
Private Names in Non-Commutative Logic∗

Ross Horne1, Alwen Tiu2, Bogdan Aman3, and Gabriel Ciobanu4

1 School of Computer Science and Engineering, Nanyang Technological
University, Singapore
rhorne@ntu.edu.sg

2 School of Computer Science and Engineering, Nanyang Technological
University, Singapore
atiu@ntu.edu.sg

3 Romanian Academy, Institute of Computer Science, Blvd. Carol I no.8,
700505 Iaşi, Romania
bogdan.aman@iit.academiaromana-is.ro

4 Romanian Academy, Institute of Computer Science, Blvd. Carol I no.8,
700505 Iaşi, Romania
gabriel@info.uaic.ro

Abstract
We present an expressive but decidable first-order system (named MAV1) defined by using the
calculus of structures, a generalisation of the sequent calculus. In addition to first-order universal
and existential quantifiers the system incorporates a de Morgan dual pair of nominal quantifiers
called ‘new’ and ‘wen’, distinct from the self-dual Gabbay-Pitts and Miller-Tiu nominal quanti-
fiers. The novelty of the operators ‘new’ and ‘wen’ is they are polarised in the sense that ‘new’
distributes over positive operators while ‘wen’ distributes over negative operators. This greater
control of bookkeeping enables private names to be modelled in processes embedded as predicates
in MAV1. Modelling processes as predicates in MAV1 has the advantage that linear implication
defines a precongruence over processes that fully respects causality and branching. The transit-
ivity of this precongruence is established by novel techniques for handling first-order quantifiers
in the cut elimination proof.

1998 ACM Subject Classification F.4.1 Mathematical Logic; F.3.2 Semantics of Programming
Languages; F.1.2 Modes of Computation

Keywords and phrases process calculi, calculus of structures, nominal logic, causal consistency

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.31

1 Introduction

This paper introduces a first-order non-commutative logic, of significance for modelling
processes, expressed in a formalism called the calculus of structures [17, 18, 34, 36, 37].
The calculus of structures is effectively a term rewriting system modulo a congruence that
can express proof systems combining connectives for sequentiality and parallelism. The
calculus of structures was motivated by a desire to understand why pomset logic [30] could
not be expressed in the sequent calculus. Pomset logic is inspired by pomsets [29] and
linear logic [15], the former being a model of concurrency respecting causality [33], while the

∗ The first two authors receive support from MOE Tier 2 grant MOE2014-T2-2-076. The second author
receives support from NTU Start Up grant M4081190.020. The first, third and fourth authors are
supported by ANCS grant number PN-II-ID-PCE-2011-3-0919.

© Ross Horne, Alwen Tiu, Bogdan Aman, and Gabriel Ciobanu;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 31; pp. 31:1–31:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.31
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

31:2 Private Names in Non-Commutative Logic

latter can be interpreted in various ways as a logic of resources and concurrency [9, 21, 42].
Acknowledging connections between pomsets, linear logic and concurrency, it is natural to
consider the calculus of structures in the context of concurrency theory.

Initial investigations [7] relate a basic process calculus with parallel composition (P ‖ Q)
and action prefix (α.P) to a proof system in the calculus of structures called BV [17]. In that
work, a logical characterisation of completed traces is established using provability. As a
consequence of this logical characterisation and cut elimination for BV, if P implies Q and P
has a completed trace then Q has the same completed trace. Thereby, linear implication is
strictly finer than completed trace inclusion. Strictness follows since some processes related
by linear implication are not related by trace inclusion. For example, a desirable property of
linear implication is that autoconcurrency [4, 40, 41] is avoided, since the embedding of α ‖ α
does not logically imply the embedding of α.α. Avoiding autoconcurrency indicates that
linear implication fully respects the causal order of events. Preorders that respect causality
are significant for various applications, not limited to soundly reasoning about processes
deployed on large high-availability distributed systems where a consensus on interleavings is
infeasible but causality is respected [11, 22].

Recently, BV was extended with additives to obtain the system MAV [20], enabling choice
in processes to be modelled. Results concerning multi-party compatibility and subtyping
in a session type system inspired by Scribble [19] have been established using MAV [12].
The current paper continues this line of enquiry by modelling name passing processes in a
conservative extension of MAV with first-order quantifiers, named MAV1. The system MAV1
is also a conservative extension of first-order multiplicative additive linear logic MALL1 [23]
with mix. A novelty is that MAV1 includes a pair of de Morgan dual nominal quantifiers
pronounced new and wen and written И and Э respectively. In a processes-as-predicates
embedding [16], И models new name restriction in the π-calculus. The dual nominal quantifier
Э is essential for defining linear implication and models the input of private names in a
processes-as-predicates embedding for the πI-calculus [32].

Logically speaking, nominal quantifiers И and Э sit between ∀ and ∃ such that ∀x.P (
Иx.P and Иx.P (Эx.P and Эx.P (∃x.P , where(is linear implication. The quantifier
И is similar in some respects to ∀, whereas Э is similar to ∃. A crucial difference between
∃x.P and Эx.P is that variable x in the latter cannot be instantiated with arbitrary terms,
but only ‘fresh’ names introduced by И.

The need for new quantifiers. We illustrate why neither universal quantification nor an
established self-dual nominal quantifier [14, 25, 28] are capable of soundly modelling name
restriction in a processes-as-predicates embedding. We argue that, since trace inclusion is
considered to be amongst the coarsest preorders on process [39], it makes sense to impose a
minimum requirement that linear implication cannot relate two processes that are unrelated
by trace inclusion.

In the following, observe that R1 = νx.(ax ‖ bx) is a π-calculus process that can output a
fresh name twice, once on channel a and once on channel b; but cannot output two perceivably
distinct names in any execution. In contrast, observe that R2 = νx.ax ‖ νx.bx is a π-calculus
process that outputs two distinct fresh names before terminating, but cannot output the
same name twice in any execution. The processes R1 and R2 are unrelated by trace inclusion
in either direction.

For an encoding using universal quantifiers for name restriction, processes R1 and R2 are
respectively encoded as predicates P1 = ∀x.

(
ax ‖ bx

)
and P2 = ∀x.ax ‖ ∀x.bx, where operator

‖ is overloaded to connect parallel composition and par from linear logic. Unfortunately, the

R. Horne, A. Tiu, B. Aman, and G. Ciobanu 31:3

implication P2 (P1 is provable. However, R2 can output two perceivably distinct names but
R1 cannot, so implication would not be sound with respect to trace inclusion. Additionally,
we must also avoid the following diagonalisation property [25]: ∀x.∀y.P (x, y)(∀z.P (z, z).

The self-dual nominal quantifiers of either Gabbay-Pitts [28] or Miller-Tiu [25, 14], as
recently investigated in the calculus of structures [31], do successfully avoid the above
diagonalisation property. Unfortunately, rather surprisingly, encoding private names using
any of these self-dual nominal quantifiers, say ∇, leads to the following problem. Suppose
processes R1 and R2 are encoded by the respective predicates Q1 = ∇x.(ax ‖ bx) and
Q2 = ∇x.ax ‖ ∇x.bx. In this case, the linear implication Q1 (Q2 is provable. This
implication is also unsound, since R1 has a trace that outputs two identical names, whereas
R2 admits no such trace.

Our new quantifier И, distinct from the Gabbay-Pitts operator, addresses the above
limitations of universal quantification and established self-dual nominal quantifiers. In
addition to avoiding diagonalisation, our И quantifier does not distribute over parallel
composition in either direction. In MAV1, the predicates Иx.(ax ‖ bx) and Иx.ax ‖ Иx.bx
are, correctly, unrelated by linear implication.

Outline. For a new logical system it is necessary to justify correctness, which we approach in
proof theoretic style by cut elimination. Section 2 defines MAV1 and explains cut elimination.
Section 3 illustrates a processes-as-predicates embedding in MAV1 and explains that linear
implication defines a branching-time preorder that respects causality. Section 4 presents a
more detailed explanation of the rules for the nominal quantifiers and the novel strategy of
the cut elimination proof.

2 Syntax and Semantics of Predicates in MAV1

In this section we present the syntax and semantics of a first-order system expressed in the
calculus of structures, with the technical name MAV1. We assume that the reader has a basic
understanding of term-rewriting systems [24].

A term-rewriting system requires an abstract syntax, defined in Fig. 1. The rewrite
rules, in Fig 3, define rules that can be applied to rewrite a predicate of the form on
the left of the long right arrow to the predicate on the right. All rewrite rules can be
applied in any context, i.e. MAV1 predicates from Fig. 1 with a hole of the following
form C{ } ::= { · } | C{ } � P | P � C{ } |

Q

x.C{ }, where � ∈ {;, ‖,⊗,&,⊕} andQ

∈ {∃,∀,И,Э}.
Further to rewriting according to rules, the term-rewriting system is defined modulo a

congruence, where a congruence is an equivalence relation that holds in any context. The
congruence, defined in Fig. 2, makes par and times commutative and seq non-commutative
in general. The congruence enables α-conversion for quantifiers. In addition, equivariance
allows names bound by successive nominal quantifiers to be swapped.

As standard, we define a freshness predicate such that a variable x is fresh for a predicate
P , written x # P , if and only if x is not a member of the set of free variables of P , such that
all quantifiers bind variables in their scope. We also assume the standard notion of capture
avoiding substitution of a variable for a term. Terms may be constructed from variables,
constants and function symbols. When predicates model process in the π-calculus, atoms
are pairs of terms, where the first term represents a channel and the second a message.

We postpone a discussion on the rules until after we introduce the notion of a proof and
explain cut elimination in the next section.

CONCUR 2016

31:4 Private Names in Non-Commutative Logic

P ::= α (atom)
α (co-atom)
I (unit)
∀x.P (all)
∃x.P (some)
Иx.P (new)
Эx.P (wen)
P & P (with)
P ⊕ P (plus)
P ‖ P (par)
P ⊗ P (times)
P ; P (seq)

Figure 1 MAV1 syntax.

(P, ‖, I) and (P,⊗, I) are commutative monoids

Q

x.P ≡

Q

y.(P{y/x}) if y #

Q

x.P (α-conversion)

(P, ;, I) is a monoid Иx.Иy.P ≡ Иy.Иx.P (equivariance) Эx.Эy.P ≡ Эy.Эx.P (equivariance)

Figure 2 Congruence (≡) for MAV1 predicates. For α-conversion

Q

∈ {∃, ∀,И,Э} is any quantifier.

2.1 Linear Implication and Cut Elimination
This section confirms that MAV1 is a consistent logical system, as established by a cut
elimination theorem. Surprisingly, to date, the only direct proof of cut elimination involving
quantifiers in the calculus of structures is for a self-dual nominal quantifier [31] distinct
from any quantifier in MAV1. Related cut elimination results involving first-order quantifiers
in the calculus of structures rely on a correspondence with the sequent calculus [6, 35].
However, due to the presence of the non-commutative operator seq there is no sequent
calculus presentation [37] for MAV1; hence we pursue here a direct proof.

A derivation is a sequence of zero or more rewrite rules from Fig. 3, where the congruence
in Fig. 2 can be applied at any point. We are particularly interested in special derivations,
called proofs.

I Definition 1. A proof in MAV1 is a derivation P −→ I from a predicate P to the unit I.
When such a derivation exists, we say that P is provable, and write ` P .

To explore the theory of proofs, two auxiliary definitions are introduced: linear negation
and linear implication. Notice in the syntax in Fig. 1 linear negation applies only to atoms.

I Definition 2. Linear negation is defined by the following function from predicates to
predicates.

α = α P ⊗Q = P ‖ Q P ‖ Q = P ⊗Q P ⊕Q = P &Q P &Q = P ⊕Q
I = I P ;Q = P ;Q ∀x.P = ∃x.P ∃x.P = ∀x.P Иx.P = Эx.P Эx.P = Иx.P

Linear implication, written P (Q, is defined as P ‖ Q.

Linear negation defines de Morgan dualities. As in linear logic, the multiplicatives ⊗ and ‖
are de Morgan dual; as are the additives & and ⊕, the first-order quantifiers ∃ and ∀, and the
nominal quantifiers И and Э. As in BV, sequential composition and the unit are self-dual.

R. Horne, A. Tiu, B. Aman, and G. Ciobanu 31:5

C{ α ‖ α } −→ C{ I } (atomic interaction) C{ P ‖ (Q⊗ S) } −→ C{ (P ‖ Q)⊗ S } (switch)

C{ (P ;Q) ‖ (R ; S) } −→ C{ (P ‖ R) ; (Q ‖ S) } (sequence)

C{ (P &Q) ‖ R } −→ C{ (P ‖ R) & (Q ‖ R) } (external) C{ I & I } −→ C{ I } (tidy)

C{ (P ;Q) & (R ; S) } −→ C{ (P &R) ; (Q& S) } (medial)

C{ P ⊕Q } −→ C{ P } (left choice) C{ P ⊕Q } −→ C{ Q } (right choice)

C{ ∀x.P ‖ R } −→ C{ ∀x.(P ‖ R) } only if x # R (extrude1) C{ ∀x.I } −→ C{ I } (tidy1)

C{ ∀x.(P ; S) } −→ C{ ∀x.P ; ∀x.S } (medial1) C{ ∃x.P } −→ C{ P{v/x} } (select1)

C{ Иx.P ‖ Эx.Q } −→ C{ Иx.(P ‖ Q) } (close) C{ Иx.I } −→ C{ I } (tidy name)

C{ Иx.P ‖ R } −→ C{ Иx.(P ‖ R) } only if x # R (extrude new)

C{ Эx.P } −→ C{ Иx.P } (fresh) C{ Иx.Эy.P } −→ C{ Эy.Иx.P } (new wen)

C{ Иx.(P ; S) } −→ C{ Иx.P ; Иx.S } (medial new)

C{ Эx.P � Эx.S } −→ C{ Эx.(P � S) } where � ∈ {‖, ;} (medial wen)

C{ Эx.P �R } −→ C{ Эx.(P �R) } where � ∈ {‖, ;} only if x # R (left wen)

C{ R� Эx.Q } −→ C{ Эx.(R�Q) } where � ∈ {‖, ;} only if x # R (right wen)

C
{
∀x.

Q

y.P
}
−→ C

{ Q

y.∀x.P
}

for

Q

∈ {И,Э} (all name)

C
{ Q

x.P &

Q

x.S
}
−→ C

{ Q

x.(P & S)
}

for

Q

∈ {И,Э} (with name)

C
{ Q

x.P &R
}
−→ C

{ Q

x.(P &R)
}

only if x # R for

Q

∈ {И,Э} (left name)

C
{
R&

Q

x.Q
}
−→ C

{ Q

x.(R&Q)
}

only if x # R for

Q

∈ {И,Э} (right name)

Figure 3 Rewrite rules for predicates in system MAV1. Notice the figure is divided into four parts.
The first part defines sub-system BV [17]. The first and second parts together define sub-system
MAV [20]. The following restrictions are placed on the rules to ensure the system is analytic [8].

The switch, sequence, medial1, medial new and extrude new rules are such that P 6≡ I and S 6≡ I.
The medial rule is such that either P 6≡ I or R 6≡ I and also either Q 6≡ I or S 6≡ I.
The rules external, extrude1, extrude new, left wen and right wen are such that R 6≡ I.

A derivation is a sequence of rewrites, where the congruence in Fig. 2 can be applied at any point
in a derivation. The length of a derivation involving only the congruence is zero. The length of
a derivation involving one rule from Fig. 3 is one. Given a derivation P −→ Q of length m and
another Q −→ R of length n, the derivation P −→ R is of length m+ n. Unless we make it clear
in the context that we refer to a specific rule, −→ is generally used to represent derivations of any
length.

CONCUR 2016

31:6 Private Names in Non-Commutative Logic

The following proposition is simply a reflexivity property of linear implication in MAV1.

I Proposition 3 (Reflexivity). For any predicate P , ` P ‖ P holds.

The main result of this paper is the following, which is a generalisation of cut elimination
to the setting of the calculus of structures.

I Theorem 4 (Cut elimination). For any predicate P , if ` C
{
P ⊗ P

}
holds, then ` C{ I }

holds.

The above theorem can be stated alternatively by supposing that there is a proof in MAV1
extended with the extra rewrite rule: C{ I } −→ C

{
P ⊗ P

}
(cut). Given such a proof, a

new proof can be constructed that uses only the rules of MAV1. In this formulation, we say
that cut is admissible.

The cut elimination proof for the propositional sub-system MAV appears in a companion
journal paper [20]. The current paper advances cut-elimination techniques to tackle first-order
system MAV1, as achieved by the lemmas in later sections. Before proceeding with the
necessary lemmas, we provide a corollary that demonstrates that one of many consequences
of cut elimination is indeed that linear implication defines a precongruence — a reflexive
transitive relation that holds in any context.

I Corollary 5. Linear implication defines a precongruence.

3 Linear Implication as a Precongruence for Processes-as-Predicates

We highlight connections between MAV1 and the π-calculus. This illustrates the rationale
behind design decisions in MAV1. We assume the reader is familiar with the syntax of the
π-calculus. For the π-calculus define a processes-as-predicates embedding as follows.

Jx(y).P Kπ = ∃y.(xy ; JP Kπ) Jxy.P Kπ = xy ; JP Kπ JP ‖ QKπ = JP Kπ ‖ JQKπ
Jνx.P Kπ = Иx.JP Kπ JP +QKπ = JP Kπ ⊕ JQKπ J1Kπ = I

Notice action prefixes are captured using atoms consisting of pairs of first-order variables. We
consider preorders that do not observe τ actions and are termination sensitive [1, 41], hence
distinguish between successful termination and deadlock. Successful termination is indicated
by a process 1, differing from 0 typical of process calculi. For example P + 1 represents the
process that may behave like P or may successfully terminate, contrasting to P + 0 which
only may only proceed as P . This distinction is useful for modelling protocols; for example,
we can choose to perform no action in certain executions to avoid deadlocking. Furthermore,
1 as a primitive process matches the unit inherited from BV. Otherwise, the semantics are
standard for the π-calculus.

Define labelled transitions for the π-calculus by the following deductive system, plus the
symmetric rules for parallel composition and choice. Function n(.) is such that n(x(y)) =
n(x(y)) = n(xy) = {x, y}, and x # P is such that x is fresh for P where z(x).P and νx.P
bind x in P .

x(y).P x(y)
I P xy.P

xyI P

P AI Q

P +R AI Q P + 1 τ I 1

P AI Q

νx.P AI νx.Q
x 6∈ n(A) ‡ P AI Q

P ‖ R AI Q ‖ R
if A = x(y) or A = x(y)
then y # R

P
xyI Q

νy.P
x(y)
I Q

x 6= y P
x(z)
I P ′ Q

x(z)
I Q′

P ‖ Q τ I νz.(P ′ ‖ Q′)
†

P
xyI P ′ Q

x(z)
I Q′

P ‖ Q τ I P ′ ‖ Q′{y/z}

R. Horne, A. Tiu, B. Aman, and G. Ciobanu 31:7

Define (symbolic weak) completed traces inductively as follows.
For any process P formed using only the unit 1, name restriction and parallel composition
(i.e. with no actions or choice) P has the completed trace I.
If P x(y)

I Q and Q has completed trace tr then P has completed trace ∀y.(xy ; tr).
If P x(y)

I Q and Q has completed trace tr then P has completed trace Эy.(xy ; tr).
If P xyI Q and Q has completed trace tr then P has completed trace xy ; tr.
If P τ I Q and Q has completed trace tr then P has completed trace tr.

Observe that deadlocked processes have no completed trace. Contrast for example νx.x(y) ‖ 1
and νx.x(y) + 1, where the former has no completed trace but the later has completed trace
I.

Interestingly, equivariance, in Fig. 2, is a design decision in the sense that cut elimination
is still provable for a MAV1 without equivariance. However, equivariance is a requirement
for modelling private names in process calculi. Consider π-calculus process νy.νx.(zx.wy)
and the completed trace Эx.(zx ; Эy.wy) that outputs a fresh name on channel z then a
separate fresh name on channel w. ` Иy.Иx.(zx ; wy) ‖ Эx.(zx ; Эy.wy) is provable only
with equivariance. Hence equivariance is necessary for the following proposition.

I Proposition 6. If a process P has completed trace tr then ` JP Kπ ‖ tr.

Proof. The proof follows by induction over the structure of the derivation for a labelled
transition. We present only two inductive cases, for the communication of an input and
bound output (†), and the extrusion of a bound output over a distinct private name (‡).

Assume the induction hypotheses, ` JP Kπ ‖ ∀z
(
xz ; JP ′Kπ

)
and ` JQKπ ‖ Эz

(
xz ; JQ′Kπ

)
.

Implication `
(
JP Kπ ‖ ∀z.

(
xz ; JP ′Kπ

))
⊗

(
JQKπ ‖ Эz.

(
xz ; JQ′Kπ

))
(JP Kπ ‖ JQKπ ‖

Эz.
(
JP ′Kπ ⊗ JQ′Kπ

)
is provable as follows, using Proposition 3.(

JP Kπ ⊗ ∃z.
(
xz ;

q
P ′y

π

))
‖

(
JQKπ ⊗Иz.

(
xz ;

q
Q′y

π

))
‖ JP Kπ ‖ JQKπ ‖ Эz.

(
JP ′Kπ ⊗ JQ′Kπ

)
−→

((
JP Kπ ‖ JP Kπ

)
⊗ ∃z

(
xz ;

q
P ′y

π

))
‖

((
JQKπ ‖ JQKπ

)
⊗Иz

(
xz ;

q
Q′y

π

))
‖ Эz.

(
JP ′Kπ ⊗ JQ′Kπ

)
−→ ∃z.

(
xz ;

q
P ′y

π

)
‖ Иz.

(
xz ;

q
Q′y

π

)
‖ Эz.

(
JP ′Kπ ⊗ JQ′Kπ

)
switch and Proposition 3

−→ ∃z.
(
xz ;

q
P ′y

π

)
‖ Иz.

((
xz ;

q
Q′y

π

)
‖

(
JP ′Kπ ⊗ JQ′Kπ

))
close

−→ Иz.
(
∃z.

(
xz ;

q
P ′y

π

)
‖

(
xz ;

q
Q′y

π

)
‖

(
JP ′Kπ ⊗ JQ′Kπ

))
extrude new

−→ Иz.
((
xz ;

q
P ′y

π

)
‖

(
xz ;

q
Q′y

π

)
‖

(
JP ′Kπ ⊗ JQ′Kπ

))
select1

−→ Иz.
(
(xz ‖ xz) ;

(q
P ′y

π
‖

q
Q′y

π
‖

(
JP ′Kπ ⊗ JQ′Kπ

)))
sequence

−→ Иz.
(
(xz ‖ xz) ;

((q
P ′y

π
‖ JP ′Kπ

)
⊗

(q
Q′y

π
‖ JQ′Kπ

)))
switch

−→ Иz.I −→ I Proposition 3 and tidy new

Hence by Theorem 4, ` JP ‖ QKπ ‖ Jνz.(P ′ ‖ Q′)Kπ, as required.
As the induction hypothesis, assume that ` JP Kπ ‖ Эz.

(
xz ; JQKπ

)
holds, where y is such

that x 6= y and z 6= y. Thereby the following proof can be constructed directly as required.

Jνy.P Kπ ‖ Эz.
(
xz ; Jνy.QKπ

)
= Иy.JP Kπ ‖ Эz.

(
xz ; Эy.JQKπ

)
by definition

−→ Иy.JP Kπ ‖ Эz.Эy.
(
xz ; JQKπ

)
right wen

≡ Иy.JP Kπ ‖ Эy.Эz.
(
xz ; JQKπ

)
equivariance

−→ Иy.
(
JP Kπ ‖ Эz.

(
xz ; JQKπ

))
−→ Иy.I −→ I induction and tidy

The proof concludes by inductively applying Theorem 4 to each transition forming a
trace. �

The above proposition also holds for a processes-as-predicates embedding for the πI-
calculus [32], where input of private names is such that Jx(y).P KπI = Эy.(xy ; JP KπI) and
output of private names is such that Jx(y).P KπI = Иy.(xy ; JP KπI). The labelled transition

CONCUR 2016

31:8 Private Names in Non-Commutative Logic

system for the πI-calculus, is such that x(y).P x(y)
I P and complete traces are such that,

if P x(y)
I Q and Q has completed trace tr then P has completed trace Иy.(xy ; tr). We

envision models of processes exploiting more of the expressive power of MAV1, such as the
primitives employed for modelling session types using MAV [20].

For a basic process calculus with only parallel composition and prefix the converse to
Proposition 6 is known to hold [7]. The converse direction for the π-calculus relies on
techniques beyond cut elimination, hence will receive separate attention in a future paper.

Linear implication v.s. completed traces. We re-emphasise that the above completed
trace semantics is a minimal justification for design decisions. Completed traces and linear
implication are at the opposite ends of the linear-time/branching-time [39] and interleaving/-
causal [33] spectra.

A characteristic distinction between linear-time and branching-time preorders is in how
processes of the form α.(P +Q) and α.P + α.Q are related. For completed traces they are
equivalent but for linear implication, only the direction ` Jα.(P +Q)Kπ (Jα.P + α.QKπ
holds. Hence linear implication is at the branching-time end of the spectrum.

Simulation preorders are also at the branching-time end of the spectrum. However,
many simulation preorders interleave events as characterised by expansion rules [26] which
equate processes with identical interleavings. For linear implication, expansion holds in one
direction only. For example, processes α.α and α ‖ α have the same interleavings, but linear
implication holds only in the direction ` Jα.αKπ (Jα ‖ αKπ. As a further example, processes
α.(α.β ‖ β) and α.β ‖ α.β have identical interleavings but linear implication holds only in
the direction established by the following proof.

Jα.(α.β ‖ β)Kπ (Jα.β ‖ α.βKπ =
(
α ;

((
α ; β

)
⊗ β

))
‖ (α ; β) ‖ (α ; β) by definition

−→
(
(α ‖ α) ;

(((
α ; β

)
⊗ β

)
‖ β

))
‖ (α ; β) sequence

−→
((
α ; β

)
⊗ β

)
‖ β ‖ (α ; β) interaction

−→
(
α ; β

)
⊗

(
β ‖ β

)
‖ (α ; β) switch

−→
(
α ; β

)
‖ (α ; β) interaction

−→ (α ‖ α) ;
(
β ‖ β

)
sequence

−→ I interaction

By not identifying interleavings, we argue that linear implication respects the causal order of
events. Existing notions of simulation that respect the causal order of events, such as history
preserving simulation [4, 40, 41], have not yet been extended to the setting with private names.
Thereby MAV1 enables us to objectively explore the properties of fresh names in this part of
the spectrum. For example, the implication ` Jνx. (P ‖ Q{y/z})Kπ (Jνx.(xy.P ‖ x(z).Q)Kπ
is provable. However, the converse is not provable. Intuitively, although no other process
can communicate on channel x, the processes can be distinguished by a network partition
interrupting communication the private channel.

Observe that no bisimulation can be complete with respect to logical equivalence. To
see this observe that the embeddings Jα.(β + γ) + α.βKπ and Jα.(β + γ)Kπ are logically
equivalent; whereas any bisimulation distinguishes these processes. Logical equivalence,
as with mutual simulation [39], is checked using a preorder in each direction, by proving
predicate (P (Q) & (Q(P).

Questions formally relating observational preorders and linear implication rely on cut
elimination for MAV1. This leads us to the cut elimination result of this paper.

R. Horne, A. Tiu, B. Aman, and G. Ciobanu 31:9

4 Logical Properties of the Pair of Nominal Quantifiers

This section offers deeper insight into the nature of the nominal quantifiers И and Э, and
sketches the cut elimination proof.1 Cut elimination (Theorem 4) is achieved by advancing
methods developed in the propositional sub-system MAV [20]. A direct proof of co-rule
elimination for universal quantifiers (Lemma 11) simplifies splitting (Lemma 16), and context
reduction (Lemma 20) is adapted for existential quantifiers by working up-to substitutions.
Lemmas check the interplay between nominal quantifiers and other connectives, as illustrated
by the discussion in the following subsection.

4.1 Discussion on the Rules for Nominal Quantifiers

The rules for the nominal quantifiers new И and wen Э require some justification. The
close and tidy name rules ensure the reflexivity of implication for nominal quantifiers. Using
the extrude new rule (and Proposition 3) we can establish the following proof, and its dual
statement ` Эx.P (∃x.P .

∀x.P (Иx.P = ∃x.P ‖ Иx.P −→ Иx.
(
∃x.P ‖ P

)
−→ Иx.

(
P ‖ P

)
−→ Иx.I −→ I

Using the fresh rule we can establish the following implication between new and wen.

Иx.P (Эx.P = Эx.P ‖ Эx.P −→ Иx.P ‖ Эx.P −→ Иx.
(
P ‖ P

)
−→ Иx.I −→ I

This completes the chain ` ∀x.P (Иx.P , ` Иx.P (Эx.P and ` Эx.P (∃x.P . These
linear implications are strict unless x # P , in which case, for

Q
∈ {∀,∃,И,Э},

Q
x.P is

logically equivalent to P . For example, using the fresh and extrude new rules, the following
holds given x # P .

Иx.P (P = Эx.P ‖ P −→ Иx.P ‖ P −→ Иx.
(
P ‖ P

)
−→ Иx.I −→ I

Alternatively, the extrude new and fresh rules could be replaced by extending the congruence
with Иx.P ≡ P ≡ Эx.P , where x # P . However, this has the disadvantage that an arbitrary
number of nominal quantifiers can be introduced during proof search thereby jeopardising
analyticity [8].

The medial new rule is particular to handling nominal quantifiers in the presence of the
self-dual non-commutative operator seq. To see why this rule cannot be excluded, consider
the following.

(a ; Эx.(b ; c))⊗ (d ; Эx.(e ; f))((a ; ∃x.b ; ∃x.c)⊗ (d ; ∃x.e ; ∃x.f)
(a ; ∃x.b ; ∃x.c)⊗ (d ; ∃x.e ; ∃x.f)(((a ; ∃x.b)⊗ (d ; ∃x.e)) ; (∃x.c⊗ ∃x.f)

Without using the medial new rule, the above predicates are provable but the following
predicate would not be provable; hence cut elimination cannot hold without the medial new
rule.

(a ; Эx.(b ; c))⊗ (d ; Эx.(e ; f))(((a ; ∃x.b)⊗ (d ; ∃x.e)) ; (∃x.c⊗ ∃x.f)

1 Details of proofs appear in a technical report at: http://iit.iit.tuiasi.ro/TR/reports/fml1502.pdf

CONCUR 2016

http://iit.iit.tuiasi.ro/TR/reports/fml1502.pdf

31:10 Private Names in Non-Commutative Logic

In contrast, with the medial new rule the above predicate is provable, verified by the following
proof.

(
a ; Иx.

(
b ; c

))
‖

(
d ; Иx.

(
e ; f

))
‖ ((a ; ∃x.b)⊗ (d ; ∃x.e)) ; (∃x.c⊗ ∃x.f)

−→
(
a ; Иx.b ; Иx.c

)
‖

(
d ; Иx.e ; Иx.f

)
‖ ((a ; ∃x.b)⊗ (d ; ∃x.e)) ; (∃x.c⊗ ∃x.f)

−→
((
a ; Иx.b

)
‖

(
d ; Иx.e

))
;
(
Иx.c ‖ Иx.f

)
‖ ((a ; ∃x.b)⊗ (d ; ∃x.e)) ; (∃x.c⊗ ∃x.f)

−→
((
a ; Иx.b

)
‖

(
d ; Иx.e

)
‖ ((a ; ∃x.b)⊗ (d ; ∃x.e))

)
;
(
Иx.c ‖ Иx.f ‖ (∃x.c⊗ ∃x.f)

)
−→

(((
a ; Иx.b

)
‖ (a ; ∃x.b)

)
⊗

((
d ; Иx.e

)
‖ (d ; ∃x.e)

))
;
(
(Иx.c ‖ ∃x.c)⊗

(
Иx.f ‖ ∃x.f

))
−→

((
(a ‖ a) ;

(
Иx.b ‖ ∃x.b

))
⊗

((
d ‖ d

)
; (Иx.e ‖ ∃x.e)

))
;
(
(Иx.c ‖ ∃x.c)⊗

(
Иx.f ‖ ∃x.f

))
−→

((
(a ‖ a) ; Иx.

(
b ‖ ∃x.b

))
⊗

((
d ‖ d

)
; Иx.(e ‖ ∃x.e)

))
;
(
Иx.(c ‖ ∃x.c)⊗Иx.

(
f ‖ ∃x.f

))
−→

((
(a ‖ a) ; Иx.

(
b ‖ b

))
⊗

((
d ‖ d

)
; Иx.(e ‖ e)

))
;
(
Иx.(c ‖ c)⊗Иx.

(
f ‖ f

))
−→ (Иx.I⊗Иx.I) ; (Иx.I⊗Иx.I) −→ I

Notice that the above proof uses only the medial new, extrude new and tidy name rules for
nominals. These three rules are of the same form as the rules for universal quantifiers, hence
the same argument holds for the necessity of the medial1 rule.

Including the medial new rule forces the medial wen rule to be included. To see this observe
that (Иx.a ; Иx.b) ⊗ (Иx.c ; Иx.d) (Иx.(a ; b) ⊗ Иx.(c ; d) and Иx.(a ; b) ⊗ Иx.(c ; d) (
Иx.((a ; b)⊗ (c ; d)) are provable. However, without the medial wen rule the following
implication is not provable, which would contradict the main cut elimination result of this
paper.

(Иx.a ; Иx.b)⊗ (Иx.c ; Иx.d)(Иx.((a ; b)⊗ (c ; d))

Fortunately, including the medial wen rule ensures that the above implication is provable. A
similar argument justifies the inclusion of the left wen and right wen rules.

As with focussed proof search [3, 10], assigning a positive or negative polarity to operators
explains certain distributivity properties. Consider ‖, &, ∀ and И to be negative operators,
and ⊗, ⊕, ∃ and Э to be positive operators, where seq is neuter. The negative quantifier
И distributes over all positive operators. Considering positive operator times for example,
` Иx.α⊗Иx.β(Иx. (α⊗ β) holds but the converse implication does not hold. Furthermore,
assuming x appears free in α and β, Эx.α⊗ Эx.β and Эx. (α⊗ β) are unrelated by linear
implication. Dually, for the negative operator par the only distributivity property that
holds for nominal quantifiers is ` Эx. (α ‖ β)(Эx.α ‖ Эx.β. The new wen rule completes
this picture of new distributing over positive operators and wen distributing over negative
operators. From the perspective of embedding name-passing process calculi in logic, the
above distributivity properties of new and wen suggest that processes should be encoded
using negative operators И and ‖ for private names and parallel composition (or perhaps
dually, using positive operators Э and ⊗), so as to avoid private names distributing over
parallel composition, which we have shown to be problematic in the introduction.

The control of distributivity exercised by new and wen contrast with the situation for
universal and existential quantifiers, where ∃ commutes in one direction over all operators
and ∀ commutes with all operators in the opposite direction. For a system with equivariance
some of these distributivity properties for И over & and ∀ are explicit rules all name, with
name, left name, right name. These rules allow И quantifiers to propagate to the front of
certain contexts. In the sense of control of distributivity, new and wen behave more like
multiplicatives than additives, but are unrelated to multiplicative quantifiers in the logic of
bunched implications [27].

R. Horne, A. Tiu, B. Aman, and G. Ciobanu 31:11

4.2 Preliminary Lemmas and Killing Contexts
We extend a trick employed for MAV [20] to MAV1 where with & and all ∀ receive a more
direct treatment than other operators. The proof for with has a knock on effect for the
nominal quantifiers requiring some vacuous new and wen quantifiers to be removed; while
the proof for all requires closure of rules under substitution of terms for variables. This leads
to the following five lemmas, established directly by functions over predicates.

I Lemma 7 (Substitution). If P −→ Q holds then P{v/x} −→ Q{v/x} holds.

I Lemma 8 (Vacuous new). If ` C{ Иx.P } holds and x # P then ` C{ P } holds.

I Lemma 9 (Vacuous wen). If ` C{ Эx.P } holds and x # P then ` C{ P } holds.

I Lemma 10 (Branching). If ` C{ P &Q } holds then both ` C{ P } and ` C{ Q } hold.

I Lemma 11 (Universal). If ` C{ ∀x.P } holds then, for all terms v, ` C{ P{v/x} } holds.

We require a restricted form of context called a killing context (terminology is from [10]). A
killing context is a context with one or more holes, defined as follows.

I Definition 12. A killing context is a context defined by the following grammar.

T { } ::= { · } | T { }& T { } | ∀x.T { } | Иx.T { }

In the above, { · } is a hole into which any predicate can be plugged. An n-ary killing context
is a killing context in which n holes appear.

A killing context represents a context that cannot in general be removed until all other
rules in a proof have been applied, hence the corresponding tidy rules are suspended until
the end of a proof. A killing context has properties that are applied frequently in proofs,
characterised by the following lemma.

I Lemma 13. For any killing context T { }, ` T { I, . . . , I } holds; and, assuming the
variables of T { } and the free variables of P are disjoint, P ‖ T { Q1, Q2, . . . Qn } −→
T { P ‖ Q1, P ‖ Q2, . . . P ‖ Qn }.

For readability of large predicates involving an n-ary killing context, we introduce the notation
T { Qi : 1 ≤ i ≤ n } as shorthand for T { Q1, Q2, . . . , Qn }; and T { Qi : i ∈ I } for a family
of predicates indexed by finite subset of natural numbers I. Killing contexts also satisfy the
following property that is necessary for handling the seq operator, which interacts subtly
with killing contexts.

I Lemma 14. Assume that I is a finite subset of natural numbers, Pi and Qi are predicates,
for i ∈ I, and T { } is a killing context. There exist killing contexts T 0{ } and T 1{ } and
sets of natural numbers J ⊆ I and K ⊆ I such that the following derivation holds.

T { Pi ;Qi : i ∈ I } −→ T 0{ Pj : j ∈ J } ; T 1{ Qk : k ∈ K }

The following lemma checks that wen quantifiers can propagate to the front of a killing
context.

I Lemma 15. Consider an n-ary killing context T { } and predicates such that x # Pi and
either Pi = Эx.Qi or Pi = Qi, for 1 ≤ i ≤ n. If for some i such that 1 ≤ i ≤ n, Pi = Эx.Qi,
then T { P1, P2, . . . Pn } −→ Эx.T { Q1, Q2, . . . , Qn }.

CONCUR 2016

31:12 Private Names in Non-Commutative Logic

4.3 The Splitting Technique for Simulating the Sequent Calculus
The technique called splitting [17, 18] generalises the application of rules in the sequent
calculus. In the sequent calculus, any root connective in a sequent can be selected and some
rule for that connective can be applied. In this setting, a sequent corresponds to a shallow
context of the form { · } ‖ Q. Splitting proves that a distinguished principal predicate P in a
shallow context { P } ‖ Q can always be rewritten to a form such that a rule for the root
connective of the principal predicate may be applied. The cases for times, seq, new and wen
are treated together in a Lemma 16. These operators give rise to commutative cases, where
rules for these operators can permute with any principal predicate, swapping the order of
rules in a proof. Principal cases are where the root connective of the principal predicate is
directly involved in the bottommost rule of a proof. As with MAV [20], the principal cases
for seq are challenging, demanding Lemma 14. The principal case induced by medial new
demands Lemma 15. The cases where two nominal quantifiers commute are also interesting,
particularly where the case arises due to equivariance.

I Lemma 16 (Core Splitting). The following statements hold.
If ` (P ⊗Q) ‖ R, then there exist predicates Vi and Wi such that ` P ‖ Vi and
` Q ‖ Wi, where 1 ≤ i ≤ n, and n-ary killing context T { } such that R −→
T { V1 ‖W1, V2 ‖W2, . . . , Vn ‖Wn } and if x appears in T { } then x # (P ⊗Q).
If ` (P ;Q) ‖ R, then there exist predicates Vi and Wi such that ` P ‖ Vi and
` Q ‖ Wi, where 1 ≤ i ≤ n, and n-ary killing context T { } such that R −→
T { V1 ;W1, V2 ;W2, . . . , Vn ;Wn } and if x appears in T { } then x # (P ;Q).
If ` Иx.P ‖ Q, then there exist predicates V and W where x # V and ` P ‖ W and
either V = W or V = Эx.W , such that derivation Q −→ V holds.
If ` Эx.P ‖ Q, then there exist predicates V and W where x # V and ` P ‖ W and
either V = W or V = Иx.W , such that derivation Q −→ V holds.

Furthermore, for all 1 ≤ i ≤ n, in the first two cases the size of the proofs 2 of P ‖ Vi and
Q ‖Wi are bounded above by the size of the proofs of (P ⊗Q) ‖ R and (P ;Q) ‖ R. In the
third and fourth cases, the size of the proof P ‖W is bounded above by the size of the proofs
of Иx.P ‖ Q and Эx.P ‖ Q.

The final three splitting lemmas mainly involve checking commutative cases, which follow a
pattern.

I Lemma 17. If ` ∃x.P ‖ Q, then there exist predicates Vi and values vi such that ` P{vi/x} ‖
Vi, where 1 ≤ i ≤ n, and n-ary killing context T { } such that Q −→ T { V1, V2, . . . , Vn }
and if y appears in T { } then y # (∃x.P).

I Lemma 18. The following statements hold, for any atom α, where if x appears in T { }
then x # α.

If ` α ‖ Q, then there exist n-ary killing context T { } such that Q −→ T { α, α, . . . , α }.
If ` α ‖ Q, then there exist n-ary killing context T { } such that Q −→ T { α, α, . . . , α }.

I Lemma 19. If ` (P ⊕Q) ‖ R, then there exist predicates Wi such that either ` P ‖
Wi or ` Q ‖ Wi where 1 ≤ i ≤ n, and n-ary killing context T { } such that R −→
T { W1,W2, . . . ,Wn } and if x appears in T { } then x # (P ⊕Q).

2 For the multiset measure of the size of a proof see http://iit.iit.tuiasi.ro/TR/reports/fml1502.
pdf.

http://iit.iit.tuiasi.ro/TR/reports/fml1502.pdf
http://iit.iit.tuiasi.ro/TR/reports/fml1502.pdf

R. Horne, A. Tiu, B. Aman, and G. Ciobanu 31:13

4.4 Context Reduction and the Admissibility of Co-rules
Splitting is always performed in a shallow context, i.e. a hole directly inside a parallel
composition. Context reduction extends rules simulated by splitting to any context.

I Lemma 20 (Context reduction). If ` Pσ ‖ R yields that ` Qσ ‖ R, for any predicate R
and substitution of terms for variables σ, then ` C{ P } yields ` C{ Q }, for any context
C{ }.

The subtlety of context reduction is to accommodate plus and some by the following stronger
induction invariant: If ` C{ T }, then there exist predicates Ui and substitutions σi such
that ` Tσi ‖ Ui, for 1 ≤ i ≤ n; and n-ary killing context T { } such that for any predicate
V there exist Wi such that either Wi = V σi ‖ Ui or Wi = I, for 1 ≤ i ≤ n, and the following
holds: C{ V } −→ T { W1,W2, . . . ,Wn }.

For every rule there is a co-rule, where for rule P −→ Q, the co-rule is of the form Q −→ P .
For example close has co-rule C{ Эx.(P ⊗Q) } −→ C{ Эx.P ⊗Иx.Q } and extrude1 has
co-rule if x # Q then C{ ∃x.(P ⊗Q) } −→ C{ ∃x.P ⊗Q }. The following eight lemmas
establish that a co-rule is admissible in MAV1. In each case, the proof proceeds by applying
splitting in a shallow context, forming a new proof, and finally applying Lemma 20.

I Lemma 21 (Co-close). If ` C{ Эx.P ⊗Иx.Q } holds then ` C{ Эx.(P ⊗Q) } holds.

I Lemma 22 (Co-tidy name). If ` C{ Эx.I } holds then ` C{ I } holds.

I Lemma 23 (Co-extrude1). If x # Q and ` C{ ∃x.P ⊗Q } holds then ` C{ ∃x.(P ⊗Q) }
holds.

I Lemma 24 (Co-tidy1). If ` C{ ∃x.I } holds then ` C{ I } holds.

The above four lemmas are particular to MAV1. The proofs for the four lemmas below are
similar to the corresponding cases in MAV [20].

I Lemma 25 (Co-external). If ` C{ P ⊗ (Q⊕R) } holds then ` C{ (P ⊗Q)⊕ (P ⊗R) }
holds.

I Lemma 26 (Co-tidy). If ` C{ I⊕ I } holds, then ` C{ I } holds.

I Lemma 27 (Co-sequence). If ` C{ (P ;Q)⊗ (R ; S) } holds then ` C{ (P ⊗R) ; (Q⊗ S) }
holds.

I Lemma 28 (Atomic co-interaction). If ` C{ α⊗ α } holds then ` C{ I } holds.

The Proof of Theorem 4. The main result of this paper follows by induction on the
structure of P in a predicate of the form ` C

{
P ⊗ P

}
, by applying the above eight co-rule

elimination lemmas and also Lemma 10 in the cases for with and plus, and Lemma 11 in the
cases for all and some.

Co-rules are interesting in their own right, since derivations extended with all co-rules
coincide with provable linear implications. Suppose that SMAV1 is the system MAV1 extended
with all co-rules. The following corollary is a consequence of Theorem 4.

I Corollary 29. ` P (Q in MAV1 if and only if Q −→ P in SMAV1.

An advantage of defining linear implication using provability, is that MAV1 is analytic [8];
hence, with some care taken for existential quantifiers [5, 23], each predicate gives rise to
finitely many derivations up-to congruence. Consequently, proof search is decidable.

I Proposition 30. It is decidable whether a predicate in MAV1 is provable.

CONCUR 2016

31:14 Private Names in Non-Commutative Logic

5 Conclusion

This paper makes two significant contributions: a novel de Morgan dual pair of nominal
quantifiers and the first direct cut elimination result for first-order quantifiers in the calculus
of structures. As a consequence of cut-elimination (Theorem 4), we obtain the first consistent
proof system that features both non-commutative operator seq and first-order quantifiers.
The novelty of the nominal quantifiers new and wen is in how they distribute over positive
and negative operators. This greater control of bookkeeping of names enables private names
to be modelled in direct embeddings of processes as predicates in MAV1.

This paper continues a line of work on logical systems defined using the calculus of
structures with applications to modelling processes [7, 12, 20]. Our approach is distinct from
related work on nominal logic [2, 13, 38] where processes are terms, rather than predicates,
and an operational semantics is given either as an inductive definition or a logical theory.
The related approach is capable of encoding observational preorders and bisimulations, but
has the drawback that implication cannot be directly used to compare processes. Our
approach is also distinct from the proofs-as-processes Curry-Howard inspired approach to
session types [9, 42]. Instead, we adopt a processes-as-predicates approach, setting up a
discussion on the relationship between linear implication in MAV1 and observational preorders.
Amongst the consequences of cut elimination (Theorem 4) is that linear implication defines
a branching-time precongruence over processes that fully respects causality.

Acknowledgements. We are grateful to Catuscia Palamidessi and the CONCUR panel for
their thorough analysis of a draft.

References
1 Luca Aceto and Matthew Hennessy. Adding action refinement to a finite process algebra.

Information and Computation, 115(2):179–247, 1994. doi:10.1006/inco.1994.1096.
2 Andrei Alexandru and Gabriel Ciobanu. Nominal techniques for πI-calculus. Romanian

Journal of Information Science and Technology, 16(4):261–286, 2013.
3 Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal of

Logic and Computation, 2(3):297–347, 1992. doi:10.1093/logcom/2.3.297.
4 Marek Bednarczyk. Hereditary history preserving bisimulations. Technical report, Polish

Academy of Sciences, Gdańsk, 1991.
5 Kai Brünnler. Deep inference and symmetry in classical proofs. PhD thesis, TU Dresden,

2003.
6 Kai Brünnler. Locality for classical logic. Notre Dame J. Form. Log., 47(4):557–580, 2006.
7 Paola Bruscoli. A purely logical account of sequentiality in proof search. In ICLP, volume

2401 of LNCS, pages 302–316. Springer, 2002. doi:10.1007/3-540-45619-8_21.
8 Paola Bruscoli and Alessio Guglielmi. On the proof complexity of deep inference.

ACM Transactions on Computational Logic (TOCL), 10(2), 2009. doi:10.1145/1462179.
1462186.

9 Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In
CONCUR 2010, pages 222–236. Springer, 2010. doi:10.1007/978-3-642-15375-4_16.

10 Kaustuv Chaudhuri, Nicolas Guenot, and Lutz Straßburger. The focused calculus of struc-
tures. In EACSL, volume 12, pages 159–173, 2011. doi:10.4230/LIPIcs.CSL.2011.159.

11 Gabriel Ciobanu and Ross Horne. Non-interleaving operational semantics for geographically
replicated databases. In SYNASC 2013, pages 440–447, 2013. doi:10.1109/SYNASC.2013.
64.

http://dx.doi.org/10.1006/inco.1994.1096
http://dx.doi.org/10.1093/logcom/2.3.297
http://dx.doi.org/10.1007/3-540-45619-8_21
http://dx.doi.org/10.1145/1462179.1462186
http://dx.doi.org/10.1145/1462179.1462186
http://dx.doi.org/10.1007/978-3-642-15375-4_16
http://dx.doi.org/10.4230/LIPIcs.CSL.2011.159
http://dx.doi.org/10.1109/SYNASC.2013.64
http://dx.doi.org/10.1109/SYNASC.2013.64

R. Horne, A. Tiu, B. Aman, and G. Ciobanu 31:15

12 Gabriel Ciobanu and Ross Horne. Behavioural analysis of sessions using the calculus of
structures. In PSI 2015, 25-27 August, Kazan, Russia, volume 9609 of LNCS, 2015.

13 Murdoch J. Gabbay. The π-calculus in FM. In Thirty Five Years of Automating Mathem-
atics, pages 247–269. Springer, 2003. doi:10.1007/978-94-017-0253-9_10.

14 Andrew Gacek, Dale Miller, and Gopalan Nadathur. Nominal abstraction. Information
and Computation, 209(1):48–73, 2011. doi:10.1016/j.ic.2010.09.004.

15 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–112, 1987. doi:
10.1016/0304-3975(87)90045-4.

16 Alessio Guglielmi. Re:encoding pi calculus in calculus of structures. post on public mailing
list http://permalink.gmane.org/gmane.science.mathematics.frogs/161, 2004.

17 Alessio Guglielmi. A system of interaction and structure. ACM Transactions on Compu-
tational Logic, 8(1), 2007. doi:10.1145/1182613.1182614.

18 Alessio Guglielmi and Lutz Straßburger. A system of interaction and structure V: The
exponentials and splitting. Math. Struct. Comp. Sci., 21(03):563–584, 2011. doi:10.1017/
S096012951100003X.

19 Kohei Honda et al. Scribbling interactions with a formal foundation. In ICDCIT 2011,
volume 6536 of LNCS, pages 55–75. Springer, 2011. doi:10.1007/978-3-642-19056-8_4.

20 Ross Horne. The consistency and complexity of multiplicative additive system virtual. Sci.
Ann. Comp. Sci., 25(2):245–316, 2015. URL: http://dx.doi.org/10.7561/SACS.2015.2.
245.

21 Naoki Kobayashi and Akinori Yonezawa. ACL – a concurrent linear logic programming
paradigm. In ILPS’93, pages 279–294. MIT Press, 1993.

22 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commu-
nications of the ACM, 21(7):558–565, 1978. doi:10.1145/359545.359563.

23 Patrick Lincoln and Natarajan Shankar. Proof search in first-order linear logic and other
cut-free sequent calculi. In LICS’94, pages 282–291. IEEE, 1994. doi:10.1109/LICS.1994.
316061.

24 José Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical
Computer Science, 96(1):73–155, 1992. doi:10.1016/0304-3975(92)90182-F.

25 Dale Miller and Alwen Tiu. A proof theory for generic judgements. ACM Transactions on
Computational Logic (TOCL), 6(4):749–783, 2005. doi:10.1145/1094622.1094628.

26 Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I and II.
Information and Computation, 100(1):1–77, 1992. doi:10.1016/0890-5401(92)90008-4.

27 Peter O’Hearn and David Pym. The logic of bunched implications. Bulletin of Symbolic
Logic, 5(2):215–244, 1999. doi:10.2307/421090.

28 Andrew Pitts. Nominal logic, a first order theory of names and binding. Information and
Computation, 186(2), 2003. doi:10.1016/S0890-5401(03)00138-X.

29 Vaughan Pratt. Modelling concurrency with partial orders. International Journal of Par-
allel Programming, 15(1):33–71, 1986. doi:10.1007/BF01379149.

30 Christian Retoré. Pomset logic: A non-commutative extension of classical linear lo-
gic. In TLCA’97, volume 1210 of LNCS, pages 300–318. Springer, 1997. doi:10.1007/
3-540-62688-3_43.

31 Luca Roversi. A deep inference system with a self-dual binder which is complete for lin-
ear lambda calculus. J. of Log. and Comp., 26(2):677–698, 2016. doi:10.1093/logcom/
exu033.

32 Davide Sangiorgi. π-calculus, internal mobility, and agent-passing calculi. Theoretical
Computer Science, 167(1):235–274, 1996. doi:10.1016/0304-3975(96)00075-8.

33 Vladimiro Sassone, Mogens Nielsen, and Glynn Winskel. Models for concurrency: towards
a classification. Th. Comp. Sci., 170(1-2):297–348, 1996. doi:10.1016/S0304-3975(96)
80710-9.

CONCUR 2016

http://dx.doi.org/10.1007/978-94-017-0253-9_10
http://dx.doi.org/10.1016/j.ic.2010.09.004
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://permalink.gmane.org/gmane.science.mathematics.frogs/161
http://dx.doi.org/10.1145/1182613.1182614
http://dx.doi.org/10.1017/S096012951100003X
http://dx.doi.org/10.1017/S096012951100003X
http://dx.doi.org/10.1007/978-3-642-19056-8_4
http://dx.doi.org/10.7561/SACS.2015.2.245
http://dx.doi.org/10.7561/SACS.2015.2.245
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1109/LICS.1994.316061
http://dx.doi.org/10.1109/LICS.1994.316061
http://dx.doi.org/10.1016/0304-3975(92)90182-F
http://dx.doi.org/10.1145/1094622.1094628
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.2307/421090
http://dx.doi.org/10.1016/S0890-5401(03)00138-X
http://dx.doi.org/10.1007/BF01379149
http://dx.doi.org/10.1007/3-540-62688-3_43
http://dx.doi.org/10.1007/3-540-62688-3_43
http://dx.doi.org/10.1093/logcom/exu033
http://dx.doi.org/10.1093/logcom/exu033
http://dx.doi.org/10.1016/0304-3975(96)00075-8
http://dx.doi.org/10.1016/S0304-3975(96)80710-9
http://dx.doi.org/10.1016/S0304-3975(96)80710-9

31:16 Private Names in Non-Commutative Logic

34 Lutz Straßburger. Linear logic and noncommutativity in the calculus of structures. PhD
thesis, TU Dresden, 2003.

35 Lutz Straßburger. Some observations on the proof theory of second order propositional
multiplicative linear logic. In TLCA 2009, volume 5608 of LNCS, pages 309–324. Springer,
2009. doi:10.1007/978-3-642-02273-9_23.

36 Lutz Straßburger and Alessio Guglielmi. A system of interaction and structure IV: the
exponentials and decomposition. TOCL, 12(4):23, 2011. doi:10.1145/1970398.1970399.

37 Alwen Tiu. A system of interaction and structure II: The need for deep inference. Logical
Methods in Computer Science, 2(2:4):1–24, 2006. doi:10.2168/LMCS-2(2:4)2006.

38 Alwen Tiu and Dale Miller. Proof search specifications of bisimulation and modal logics
for the π-calculus. TOCL, 11(2):13, 2010. doi:10.1145/1656242.1656248.

39 Rob van Glabbeek. The linear time-branching time spectrum (extended abstract). In CON-
CUR ’90, volume 458 of LNCS, pages 278–297. Springer, 1990. doi:10.1007/BFb0039066.

40 Rob van Glabbeek. Structure preserving bisimilarity, supporting an operational Petri net se-
mantics of CCSP. In Correct System Design, volume 9360 of LNCS, pages 99–130. Springer,
2015. doi:10.1007/978-3-319-23506-6_9.

41 Rob van Glabbeek and Ursula Goltz. Refinement of actions and equivalence notions for con-
current systems. Acta Informatica, 37(4-5):229–327, 2001. doi:10.1007/s002360000041.

42 Philip Wadler. Propositions as sessions. J. of Fun. Prog., 24(2-3):384–418, 2014. doi:
10.1145/2364527.2364568.

http://dx.doi.org/10.1007/978-3-642-02273-9_23
http://dx.doi.org/10.1145/1970398.1970399
http://dx.doi.org/10.2168/LMCS-2(2:4)2006
http://dx.doi.org/10.1145/1656242.1656248
http://dx.doi.org/10.1007/BFb0039066
http://dx.doi.org/10.1007/978-3-319-23506-6_9
http://dx.doi.org/10.1007/s002360000041
http://dx.doi.org/10.1145/2364527.2364568
http://dx.doi.org/10.1145/2364527.2364568

	Introduction
	Syntax and Semantics of Predicates in MAV1
	Linear Implication and Cut Elimination

	Linear Implication as a Precongruence for Processes-as-Predicates
	Logical Properties of the Pair of Nominal Quantifiers
	Discussion on the Rules for Nominal Quantifiers
	Preliminary Lemmas and Killing Contexts
	The Splitting Technique for Simulating the Sequent Calculus
	Context Reduction and the Admissibility of Co-rules

	Conclusion

