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Abstract
One fundamental question in the context of the geometric complexity theory approach to the
VP vs. VNP conjecture is whether VP = VP, where VP is the class of families of polynomials
that can be computed by arithmetic circuits of polynomial degree and size, and VP is the class
of families of polynomials that can be approximated infinitesimally closely by arithmetic circuits
of polynomial degree and size. The goal of this article is to study the conjecture in (Mulmuley,
FOCS 2012) that VP is not contained in VP.

Towards that end, we introduce three degenerations of VP (i.e., sets of points in VP), namely
the stable degeneration Stable-VP, the Newton degeneration Newton-VP, and the p-definable
one-parameter degeneration VP*. We also introduce analogous degenerations of VNP. We show
that Stable-VP ⊆ Newton-VP ⊆ VP* ⊆ VNP, and Stable-VNP = Newton-VNP = VNP* =
VNP. The three notions of degenerations and the proof of this result shed light on the problem
of separating VP from VP.

Although we do not yet construct explicit candidates for the polynomial families in VP \VP,
we prove results which tell us where not to look for such families. Specifically, we demonstrate
that the families in Newton-VP \VP based on semi-invariants of quivers would have to be non-
generic by showing that, for many finite quivers (including some wild ones), Newton degeneration
of any generic semi-invariant can be computed by a circuit of polynomial size. We also show that
the Newton degenerations of perfect matching Pfaffians, monotone arithmetic circuits over the
reals, and Schur polynomials have polynomial-size circuits.
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1 Introduction

One fundamental question in the context of the geometric complexity theory (GCT) approach
(cf. [22, 23], [5], and [21]) to the VP vs. VNP conjecture in Valiant [27] is whether VP = VP,
where VP is the class of families of polynomials that computed by arithmetic circuits of
polynomial degree and size, VNP is the class of p-definable families of polynomials, and
VP is the class of families of polynomials that can be approximated infinitesimally closely
by arithmetic circuits of polynomial degree and size. We assume in what follows that the
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34:2 Boundaries of VP and VNP

circuits are over an algebraically closed field F. We call VP the closure of VP, and VP \VP
the boundary of VP. So the question is whether this boundary is non-empty. At present, it
is not even known if VP is contained in VNP.

The VP vs. VP question is important for two reasons. First, all known algebraic lower
bounds for the exact computation of the permanent also hold for its infinitesimally close
approximation. For example, the known quadratic lower bound for the permanent [20] also
holds for its infinitesimally closely approximation [18], and so also the known lower bounds
in the algebraic depth-three circuit models [14]; cf. App. B in [11] for a survey of the known
lower bounds which emphasizes this point. These lower bounds hold because some algebraic,
polynomial property that is satisfied by the coefficients of the polynomials computed by
the circuits in the restricted class under consideration is not satisfied by the coefficients of
the permanent. Since a polynomial property is a closed condition,1 the same property is
also satisfied by the coefficients of the polynomials that can be approximated infinitesimally
closely2 by circuits in the restricted class under consideration. This is why the same lower
bound also holds for infinitesimally close approximation. We expect the same phenomenon
to hold in the unrestricted algebraic circuit model as well. Hence, it is natural to expect
that any realistic proof of the VP 6= VNP conjecture will also show that VNP 6⊆ VP, as
conjectured in [22] (note that if VNP 6⊆ VP then there exists a polynomial property showing
this lower bound). This is, in fact, the underlying thesis of geometric complexity theory
that is implicit in [21]. But, if VP 6= VP, as conjectured in [21], this would mean that any
realistic approach to the VP vs. VNP conjecture would even have to separate the permanent
from the families in VP \VP with high circuit complexity.3

Second, it is shown in [21] that, assuming a stronger form of the VNP 6⊆ VP conjecture,
the problem NNL (short for Noether’s Normalization Lemma) of computing Noether normal-
ization of explicit varieties can be brought down from EXPSPACE, where it is currently, to P,
ignoring a quasi-prefix. The existing EXPSPACE vs. P gap,4 called the geometric complexity
theory (GCT) chasm [21], in the complexity of NNL may be viewed as the common cause and
measure of the difficulty of the fundamental problems in geometry (NNL) and complexity
theory (Hardness). If VP = VP, then it follows [21] that NNL is in PSPACE. Thus the
conjectural inequality between VP and VP is the main difficulty that needs to be overcome
to bring NNL from EXPSPACE to PSPACE unconditionally, and is the main reason why
the standard techniques in complexity theory may not be expected to work in the context of
the VP 6= VNP conjecture.

The goal of this article is to study the conjecture in [21] that VP is not contained in VP.

1.1 Degenerations of VP and VNP

Towards that end, we introduce three notions of degenerations of VP and VNP; “degeneration”
is the standard term in algebraic geometry for a limit point or infinitesimal approximation.
These are subclasses of VP and VNP, respectively; cf. Sec. 3 for formal definitions.

1 It is defined by the vanishing of a continuous function, namely, a (meta) polynomial.
2 This means the polynomials are the limits of the polynomials computed by the circuits in the restricted

class under consideration.
3 Although some lower bounds techniques in the restricted models do distinguish between different

polynomials with high circuit complexity (e.g., [25]), we need a better understanding of the families in
VP \ VP in order to know which techniques in this spirit could even potentially be useful in the setting
of the VNP versus VP problem.

4 Or, the EXPH vs. P gap, assuming the Generalized Riemann Hypothesis.
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The first notion is that of a stable degeneration. Recall [24] that a polynomial f
in F[x1, . . . , xn] is called stable with respect to the natural action of G = SL(n,F) on
F[x1, . . . , xn] if the G-orbit of f is closed (in the Zariski topology). We say that a polynomial
f is a stable degeneration of g ∈ F[x1, . . . , xn] if f lies in a closed G-orbit (which is unique
[24]) in the closure of the G-orbit of g. The degeneration is called stable since f in this case
is stable. For any class of polynomials C, the class Stable-C is defined to be the class of
families of polynomials that are either in C or are stable degenerations thereof.

The second notion is that of a Newton degeneration. We say that a polynomial f is
a Newton degeneration of g if it is obtained from g by keeping only those terms whose
associated monomial-exponents lie in some specified face of the Newton polytope of g. For
any class of polynomial families C, the class Newton-C is defined to be the class of families of
polynomials that are Newton degenerations of the polynomials in C, or are linear projections
of such Newton degenerations.5

The third notion, motivated by the notion of p-definability in Valiant [27], is that of
a p-definable one-parameter degeneration. We say that a family {fn} of polynomials is a
p-definable one-parameter degeneration of a family {gn} of polynomials, if fn = limt→0 gn(t),
where gn(t) is obtained from gn by transforming its variables linearly such that (1) the entries
of the linear transformation matrix are Laurent polynomials in t of possibly exponential
degree (in n), and (2) there exists a small circuit Cn of size polynomial in n such that
any coefficient of the Laurent polynomial in any entry of the transformation matrix can be
obtained by evaluating Cn at the indices of that entry and the index of the coefficient.6 Thus
a p-definable one-parameter degeneration is a one-parameter degeneration of exponential
degree that can be encoded by a small circuit. For any class C, the class C* is then defined
to be the class of families of polynomials that are p-definable one-parameter degenerations of
the families in C.

VP and VNP are closed under these three types of degenerations (cf. Propositions 6, 8,
11). Since we want to compare VP with VP, and VNP with VNP, we ask how VP and VNP
behave under these three degenerations. This is addressed in the following result.

I Theorem 1.
(a) Stable-VNP = Newton-VNP = VNP* = VNP, and
(b) Stable-VP ⊆ Newton-VP ⊆ VP* ⊆ VNP.

The statement of this result tells us nothing as to whether any of the inclusions in the
sequence Stable-VP ⊆ Newton-VP ⊆ VP* ⊆ VP can be expected to be strict or not. But its
proof, as discussed below, does shed light on this subject.

Theorem 1 is proved by combining the Hilbert–Mumford–Kempf criterion for stability
[15] with the ideas and results in Valiant [27]. The Hilbert–Mumford–Kempf criterion [15]
shows that, for any polynomial fn in the unique closed G-orbit in the G-orbit-closure of
any gn ∈ F[x1, . . . , xn], with G = SLn(F), there exists a one-parameter subgroup of G that
drives gn to fn. Furthermore, by Kempf [15], such a subgroup can be chosen in a canonical
manner. As a byproduct of the proof of Theorem 1, we get a complexity-theoretic form of
this criterion (cf. Theorem 18), which shows that such a one-parameter group can be chosen

5 Taking a Newton degeneration and a linear projection need not commute, so the set of Newton
degenerations alone will not in general be closed under linear projections. For example, any polynomial
f is a linear projection of a sufficiently large determinant, but the Newton degenerations of the
determinant only consist of polynomials of the form det(X ′) where X ′ is matrix consisting only of
variables and 0s.

6 It is assumed here that the indices are encoded as the lists of 0-1 variables.
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so that the resulting one-parameter degeneration of any {gn} ∈ VP to {fn} ∈ Stable-VP is
p-definable. Thus the inclusion of Stable-VP in VNP ultimately depends on the existence
of a very special type of one parameter degeneration of {gn} to {fn}, as provided by the
Hilbert–Mumford–Kempf criterion, which can be encoded by a small circuit. However, no
such degeneration scheme, which can be encoded by a small circuit, is known if fn is allowed
to be any polynomial in the GL(n,F)-orbit-closure of gn.

If such a scheme exists for every fn in the GL(n,F)-orbit-closure of gn, then it would
follow that VP ⊆ VP*, and in conjunction with Theorem 1, that VP ⊆ VNP. This is one
plausible approach to show that VP ⊆ VNP, if this is true. If, on the other hand, no such
special scheme akin to the Hilbert–Mumford–Kempf criterion for stability exists for every fn
in the GL(n,F)-orbit-closure of gn, as the extensive research in geometric invariant theory
[24] in the last century since the work of Hilbert [12] suggests, then this may be taken as an
indication that VP is not contained in VP*, and hence, also not in VP.

The complexity-theoretic form of the Hilbert-Mumford criterion mentioned above (The-
orem 18) also provides an exponential (in n) upper bound on the degree of the canonical
Kempf-one-parameter subgroup that drives gn to fn, with {gn} ∈ VP and {fn} ∈ Stable-VP.
This canonical Kempf-one-parameter subgroup is known to be the fastest way to approach
a closed orbit [16]. If one could prove a polynomial upper bound on this degree, then it
would follow that Stable-VP = VP (cf. Lemma 17). On the other hand, if a worst-case
superpolynomial lower bound on this degree can be proved, then it would be an indication
that Stable-VP, and hence VP, are different from VP. In other words, this suggests a possible
route to formally separate VP and VP.

An analogue of Theorem 1 also holds for VPws, the class of families of polynomials that
can be computed by symbolic determinants of polynomial size.

Next we ask if one can construct an explicit family in Newton-VPws that can reasonably
be conjectured to be not in VPws or even VP. With this mind, we first construct an
explicit family {fn} of polynomials that can be approximated infinitesimally closely by
symbolic determinants of size ≤ n, but conjecturally cannot be computed exactly by symbolic
determinants of Ω(n2+δ) size, for a small enough positive constant δ < 1; cf. Section 5. This
construction follows a suggestion made in [22, Section 4.2]. The family {fn} is a Newton
degeneration of the family of perfect matching Pfaffians of graphs. However, this family
{fn} turns out to be in VPws. So we need to extend this idea much further to construct an
explicit family in Newton-VPws that can be conjectured to be not in VP.

To see how, note that perfect matching Pfaffians are derived from a semi-invariant of
the symmetric quiver with two vertices and one arrow. This suggests that to upgrade the
conjectural Ω(n2+δ) lower bound to obtain a candidate for a superpolynomial lower bound a
possible route is to replace perfect matching Pfaffians by appropriate representation-theoretic
invariants. This leads to the second line of investigation, which we now discuss.

1.2 On Newton degeneration of generic semi-invariants
Our next result suggests that these invariants should be non-generic by showing that, for many
finite quivers, including some wild ones, Newton degeneration of any generic semi-invariant
can be computed by a symbolic determinant of polynomial size.

A quiver Q = (Q0, Q1) [6, 8] is a directed graph (allowing multiple edges) with the set
of vertices Q0 and the set of arrows Q1. A linear representation V of a quiver associates
to each vertex x ∈ Q0 a vector space V x, and to each arrow α ∈ Q1 a linear map V α

from V sα to V tα, where sα denotes the start (tail) of α and tα its target (head). The
dimension vector of V is the tuple of non-negative integers that associates dim(V x) to
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each vertex x ∈ Q0. Given a dimension vector β ∈ N|Q0|, let Rep(Q, β) denote the space
of all representations of Q with the dimension vector β. We have the natural action of
SL(β) :=

∏
x∈Q0

SL(β(x),F) on Rep(Q, β) by change of basis. Let SI(Q, β) = Rep(Q, β)SL(β)

denote the ring of semi-invariants. The generic semi-invariants in this ring (see [6]) will be
recalled in Section 6.

We will be specifically interested in the following well-known types of quivers, cf. [7].
The m-Kronecker quiver is the quiver with two vertices, and m arrows between the two
vertices with the same direction. It is wild if m ≥ 3; wildness is a universality property in
representation theory, analogous to NP-completeness (see, e.g., [1]). The k-subspace quiver
is the quiver with k + 1 vertices {x1, . . . , xk, y} and k arrows (x1, y), . . . , (xk, y). It is wild if
k ≥ 5. The A-D-E Dynkin quivers are the only quivers of finite representation type – they
have only finitely many indecomposable representations.

The following result tells us where not to look for explicit candidate families in VP \VP.

I Theorem 2. Let Q be an m-Kronecker quiver, or a k-subspace quiver, or an A-D-E Dynkin
quiver. Then any Newton degeneration of a generic semi-invariant of Q with dimension
vector β and degree d can be computed by a weakly skew circuit (or equivalently a symbolic
determinant) of poly(|β|, d) size, where |β| =

∑
x∈Q0

β(x).

The proof strategy for Theorem 2 is as follows. Define the coefficient complexity coeff(E)
of a set E of integral linear equalities in Rm as the sum of the absolute values of the
coefficients of the equalities. Define the coefficient complexity of a face of a polytope in Rm
as the minimum of coeff(E), where E ranges over all integral linear equality sets that define
the face, in conjunction with the description of the polytope; cf. Section 6.1.

Theorem 2 is proved by showing that the coefficient complexity of every face of the
Newton polytope of a generic semi-invariant of any quiver as above is polynomial in |β| and
d, though the number of vertices on a face can be exponential.

In view of this result and its proof, to construct an explicit family in Newton-VPws \VPws,
we should look for appropriate non-generic invariants of representations of finitely generated
algebras whose Newton polytopes have faces with superpolynomial coefficient complexity and
superpolynomial number of vertices.

Of course, we do not have to confine ourselves to Newton-VP in the search of an explicit
candidate family in VP \VP. We may search within VP*, or even outside VP*.

Organization. The rest of this article is organized as follows. In Section 2 we cover the
preliminaries. In Section 3, we formally define the three degenerations of VP and VNP. In
Section 4, we prove Theorem 1. In Section 5 we construct an explicit family {fn} that can be
approximated infinitesimally closely by symbolic determinants of size ≤ n, but conjecturally
cannot be computed exactly by symbolic determinants of Ω(n2+δ) size, for a small enough
positive constant δ < 1. In Section 6, we prove Theorem 2 for generalized Kronecker
quivers. Due to page constraints, some proofs are deferred to the full version. In particular,
there we give additional examples of representation-theoretic symbolic determinants whose
Newton degenerations have small circuits. All these examples suggest that explicit families
in Newton-VPws \VPws have to be rather delicate.

2 Preliminaries

For n ∈ N, let [n] := {1, . . . , n}. We denote by x = (x1, . . . , xn) a tuple of variables; x may
also denote {x1, . . . , xn}. Let e = (e1, . . . , en) be a tuple of nonnegative integers. We usually
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34:6 Boundaries of VP and VNP

use e as the exponent vector of a monomial in F[x1, . . . , xn]. Thus, xe denotes the monomial
with the exponent vector e. Let |e| :=

∑n
i=1 ei.

For a field F, char(F) denotes the characteristic of F. Throughout this paper, we assume
that F is algebraically closed. Sn denotes the symmetric group consisting of permutations of
n objects.

We say that a polynomial g = g(x1, . . . , xn) is a linear projection of f = f(y1, . . . , ym)
if g can be obtained from f by letting yj ’s be some (possibly non-homogeneous) linear
combinations of xi’s with coefficients in the base field F.

A family of polynomials {fn}n∈N is p-bounded if fn is a polynomial in poly(n) variables
of poly(n) degree. The class VP [27] consists of p-bounded polynomial families {fn}n∈N over
F such that fn can be computed by an arithmetic circuit over F of poly(n) size.

Convention: We call a class C of families of polynomials standard if it contains only
p-bounded families, and is closed under linear projections.

By a symbolic determinant of size m over the variables x1, . . . , xn, we mean the determ-
inant of an m×m matrix, whose each entry is a possibly non-homogeneous linear function
of x1, . . . , xn with coefficients in the base field F. The class VPws is the class of families of
polynomials that can be computed by weakly skew circuits of polynomial size, or equivalently,
by symbolic determinants of polynomial size [19].

The class VNP is the class of p-definable families of polynomials [27], that is, those
families (fn) such that fn has poly(n) variables and poly(n) degree, and there exists a family
(gn(x, y)) ∈ VP such that fn(x) =

∑
e∈{0,1}poly(n) gn(x, e).

The class VP is defined as follows [22, 5]. Over F = C, we say that a polynomial
family {fn}n∈N is in VP, if there exists a family of sequences of polynomials {f (i)

n }n∈N
in VP, i = 1, 2, . . . , s.t. for every n, the sequence of polynomials f (i)

n , i = 1, 2, . . . , goes
infinitesimally close to fn, in the usual complex topology. Here, polynomials are viewed
as points in the linear space of polynomials. There is a more general definition that works
over arbitrary algebraically closed fields – including in positive characteristic – using the
Zariski topology. For a direct treatment, see, e.g. [4, App. 20.6]. The operational version
of this definition we use is as follows: {fn(x1, . . . , xm)} ∈ VP if there exist polynomials
fn,t(x1, . . . , xm) ∈ VPC((t)) – fn,t is a polynomial in the xi whose coefficients are Laurent
series in t – such that fn(x) is the coefficient of the term in fn,t(x) of lowest degree in t.

The classes VPws, VNP, and C, for any standard class C, are defined similarly.
By the determinantal complexity dc(f) of a polynomial f(x1, . . . , xn), we mean the

smallest integer m s.t. f can be expressed as a symbolic determinant of size m over
x1, . . . , xn. By the approximative determinantal complexity dc(f), we mean the smallest
integer m s.t. f can be approximated infinitesimally closely by symbolic determinants of size
m.

Thus the VPws 6= VNP conjecture in Valiant [27] is equivalent to saying that dc(permn)
is not poly(n), where permn denotes the permanent of an n × n variable matrix. The
VNP 6⊆ VPws conjecture in [22] is equivalent to saying that dc(permn) is not poly(n).

A priori, it is not at all obvious that dc and dc are different complexity measures. The
following two examples should make this clear.

I Example 3 (Example 9 in [17]). Let f = x3
1 +x2

2x3 +x2x
2
4. Then dc(f) ≥ 5, but dc(f) = 3.

I Example 4 (Proposition 3.5.1 in [18]). Let n be odd. Given an n× n complex matrix M ,
let Mss and Ms denote its skew-symmetric and symmetric parts. Since n is odd, det(Mss)=0.
Hence, for a variable t, det(Mss + tMs) = tf(M) + O(t2), for some polynomial function
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f(M). Clearly, dc(f) = n, since det(Mss + tMs)/t goes infinitisimally close to f(M) when t
goes to 0. But dc(f) > n.

The VPws 6= VPws conjecture in [21] is equivalent to saying that there exists a polynomial
family {fn} such that dc(fn) = poly(n), but dc(fn) is not poly(n). Instead of this conjecture,
we will focus on the VP 6= VP conjecture in [21], since the considerations for the former
conjecture are entirely similar.

A (convex – we will only consider convex ones here) polytope is the convex hull in Rn of
a finite set of points. A face of a polytope P is the intersection of P with linear halfspace
H = {v ∈ Rn|`(v) ≥ c} for some linear function ` and constant c such that H contains no
points of the (topological) interior of P . Equivalently, a polytope is the intersection of finitely
many half-spaces, a half-space H`,c = {v|`(v) ≥ c} is tight for P if P ⊆ H`,c and P * H`,c′

for any c′ > c, and a face of P is the intersection of P with a half-space of the form H−`,−c
where H`,c is tight for P .

3 Degenerations of VP and VNP

To understand the relationship between VP,VNP, and their closures VP and VNP, we now
introduce three degenerations of VP and VNP. The considerations for VPws and VPws are
entirely similar.

3.1 Stable degeneration
First we define stable degenerations of VP and VNP.

Consider the natural action of G = SL(n,F) on F[x] = F[x1, . . . , xn] that maps f(x) to
f(σ−1x) for any σ ∈ G. Following Mumford et al. [24], call f = f(x) ∈ F[x] stable (with
respect to the G-action) if the G-orbit of f is Zariski-closed. It is known [24] that the closure
of the G-orbit of any g ∈ F[x] contains a unique closed G-orbit. We say that f is a stable
degeneration of g if f lies in the unique closed G-orbit in the G-orbit-closure of g. (If the
G-orbit of g is already closed then this just means that f lies in the G-orbit of g.)

We now define the class Stable-C, the stable degeneration of any standard class C, as
follows. We say that {fn}n∈N is in Stable-C if (1) {fn} ∈ C, or (2) there exists {gn}n∈N in C
such that each fn is a stable degeneration of gn with respect to the action of G = SL(mn,F),
where mn = poly(n) denotes the number of variables in fn and gn.

I Proposition 5. For any class C of p-bounded families of polynomials, Stable-C ⊆ C. In
particular, Stable-VP ⊆ VP and Stable-VNP ⊆ VNP.

I Proposition 6. Stable-C = C, in particular Stable-VP = VP, and Stable-VNP = VNP.

This is a direct consequence of the definitions.

3.2 Newton degeneration
Next we define Newton degenerations of VP and VNP.

Given a polynomial f ∈ F[x1, . . . , xn], suppose f =
∑

e αexe. We collect the exponent
vectors of f and form the convex hull of these exponent vectors in Rn. The resulting polytope
is called the Newton polytope of f , denoted NPT(f). Given an arbitrary face Q of NPT(f),
the Newton degeneration of f to Q, denoted f |Q, is the polynomial

∑
e∈Q αexe.

We now define the class Newton-C, the Newton degeneration of any class C, as follows:
{fn}n∈N is in Newton-C, if there exists {gn}n∈N in C such that each fn is the Newton
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34:8 Boundaries of VP and VNP

degeneration of gn to some face of NPT(gn), or a linear projection of such a Newton
degeneration.

I Theorem 7. Let C be any standard class (cf. Section 2). Then Newton-C ⊆ C. In particular,
Newton-VP ⊆ VP and Newton-VNP ⊆ VNP.

Proof. Let {fn}n∈N be in Newton-C, and suppose fn ∈ F[x1, . . . , xm(n)].Then there exists
{gn}n∈N ∈ C, such that gn ∈ F[x1, . . . , xm], m = m(n), and fn = gn|Q, where Q is a
face of NPT(gn). Suppose the supporting hyperplane of Q is defined by 〈a,x〉 = b, where
a = (a1, . . . , am). If necessary, by replacing (a, b) with (−a,−b), we make sure that for an
arbitrary exponent vector e in gn, 〈a, e〉 ≥ b. That is, among all exponent vectors, exponent
vectors on Q achieve the minimum value b in the direction a.

Now introduce a new variable t, and replace xi with taixi to obtain a polynomial
g′n(x1, . . . , xm, t) = gn(ta1x1, . . . , t

amxm) ∈ F[x1, . . . , xm, t]. By the definition of fn, g′n =
tb · fn + higher order terms in t. Therefore, {fn} ∈ C. J

Noting that if C is closed under linear projections, then so is C, we have:

I Corollary 8. For any standard class C, Newton-C = C. In particular, Newton-VP = VP
and Newton-VNP = VNP.

3.3 P-definable one-parameter degeneration
Finally, we define p-definable one-parameter degenerations of VP and VNP. We say a family
{fn(x1, . . . , xmn

)}, mn = poly(n), is a one-parameter degeneration of {gn(y1, . . . , yln)}, for
ln = poly(n), of exponential degree, if, for some positive integral function K(n) = O(2poly(n)),
there exist cn(i, j, k) ∈ F, 1 ≤ i ≤ ln, 0 ≤ j ≤ mn, −K(n) ≤ k ≤ K(n), such that
fn = limt→0 gn(t), where gn(t) is obtained from gn by substitutions of the form

yi = ai0+
mn∑
j=1

aijxj , 1 ≤ i ≤ ln, where aij =
K(n)∑

k=−K(n)

cn(i, j, k)tk, 1 ≤ i ≤ ln, 0 ≤ j ≤ mn.

Note that by [3], VP consists exactly of those one-parameter degenerations of VP of expo-
nential degree.

We say that the family {fn(x1, . . . , xmn)}, mn = poly(n), is a one-parameter degeneration
of {gn(y1, . . . , yln)}, ln = poly(n), of polynomial degree if K(n) above is O(poly(n)) (instead
of O(2poly(n))).

We say that a family {fn(x1, . . . , xmn)}, mn = poly(n), is a p-definable one-parameter
degeneration of {gn(y1, . . . , yln)}, ln = poly(n), if, for some K(n) = O(2poly(n)), there exists a
poly(n)-size circuit family {Cn} over F such that fn = limt→0 gn(t), where gn(t) is obtained
from gn by substitutions of the form

yi = ai0+
mn∑
j=1

aijxj , 1 ≤ i ≤ ln, where aij =
K(n)∑

k=−K(n)

Cn(i, j, k)tk, 1 ≤ i ≤ ln, 0 ≤ j ≤ mn.

Here it is assumed that the circuit Cn takes as input dlog2 lne+ dlog2 mne+ dlog2(K(n) + 1)e
many 0-1 variables, which are intended to encode three integers (i, j, k) satisfying 1 ≤ i ≤
l = ln, 0 ≤ j ≤ m = mn, and |k| ≤ K(n), treating 0 and 1 as elements of F.

Thus a p-definable one-parameter degeneration is a one-parameter degeneration of expo-
nential degree that can be specified by a circuit of polynomial size.
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For any class C we now define C*, called the p-definable one-parameter degeneration of C,
as follows. We say that {fn} ∈ C* if there exists {gn} ∈ C such that {fn} is a p-definable
one-parameter degeneration of {gn}.

I Lemma 9. For any standard class C (cf. Section 2), Newton-C ⊆ C*. In particular,
Newton-VP ⊆ VP* and Newton-VNP ⊆ VNP*.

This follows from the proof of Theorem 7, noting that we may always take the coefficients
of a face to have size at most 2poly(n). The following are easy consequences of the definitions:

I Proposition 10. VP* ⊆ VP, and VNP* ⊆ VNP.

I Proposition 11. VP* = VP, and VNP* = VNP.

4 Stable-VNP = Newton-VNP = VNP* = VNP

We now prove Theorem 1, by a circular sequence of inclusions.

Proof of Theorem 1. Since VNP ⊆ Stable-VNP by definition, Theorem 1(a) follows from
the facts that Stable-VNP ⊆ Newton-VNP (cf. Theorem 12 below), Newton-VNP ⊆ VNP*

(Lemma 9), and VNP* ⊆ VNP (cf. Theorem 15 below).
Theorem 1(b) follows from the facts that Stable-VP ⊆ Newton-VP (cf. Theorem 12

below), Newton-VP ⊆ VP* (Lemma 9), and VP* ⊆ VNP (cf. Corollary 16 below). J

I Theorem 12. For any class C of families of p-bounded polynomials, Stable-C ⊆ Newton-C.
In particular, Stable-VP ⊆ Newton-VP and Stable-VNP ⊆ Newton-VNP.

Proof. Suppose {fn} ∈ Stable-C. If {fn} ∈ C then there is nothing to show. Otherwise,
there exists {gn}n∈N in C s.t. each fn is a stable degeneration of gn with respect to the
action of G = SLmn

(F), where mn denotes the number of variables in fn and gn.
It suffices to show that f = fn(x1, . . . , xm), m = mn, is a Newton degeneration of

g = gn(x1, . . . , xm). Let x = (x1, . . . , xm).
By the Hilbert–Mumford–Kempf criterion for stability [15], there exists a one-parameter

subgroup λ(t) ⊆ G such that limt→0 λ(t).g = f . Let T be the canonical maximal torus in G
such that the monomials in xi’s are eigenvectors for the action of T . After a linear change
of coordinates (which is allowed since Newton-C is closed under linear transformations by
definition), we can assume that λ(t) is contained in T . Thus λ(t) = diag(tk1 , . . . , tkm) (the
diagonal matrix with tkj ’s on the diagonal), kj ∈ Z, such that

∑
kj = 1.

It follows that f is the Newton degeneration of g to the face of NPT(g) where the linear
function

∑
j kjxj achieves the minimum value (which has to be zero). J

The following result is subsumed by Theorem 15; we include its proof here both for
expository clarity (it is somewhat simpler but still gives the flavor) and brevity.

I Theorem 13. Newton-VNP ⊆ VNP.

Proof. Suppose {fn} ∈ Newton-VNP. If {fn} ∈ VNP, then there is nothing to show.
Otherwise, there exists {gn}n∈N in VNP such that each fn is the Newton degeneration of gn
to some face of NPT(gn), or a linear projection of such a Newton degeneration. Since VNP
is closed under linear projections, we can assume, without loss of generality, that fn is the
Newton degeneration of gn to some face of NPT(gn).
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By Valiant [27], we can assume that g = gn(x1, . . . , xm), m = mn = poly(n), is a
projection of perm(X),7 where X is a k × k variable matrix, with k = poly(n). This means
g = perm(X ′), where each entry of X ′ is some variable xi or a constant from the base field
F . Since f = fn is a Newton degeneration of g, it follows that there is some substitution,
as in the proof of Theorem 7, xj → xjt

kj , kj ∈ Z, such that f = limt→0 perm(X ′(t)), where
X ′(t) denotes the matrix obtained from X ′ after this substitution.

It is easy to ensure that |kj | ≤ O(2poly(n)). Then, given any permutation σ ∈ Sk, whether
the corresponding monomial

∏
iX
′
iσ(i) contributes to f can be decided in poly(n) time. It

follows that the coefficient of a monomial can be computed by an algebraic circuit summed
over polynomially many Boolean inputs (convert the implicit poly(n)-time Turing machine
into a Boolean circuit, then convert it into an algebraic circuit (as in [27, Remark 1]) that
incorporates the constants appearing in the projection). Hence {fn} ∈ VNP. J

Since VP ⊆ VNP, the preceding result implies:

I Corollary 14. Newton-VP ⊆ VNP.

The following result can proved similarly to Theorem 13; see the full version for its proof.

I Theorem 15. VNP* ⊆ VNP.

I Corollary 16. VP* ⊆ VNP.

In contrast, using the interpolation technique of Strassen [26] and Bini [2] we have:

I Lemma 17 (cf. also [3], [5, §9.4], [10, Prop. 3.5.4]). If {fn} is a one-parameter degeneration
of {gn} ∈ VP of polynomial degree, then {fn} ∈ VP.

A complexity-theoretic form of the Hilbert–Mumford–Kempf criterion. As a byproduct
of the proof of Theorem 1, we get the following complexity-theoretic form of the Hilbert–
Mumford–Kempf criterion [15] for stability with respect to the action of G = SL(m,F)
on F[x1, . . . , xm]. Given a one-parameter subgroup λ(t) ⊆ G, we can express it as A ·
diag(tk1 , . . . , tkm) · A−1, for some A ∈ G and kj ∈ Z, 1 ≤ j ≤ m. We call

∑
i |ki| the total

degree of λ(t). The following theorem is implicit in the proofs of Theorems 12 and 13.

I Theorem 18. Suppose f = f(x1, . . . , xm) belongs to the unique closed G-orbit in the
G-orbit-closure of g = g(x1, . . . , xm) ∈ F[x1, . . . , xm]. Then there exists a one-parameter
subgroup λ(t) ⊆ G such that (1) limt→0 λ(t) · g = f , and (2) the total degree of λ is
O(exp(m, 〈deg(g)〉)), where 〈deg(g)〉 denotes the bitlength of the degree of g.

It follows that if {fn} is a stable degeneration of {gn} ∈ VP, then {fn} is a p-definable
one-parameter degeneration of {gn}.

See the full version for an analogous result for reductive algebraic groups. We formally
propose a question that has ramifications on the Stable-VP vs. VP question (cf. Section 1).

I Question 19. For some positive constant a, does there exist a stable degeneration {fn} of
some {gn} ∈ VP, with an Ω(2na) lower bound on the degree of the canonical Kempf-one-
parameter subgroup [15] λn driving {gn} to {fn}?

7 To get the proof to work in characteristic 2 as well, simply use the Hamilton cycle polynomial
HC(X) =

∑
k-cycles σ∈Sk

∏
i∈[k] xi,σ(i) instead, which is VNP-complete in any characteristic [27].
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5 Newton degeneration of perfect matching Pfaffians

In this section, we construct an explicit family {fn} of polynomials such that fn can be
approximated infinitesimally closely by symbolic determinants of size n, but conjecturally
requires size Ω(n2+δ) to be computed by a symbolic determinant, for a small enough positive
constant δ. However, the family {fn} turns out to be in VPws.

Suppose we have a simple undirected graph G = (V,E) where V = [n]. Let {xe | e ∈ E}
be a set of variables. The Tutte matrix of G is the n × n skew-symmetric matrix TG
such that, if (i, j) = e ∈ E, with i < j, then TG(i, j) = xe and TG(j, i) = −xe; otherwise
TG(i, j) = 0. For a skew-symmetric matrix T , the determinant of T is a perfect square,
and the square root of det(T ) is called the Pfaffian of T , denoted pf(T ). We call pf(TG)
the perfect matching Pfaffian of the graph G, and pf(TG) =

∑
P sgn(P )

∏
e∈P xe, where the

sum is over all perfect matchings P of G, and sgn(P ) takes ±1 in a suitable manner. It is
well-known that pf(TG) ∈ VPws.

Note that NPT(pf(TG)) is the perfect matching polytope of G, which has the following
description by Edmonds. For any S ⊆ V , we use e ∼ S to denote that e lies at the border of
S. When S = {i}, we may write e ∼ i instead of e ∼ {i}.

I Theorem 20 (Edmonds, [9]). The perfect matching polytope of a graph G is characterized
by the following constraints:

(a) ∀e ∈ E, xe ≥ 0;

(b) ∀i ∈ V,
∑

e∈E,e∼i
xe = 1; (1)

(c) ∀C ⊆ V, |C| > 1 is odd,
∑

e∈E,e∼C
xe ≥ 1.

We shall refer to constraints of type (c) in Equation (1) as “odd-size constraints.”

I Theorem 21 (Kaltofen and Koiran, [13, Corollary 1]). Given f, g, h ∈ F[x], suppose h = f/g,
and f and g are in VPws. Then h ∈ VPws.

I Theorem 22. For any graph G and any face Q of NPT(pf(TG)), pf(TG)|Q ∈ VPws.

Proof. Thanks to Edmonds’ description, any face of NPT(pf(TG)) is obtained by setting
some of the inequalities in Equation (1) to equalities. As setting xe = 0 amounts to consider
some graph G′ with e deleted from G, the bottleneck is to deal with the odd-size constraints.

Suppose the face Q is obtained via setting the odd-size constraints corresponding to
C1, . . . , Cs to equalities, where Ci ⊆ V . Note that s = poly(n), because the dimension of
NPT(pf(TG)) is polynomially bounded, thus any face can be obtained by setting polynomially
many constraints to equalities. Let y be a new variable. For any edge e ∈ E, let the number
of i ∈ [s] s.t. e lies at the border of Ci be ke. Then transform xe to xey

ke . Let the
skew-symmetric matrix after the transformation be T̃G. Since each perfect matching touches
the border of every Ci at least once, ys divides pf(T̃G), so f := pf(T̃G)

ys is a polynomial.
Furthermore, the y-free terms in f corresponds to those perfect matchings that touch each
border exactly once. Thus, setting y to zero in f gives pf(TG)|Q.

f is in VPws, because pf(T̃G) and ys are in VPws, and use Theorem 21. J

Construction of an explicit family. Now we turn to the construction of an explicit family
{fn} mentioned in the beginning of this section. We assume that the base field F = C.

First, we give a randomized procedure for constructing fn:
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1. Fix a small enough constant a > 0, and let l be the nearest odd integer to na. Fix
odd-size disjoint subsets C1, . . . , Ck ⊆ [n], k = bn1−ac, of size l. For example, we can let
C1 = {1, . . . , l}, C2 = {l + 1, . . . , 2l + 1}, etc.

2. Choose a random regular non-bipartite graph Gn on n nodes with degree (say)
√
n.

3. Let Q be the face of NPT(pf(TG)) obtained by setting the odd-size constraints corres-
ponding C1, . . . , Ck to equalities.

4. Let fn = det(TG)|Q.

Then, fn can be approximated infinitesimally closely by symbolic determinants of size n;
cf. the proof of Theorem 7. By Theorem 22, fn can be expressed as a symbolic determinant
of poly(n) size. But:

I Conjecture 23. If a > 0 is small enough, then, with a high probability, fn cannot be
expressed as a symbolic determinant of size ≤ n2+δ, for a small enough positive constant δ.

This is because, with high probability, the coefficient complexity of Q is Ω(n1−a+1/2), and
hence interpolation, which lies at the heart of the algorithm in Theorem 22, can be expected
to incur Ω(n1+δ) blow-up in the determinantal size, for a small enough constant δ > 0.
Specifically, if we unwind Strassen’s proof of division gate elimination, the number of terms
in the interpolation is the degree of the polynomial times the degree of the denomenator.
The former number gets increased by a multiplicative factor of the sum of absolute values of
variable coefficients in the equations, and the latter number is the sum of absolute values of
constant terms. It follows that the coefficient complexity determines the blow-up factor.

To get an explicit family {fn}, we let Gn be a pseudo-random graph, instead of a random
graph. Some suggestions can be found in the full version.

6 Newton degenerations of generic semi-invariants of quivers

In this section we prove Theorem 2 for the generalized Kronecker quivers. Due to page
constraints, proofs for k-subspace quivers and A-D-E Dynkin quivers are in the full version.
We assume familiarity with the basic notions of the representation theory of quivers; cf. [6, 8].

6.1 Newton degeneration to faces with small coefficient complexity
We begin by observing that the technique used to prove Theorem 22 can be generalized
further. In the proof of Theorem 22, due to Edmonds’ description of the perfect matching
polytope, every face has a “small” description, by a set of linear equalities whose coefficients
are polynomially bounded in magnitude.

For a face Q of a polytope P , we say that a set of linear equalities E characterizes Q
with respect to P , if the description of P together with that of E characterizes Q. For E, let
coeff(E) be the sum of the absolute values of the coefficients of the linear equalities in E.
We define the coefficient complexity of Q as the minimum of coeff(E) over the linear equality
sets E that characterize Q with respect to P . Adapting the proof of Theorem 22 we easily
get the following; see the full version for a proof.

I Theorem 24. Suppose f ∈ F[x1, . . . , xn] can be computed by a (weakly skew) arithmetic
circuit of size s. Let Q be a face of NPT(f) whose coefficient complexity is poly(n). Then
f |Q can be computed by a (weakly skew) arithmetic circuit of size poly(s, n).

I Remark. If Q has poly(n) coefficient complexity, then it can be shown that f |Q is a
one-parameter degeneration of f of poly(n) degree. Hence, Thm. 24 also follows from
Lem. 17.
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6.2 Generic semi-invariants of generalized Kronecker quivers
We now discuss Theorem 2 for the m-Kronecker quiver; the proof is deferred to the full
version. The m-Kronecker quiver is the graph with two vertices s and t, with m arrows
pointing from s to t. When m ≥ 3, this quiver is wild.

Any tuple of m n× n matrices is a linear representation of the m-Kronecker quiver of
dimension vector (n, n). Let F[x(k)

i,j ] denote the ring of polynomials in the variables x(k)
i,j ,

where i, j ∈ [n], and k ∈ [m]. For k ∈ [m], let Xk = (x(k)
i,j ) denote the variable n× n matrix,

whose (i, j)-th entry is x(k)
i,j . Let R(n,m) consist of those polynomials in F[x(k)

i,j ] that are
invariant under the action of every (A,C) ∈ SL(n,F)× SL(n,F), which sends (X1, . . . , Xm)
to (AX1C

−1, . . . , AXmC
−1). R(n,m) is the ring of semi-invariants for the m-Kronecker

quiver for dimension vector (n, n) or “matrix semi-invariants” due to their similarity with
the well-known matrix invariants. The following is proved using Theorem 24:

I Theorem 25. The Newton degeneration of a generic semi-invariant of the m-Kronecker
quiver with dimension vector (n, n) and degree dn to an arbitrary face can be computed by a
weakly skew arithmetic circuit of size poly(d, n).

Acknowledgment. We thank the anonymous reviewers for careful reading and suggestions
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