vπi for all i = 1, . . . , n,
we must also find the same tape content again, i.e., si,π = vπ′

i
for all i = 1, . . . , kΣ.

By induction on the length of the computation prefix, we obtain that any model of the
HyperLTL formula represents in π a correct computation of the Turing machine T . Since this
computation must reach a final state, the model exists iff T accepts the input word x. J

In practice, the number of quantifiers is usually small. Often it is sufficient to reason
about pairs of traces, which can be done with just two quantifiers. To reflect this observation,
we define a bounded version of the ∃∗∀∗ fragment, where the number of universal quantifiers
that may occur in the HyperLTL formula is bounded by some constant b ∈ N. A bounded
∃∗∀∗ formula of length n with bound b can be translated to an equisatisfiable LTL formulas
of size O(nb). The satisfiablility problem can thus be solved in polynomial space.

I Corollary 10. Bounded ∃∗∀∗ HyperLTL-SAT is PSPACE-complete.

Another observation that is important for the practical application of our results is that
implication between alternation-free formulas is decidable. As discussed in the introduction,
it frequently occurs that multiple formalizations are proposed for the same hyperproperty,
and one would like to determine whether the proposals are equivalent, or whether one version
is stronger than the other. A HyperLTL formula ψ implies a HyperLTL formula ϕ iff every
set T of traces that satisfies ψ also satisfies ϕ.

To determine whether ψ implies ϕ, we check the satisfiability of the negation ¬(ψ → ϕ).
If one formula is in the ∀∗ fragment and the other in the ∃∗ fragment, implication checking
is especially easy, because the formula we obtain is alternation-free.

I Example 11. To determine if the ∀∗ formula ∀π1 . . . ∀πn. ψ implies the ∀∗ formula
∀π′1 . . . ∀π′m. ϕ, we check the ∃∗∀∗ formula ∃π1 . . . πn∀π′1 . . . π′m. ψ ∧ ¬ϕ for unsatisfiability.

Analogously to Theorem 9, we obtain that checking implication between two alternation-
free HyperLTL formulas is EXPSPACE-complete.

I Theorem 12. Checking implication between alternation-free HyperLTL formulas is EXPSPACE-
complete.

Proof. The upper bound of Theorem 9 applies here as well. For the lower bound, we note
that the encoding in the proof of Theorem 9 is of the form

∃π, πzero, πone. ∀~π′. ϕ1(π) ∧ ϕ2(πzero, πone) ∧ ψ(π, ~π′),

which is not an implication of alternation-free formulas. We can, however, transform this
formula into an equisatisfiable formula by quantifying π universally:

∃πzero, πone. ∀π, ~π′. ϕ1(π) ∧ ϕ2(πzero, πone) ∧ ψ(π, ~π′)

In the models of the new formula, the accepting computation of the Turing machine is simply
represented on all traces instead of on some trace. The formula is satisfiable iff the following
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∀π∃πs∃π′.
((

(ȧ, ȧ)πs ∨ (ḃ, ḃ)πs

)
(1)

∧ ((ã, ã)πs
∨ (b̃, b̃)πs

)U (#,#)πs

)
(2)

∧ (#,#)π (3)

∧

( ∨
i∈{1,2,3}

StoneEncodingi (4)

∨ (#,#)π

)
(5)

Figure 1 Reduction to HyperLTL for the PCP instance from Example 13.

implication between ∃∗ formulas does not hold:

∃πzero, πone. ϕ2(πzero, πone) implies ∃π, ~π′. ¬(ϕ1(π) ∧ ψ(π, ~π′))

Hence, we have reduced the problem whether an exponential-space bounded deterministic
Turing machine accepts a certain input word to the implication problem between two ∃∗
HyperLTL formulas. J

With the results of this section, we have reached the borderline of the decidable HyperLTL
fragments. We will see in the next section that HyperLTL-SAT immediately becomes
undecidable if the formulas contain a quantifier alternation that starts with a universal
quantifier.

5 The Full Logic

We now show that any extension beyond the already considered fragments makes the
satisfiability problem undecidable. We prove this with a many-one-reduction from Post’s
correspondence problem (PCP) [11] to the satisfiability of a ∀∃ HyperLTL formula. In PCP,
we are given two lists α and β consisting of finite words from some alphabet Σ. For example,
α, with α1 = a, α2 = ab and α3 = bba and β, with β1 = baa, β2 = aa and β3 = bb, where αi
denotes the ith element of the list, and αij denotes the jth symbol of the ith element. In this
example, α31 corresponds to b. PCP is the problem to find an index sequence (ik)1≤k≤K
with K ≥ 1 and 1 ≤ ik ≤ n for all k, such that αi1 . . . αiK = βi1 . . . βiK . We denote the finite
words of a PCP solution with iα and iβ , respectively.

It is a useful intuition to think of the PCP instance as a set of n domino stones. The
first stone of our example is a

baa , the second is ab
aa and the third, and last, is bba

bb . Those
stones must be arranged (where copying is allowed) to construct the same word with the α-
and β-concatenations. A possible solution for this PCP instance would be (3, 2, 3, 1), since
the stone sequence bba

bb
ab
aa

bba
bb

a
baa produces the same word, i.e., bbaabbbaa = iα = iβ . For

modelling the necessary correspondence between the α and β components, we will use pairs
of the PCP instance alphabet as atomic propositions, e.g., (a, b). We represent a stone as
a sequence of such pairs, where the first position of the pair contains a symbol of the α
component and the second position a symbol of the β component. For example, the first stone

a
baa will be represented as (a, b), (#, b)(#, a). We will use # as a termination symbol. Since
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StoneEncoding3 = (6)((
((ḃ, ḃ)π ∧ (b, b)π ∧ (a, ∗̇)π ∧ (∗̇, ∗̃)π) (7)

∨ ((ḃ, ḃ)π ∧ (b, b)π ∧ (a,#)π ∧ (#,#)π)
)

(8)

∧ ( (ã, ∗)π → (ã, ∗)π′) (9)
∧ ( (b̃, ∗)π → (b̃, ∗)π′) (10)
∧ ( (#, ∗)π → (#, ∗)π′) (11)
∧ ( (∗, ã)π → (∗, ã)π′) (12)
∧ ( (∗, b̃)π → (∗, b̃)π′) (13)

∧ ( (∗,#)π → (∗,#)π′)
)

(14)

Figure 2 Formula in the reduction of the PCP instance from Example 13, encoding that a trace
may start with a valid stone 3 and that there must also exist a trace where stone 3 is deleted.

the α and β component of a stone may differ in its length, a sequence of stone representations
might “overlap”. Therefore, we indicate the start of a new stone with a dotted symbol. For
example, we can string the first stone two times together: (ȧ, ḃ), (ȧ, b)(#, a)(#, ḃ)(#, b)(#, a).
In the following, we write ã if we do not care if this symbol is an a or ȧ and use ∗ as syntactic
sugar for an arbitrary symbol of the alphabet. We assume that only singletons are allowed
as elements of the trace, which could be achieved by adding for every atomic proposition
(y1, y2) the conjunction

∧
(y1,y2)6=(y,y′) (¬((y1, y2) ∧ (y, y′))), for all (y, y′).

I Example 13. Consider, again, the following PCP instance with Σ = {a, b} and two lists
α, with α1 = a, α2 = ab and α3 = bba and β, with β1 = baa, β2 = aa and β3 = bb. We
can reduce this PCP instance to the question whether the HyperLTL formula shown in
Figure 1 is satisfiable. Let AP := ({a, b, ȧ, ḃ} ∪ {#})2. The stone encoding is sketched with
the example of stone 3 in Figure 2.

The subformula (1) expresses that there exists a trace that starts with (ȧ, ȧ) or (ḃ, ḃ).
Intuitively, this means that there must exist a stone whose α and β component start with
the same symbol. Subformula (2) requires that there exists a “solution” trace πs. It ensures
that the trace ends synchronously with (#,#)ω. Combined, this guarantees that the word
constructed from the α components is equal to the word constructed from the β components,
i.e., iα = iβ for a PCP solution i(k). Subformula (3) ensures that every trace eventually ends
with the termination symbol #. It is important to notice here that all traces besides πs are
allowed to end asynchronously.

It remains to ensure that trace πs only consists of valid stones. This is where the ∀∃
structure of the quantifier prefix comes into play. The key idea is to use a ∀∃ formula to
specify that for every trace with at least one stone there is another trace with the first stone
removed. Since we check that every trace begins with a valid stone, this implies that all
stones are valid. The encoding of stone 3 is exemplarily shown in Figure 2. The first three α
components and the first two β components of the new trace are deleted. The example set
shown in Figure 3 shows this behavior for πs, which starts with stone 3. By deleting stone 3
from πs and shifting every position accordingly, we obtain π′s. Since π′s starts with a valid
stone, namely stone 2, it satisfies subformula (4) for i = 2. This requires that there exists



B. Finkbeiner and C. Hahn 13:11

another trace where stone 2 is deleted analogously. This argument is repeated until the trace
is reduced to (#,#)ω, which is the only possibility for “termination” in the sense that πs
ends synchronously with (#,#)ω.

Corresponding to this example, we can give a generalized reduction, establishing the unde-
cidability of ∀∃ formulas.

I Theorem 14. ∀∃ HyperLTL-SAT is undecidable.

Proof. Let a PCP instance with Σ = {a1, a2, ..., an} and two lists α and β be given. We
choose our alphabet as follows: Σ′ = (Σ∪{ȧ1, ȧ2, ..., ȧn}∪#)2, where we use the dot symbol
to encode that a stone starts at this position of the trace. Again, we write ã if we do not
care if this symbol is an a or ȧ and use ∗ as syntactic sugar for an arbitrary symbol of the
alphabet. We encode the idea from Example 13 in the following formula.

ϕreduc := ∀π∃πs∃π′. ϕsol(πs) ∧ ϕvalidStone(π) ∧ ϕdelete(π, π′) ∧ (#,#)π

ϕsol(πs) := (
∨n
i=1(ȧi, ȧi)πs

) ∧ (
∨n
i=1(ãi, ãi)πs

)U (#,#)πs

We ensure that there exists a “solution” trace πs, which starts pointed, i.e., where
the α and β components are the same. Accordingly to PCP, we require synchronous
“termination”.
ϕvalidStone(π). This is ensured by a generalization of lines (7) and (8) of the stone
encoding sketched in Figure 2.
Every trace in the trace set starts with a valid stone. Note that we do not require
synchronous termination in any other trace than the “solution” trace.
ϕdelete(π, π′). This is ensured by a generalization of lines (9) to (14) of the stone encoding
sketched in Figure 2.
By exploiting the ∀∃ structure of the formula, we encode that for every trace π there
exists another trace π′ which is nearly an exact copy of π but with its first stone removed.

Correctness. We prove correctness of the reduction by showing that if there exists a solution,
namely an index sequence i(l) with l ∈ N, for a PCP instance, then there exists a trace set
T satisfying the resulting formula ϕreduc and vice versa. For the sake of readability, again,
we omit the set braces around atomic propositions, since we can assume that only singletons
occur.

Assume there exists a solution i to the given PCP instance with |iα| = |iβ | = k. We can
construct a trace set T by building the trace (iα[0], iβ [0]) . . . (iα[k], iβ [k])(#,#)ω, denoted
by t0 and adding a dot to the symbol corresponding to the new stones start. We can
infer the correct placement of the dots from the solution. We distinguish two cases. If
the solution is only of length 1, we add (#,#)ω to T and successfully constructed a trace
set satisfying the formula. Otherwise, let t0 start with stone j. We also add one of the
following traces t1 based on t0 to T :

if |αj | = |βj | : (i[|αj |], i[|βj |]) . . . (i[k], i[k])(#,#)ω

if |αj | < |βj | : (i[|αj |], i[|βj |]) . . . (i[k], i[k − |βj |+ |αj |]) . . . (#, i[k])(#,#)ω

if |αj | > |βj | : (i[|αj |], i[|βj |]) . . . (i[k − |αj |+ |βj |], i[k]) . . . (i[k],#)(#,#)ω

We repeat adding traces tn based on the starting stone of every newly added trace tn−1
until we terminate with (#,#)ω. Note that tn−1 might already end asynchronously. By
construction this is exactly a trace set T satisfying ϕreduc.
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Start
πs : (ḃ, ḃ)(b, b)(a, ȧ)(ȧ, a)(b, ḃ)(ḃ, b)(b, ḃ)(a, a)(ȧ, a)(#,#)(#,#) . . .
Delete stone 3
π′s : (ȧ, ȧ)(b, a)(ḃ, ḃ)(b, b)(a, ḃ)(ȧ, a)(#, a)(#,#)(#,#) . . .
Delete stone 2
π′′s : (ḃ, ḃ)(b, b)(a, ḃ)(ȧ, a)(#, a)(#,#)(#,#) . . .
Delete stone 3
π′′′s : (ȧ, ḃ)(#, a)(#, a)(#,#)(#,#) . . .
Delete stone 1
π′′′′s : (#,#)(#,#) . . .
End

Figure 3 Trace set satisfying the formula from Example 13, with omitted set braces around the
atomic propositions.

Let the formula ϕreduc be satisfiable by a trace set T . Therefore, there exists a witness
t0 for πs, which starts with a dot, whose α and β components are the same at all
positions, and which ends synchronously with (#,#)ω. t0 also needs to start with a valid
stone, which is ensured by the stone encoding, since otherwise t0 6∈ T . By construction
there exists a subset Tmin ⊆ T that satisfies ϕreduc, which contains t0 and every trace
constructed by deleting one stone after another, with the last trace being (#,#)ω. Because
t0 eventually terminates synchronously with (#,#), the solution remains finite. We
define a total order for the traces in Tmin according to the number of dots or, equivalently,
the number of stones. We also define a function s that maps traces to the index of their
starting stone. Let A = [t0, t1, . . . , tn] be the list of traces in Tmin sorted in descending
order. A possible solution for the PCP instance is the index sequence s(t0) s(t1) . . . s(tn).

Since we can use the construction from Subsection 3.2, the minimal undecidable fragment of
HyperLTL is, in fact, ∀∃. J

6 Conclusion

We have analyzed the decidability and complexity of the satisfiability problem for various
fragments of HyperLTL. The largest decidable fragment of HyperLTL is the EXPSPACE-
complete ∃∗∀∗ fragment; the alternation-free ∃∗ and ∀∗ formulas are PSPACE-complete; any
fragment that contains the ∀∃ formulas is undecidable. Despite the general undecidability,
our results provide a strong motivation to develop a practical SAT checker for HyperLTL.
The key result is the PSPACE-completeness for the alternation-free fragment and the
bounded ∃∗∀∗ fragment, which means that for the important class of hyperproperties that
can be expressed as a HyperLTL formula with a bounded number of exclusively universal or
exclusively existential quantifiers, satisfiability and implication can be decided within the
same complexity class as LTL.

There are several directions for future work. An important open question concerns the
extension to branching time. HyperLTL is a sublogic of the branching-time temporal logic
HyperCTL∗ [3]. While the undecidability of HyperLTL implies that HyperCTL∗ is also, in
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general, undecidable (this was already established in [3]), the obvious question is whether it
is possible to establish decidable fragments in a similar fashion as for HyperLTL.

Another intriguing, and still unexplored, direction is the synthesis problem for HyperLTL
(and HyperCTL∗) specifications. In synthesis, we ask for the existence of an implementation,
which is usually understood as an infinite tree that branches according to the possible inputs
to a system and whose nodes are labeled with the outputs of the system. Since HyperLTL
can express partial observability, the synthesis problem for HyperLTL naturally generalizes
the well-studied synthesis under incomplete information [8] and the synthesis of distributed
systems [10].

Finally, it will be interesting to develop a practical implementation of the constructions
presented in this paper and to use this implementation to analyze the relationships between
various hyperproperties studied in the literature.
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