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Abstract
We revisit the complexity of online computation in the cell probe model. We consider a class of
problems where we are first given a fixed pattern F of n symbols and then one symbol arrives
at a time in a stream. After each symbol has arrived we must output some function of F and
the n-length suffix of the arriving stream. Cell probe bounds of Ω(δ lgn/w) have previously been
shown for both convolution and Hamming distance in this setting, where δ is the size of a symbol
in bits and w ∈ Ω(lgn) is the cell size in bits. However, when δ is a constant, as it is in many
natural situations, the existing approaches no longer give us non-trivial bounds.

We introduce a lop-sided information transfer proof technique which enables us to prove
meaningful lower bounds even for constant size input alphabets. Our new framework is capable
of proving amortised cell probe lower bounds of Ω(lg2 n/(w · lg lgn)) time per arriving bit. We
demonstrate this technique by showing a new lower bound for a problem known as pattern
matching with address errors or the L2-rearrangement distance problem. This gives the first
non-trivial cell probe lower bound for any online problem on bit streams that still holds when
the cell size is large.
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1 Introduction

We revisit the complexity of online computation in the cell probe model. In recent years there
has been considerable progress towards the challenging goal of establishing lower bounds for
both static and dynamic data structure problems. A third class of data structure problems
which fall somewhere between these two classic settings, is online computation in a streaming
setting. Here one symbol arrives at a time and a new output must be given after each symbol
arrives and before the next symbol is processed. The key conceptual difference to a standard
dynamic data structure problem is that although each arriving symbol can be regarded as a
new update operation at a prespecified index, there is only one type of query which is to
output the latest value of some function of the stream.

Online pattern matching is particularly suited to study in this setting and cell probe lower
bounds have previously been shown for different measures of distance including Hamming
distance, inner product/convolution and edit distance [3, 4, 5]. All these previous cell probe
lower bounds have relied on only one proof technique, the so-called information transfer
technique of Pǎtraşcu and Demaine [14]. In loose terms the basic idea is as follows. First
one defines a random input distribution over updates. Here we regard an arriving symbol
as an update and after each update we perform one query which simply returns the latest
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31:2 Cell-Probe Lower Bounds for Bit Stream Computation

distance between a predefined pattern and the updated suffix of the stream. One then has to
argue that knowledge of the answers to ` consecutive queries is sufficient to infer at least
a constant fraction of the information encoded by ` consecutive updates that occurred in
the past. If one can show this is true for all power of two lengths ` then a logarithmic lower
bound per update/query operation follows.

In recent years a consensus has been arrived at that the most natural cell size is w ∈ Ω(lgn).
This is for two main reasons. The first is simply that a cell should be large enough to be
able to address all of memory. The second, more practical reason is that lower bounds that
we derive directly give time lower bounds for problems analysed in the popular word-RAM
model. When cells are of this size a cell probe lower bound of Ω(δ lgn/w) for both online
Hamming distance and convolution using the information transfer technique has been shown,
where δ is the number of bits in an input symbol, w is the cell size in bits and n is the length
of the fixed pattern [3, 4]. When δ ≥ w ≥ lgn, there is also a matching upper bound in the
cell probe model and so no further progress is possible. However, when the symbol size δ
does not grow with the input size as is often the case in applied settings, the best lower
bound that is derivable reduces trivially to be constant. This is an unfortunate situation as
a particularly natural setting of parameters is when the input alphabet is of constant size
but the cell size is not.

This small input alphabet, large cell size setting has received some study in the past. Using
a sophisticated variant of the information transfer technique, Pǎtraşcu and Demaine [14]
proved an Ω(lgn/ lg lgn) cell probe lower bound for the classic prefix sum problem when the
random update values contain δ = O(1) bits and the cell size is Θ(lgn). However, as they
themselves highlight in their paper, their proof technique relies on the fact that the update
indices contain Ω(lgn) random bits and it is this information which is then used to provide
the lower bound. This is in contrast to our streaming setting where both the update and
query indices are fixed and the update values contain only a constant number of bits each.

In this paper we introduce a new variant of the information transfer technique which
we call the lop-sided information transfer technique. This will enable us to give meaningful
lower bounds for precisely this setting, that is when δ ∈ O(1), w ∈ Ω(lgn) and both the
query and update indices are fixed. Our proof technique will rely on being able to show for
specific problems that we need only ` query answers to infer at least a constant fraction of
the information encoded in the previous ` lg ` updates.

We demonstrate our new framework by applying it to a pattern matching problem with
address errors known as L2-rearrangement distance. This measure of distance, which was
first studied in SODA 2006 [1, 2], arises in pattern matching problems where errors occur not
in the content of the data but in the addresses where the data is stored. Our proof technique
is fundamentally combinatorial in nature. We demonstrate an input distribution which has
the property that individual bits of the Θ(lgn) sized outputs encode individual bits of the
stream. In this way we can infer Ω(` lg `) updates from only O(`) outputs as we require. We
believe our proof technique is also directly applicable to other simpler distance measures
such as the Hamming distance. However establishing the key technical lemma (Lemma 5)
appears to be out of reach at present.

The cell probe model and previous lower bounds

Our bounds hold in a particularly strong computational model, the cell-probe model, intro-
duced originally by Minsky and Papert [11] in a different context and then subsequently
by Fredman [7] and Yao [17]. In this model, there is a separation between the computing
unit and the memory, which is external and consists of a set of cells of w bits each. The
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computing unit cannot remember any information between operations. Computation is free
and the cost is measured only in the number of cell reads or writes (cell-probes). This general
view makes the model very strong, subsuming for instance the popular word-RAM model.

The first techniques known for establishing dynamic data structure lower bounds had
historically been based on the chronogram technique of Fredman and Saks [8] which can
at best give bounds of Ω(lgn/ lg lgn). In 2004, Pǎtraşcu and Demaine gave us the first
Ω(lgn) lower bounds for dynamic data structure problems [14]. Their technique is based
on information theoretic arguments which also form the basis for the work we present in
this paper. Pǎtraşcu and Demaine also presented ideas which allowed them to express
more refined lower bounds such as trade-offs between updates and queries of dynamic data
structures. For a list of data structure problems and their lower bounds using these and
related techniques, see for example [12]. More recently, a further breakthrough was made
by Larsen who showed lower bounds of roughly Ω((lgn/ lg lgn)2) time per operation for
dynamic weighted range counting problem and polynomial evaluation [9, 10]. Subsequent
application of this new proof technique has also provided the same lower bound for dynamic
matrix-vector multiplication [15]. These lower bounds remain the state of the art for any
dynamic structure problem to this day. It is particularly relevant that Larsen’s lower bound
for dynamic weighted range counting problem cannot yet be applied to the unweighted range
counting problem due to a very similar limitation in proof technique to the one we address
in this paper.

1.1 Our Results
The lop-sided information transfer technique

In the standard formulation of Demaine and Pǎtraşcu’s information transfer technique [13],
two adjacent time intervals [t0, t1] and [t1 + 1, t2] are considered, with equal, power of two
length `. To apply this technique in a streaming setting, the core argument one has to
make is that for the given problem, knowledge of the outputs during [t1 + 1, t2] is sufficient
to infer a constant fraction of the information encoded by updates during [t0, t1]. As this
information about the updates can be inferred from the outputs, the algorithm must know
this information to compute the outputs. In particular this implies that while computing
the outputs during [t1 + 1, t2], the algorithm must probe sufficiently many cells written
during [t0, t1] to uniquely recover this information. We can think of these cell probes as
being associated with interval length ` and offset t0 which uniquely defines the two intervals.
The final lower bound is obtained by summing the cell probe lower bounds associated with
every power-of-two length ` and t0 = `, 2`, 3` . . .. This final step relies crucially on the
fundamental property of the information transfer technique that this summation step does
not double count cell probes. In particular that a cell probe associated with some t0, ` is not
also associated with some other t′0, `′.

As the argument is information theoretic, to obtain a logarithmic lower bound via this
approach, both the ` updates during [t0, t1] and the ` outputs during [t1 + 1, t2] must contain
Ω(` lg `) bits. However in the bit streaming setting, each update contains O(1) bits so the
updates in [t0, t1] contain only O(`) bits in total.

To overcome this we increase the size of the interval [t0, t1] to have length ` lg ` so that
both intervals contain Ω(` lg `) bits as required. Unfortunately this modification breaks the
fundamental property of the information transfer technique that there is no double counting
of cell probes. In fact, direct application of our approach causes each cell probe to be counted
Θ(lgn) times, negating the possibility of a non-trivial lower bound.
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31:4 Cell-Probe Lower Bounds for Bit Stream Computation

To overcome this we place gaps in time between the end of one interval and the start of
another and argue carefully both that not too much of the information can be lost in these
gaps and that we can still sum the cell probes over a sufficient number of distinct interval
lengths without too much double counting. Our hope is that this new technique will lead to
a new class of cell probe lower bounds which could not be proved with existing methods.

Online pattern matching with address errors (L2-rearrangement distance)

We give an explicit distance function for which we can now obtain the first unconditional
online cell probe lower bound for symbol size δ = 1. Consider two strings S1 and S2 both of
length n where S2 is a permutation of S1. Now consider the set of permutations Π so that
for all π ∈ Π, S1[π(0), . . . , π(n− 1)] = S2. The L2-rearrangement distance is defined to be
minπ∈Π

∑n−1
j=0 (j − π(j))2 [2]. In other words, the cost of a permutation is the sum of the

square of the number of positions each character is moved. The distance is the minimum
cost of any permutation. If Π is empty, that is S2 is in fact not a permutation of S1, then
the L2-rearrangement distance is defined to be ∞. As an example, the L2-rearrangement
distance between strings 11100 and 10110 is 0+1+1+22+0=6. In the online L2-rearrangement
problem we are given a fixed pattern F ∈ {0, 1}n and the stream arrives one symbol at a
time. After each symbol arrives we must output the L2-rearrangement distance between
F and the most recent n-length suffix of the stream. This online version can be solved in
O(lg2 n) time per arriving symbol in the word-RAM model [6].

Our technique allows us to recover Ω(lgn) distinct bits of the stream from each output.
This is achieved by constructing F and carefully choosing a highly structured random input
distribution for the incoming stream in such a way that the contributions to the output from
different regions of the stream have different magnitudes. We can then use the result to
extract distinct information about the stream from different parts of each output.

Using this approach we get the following cell probe lower bound:

I Theorem 1 (Online L2-rearrangement). In the cell-probe model with w ∈ Ω(lgn) bits per
cell, for any randomised algorithm solving the online L2-rearrangement distance problem on
binary inputs there exist instances such that the expected amortised number of probes per
arriving value is

Ω
(

lg2 n

w · lg lgn

)
.

2 Lop-sided information transfer

In this section we will formally define our variant of information transfer, which is a particular
set of cells probed by the algorithm, and explain how a bound on the size of the information
transfer can be used when proving the overall lower bound of Theorems 1. Our lower bound
holds for any randomised algorithm on its worst case input. This will be achieved by applying
Yao’s minimax principle [16]. As a result, from this point onwards we consider an arbitrary
deterministic algorithm running with some fixed array F on a random input of n stream
values over the binary alphabet Σ = {0, 1}. The algorithm may depend on F . As is common
in the literature we will refer to the choice of F and the distribution of stream values as the
hard distribution.

We will let U ∈ {0, 1}n denote the update array which describes a sequence of n update
operations corresponding to values that arrive in the stream. We will usually refer to the
t-th update as the arrival of the value U [t]. Observe that just after arrival t, the values
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U [t+ 1, n− 1] are still not known to the algorithm. We will proceed under the assumption
that before the 0-th update, U [0] arrives, the stream contains at least n symbols chosen
arbitrarily from the support of the stream distribution. All logarithms are in base two.

2.1 Notation – Two intervals and a gap
In order to define the concept of information transfer from one interval of arriving values in
the stream to another interval of arriving values, we first define the set L which contains the
interval lengths that we will consider,

L =
{
n1/4 · (lgn)2i

∣∣∣∣ i ∈ {0, 1, 2, . . . , lgn
4 lg lgn

} }
.

To avoid cluttering the presentation with floors and ceilings, we assume throughout that
the value of n is such that any division or power nicely yields an integer. Whenever it
is impossible to obtain an integer we assume that suitable floors or ceilings are used. In
particular, L contains only integers.

In contrast to the original information transfer method, we define three intervals [t0, t1],
[t1 + 1, t2 − 1] and [t2, t3], referred to as the left interval, the gap and the right interval,
respectively. These intervals are functions of a length ` ∈ L and an offset t ∈ [n/2]. The
left interval has length ` lg `, the gap has length 4`/ lgn and the right interval has length `.
Precisely we define the following four values:

t0 = t, t1 = t0 + ` lg `− 1, t2 = t1 + 4`
lgn + 1, t3 = t2 + `− 1.

Formally the values t0, t1, t2 and t3 are functions of ` and t but for brevity we will often
write just t0 instead of t0(`, t), and so on, whenever the parameters ` and t are obvious from
context.

We now highlight some useful properties of these intervals which are easily verified. First
observe that the intervals are disjoint and that all intervals are contained in [0, n − 1] for
sufficiently large n. Second, suppose that `′ ∈ L is one size larger than ` ∈ L, that is
`′ = ` · (lgn)2. For `′ the length of the gap is 4`′/ lgn, which is sufficiently large that it spans
the length of the left interval, the right interval and the gap associated with `. This second
property will be particularly important in proving that we do not over-count cell probes.

2.2 Information transfer over gaps
Towards the definition of information transfer, we define, for ` ∈ L and t ∈ [n/2], the subarray
U`,t = U [t0, . . . , t1] to represent the ` lg ` values arriving in the stream during the left interval.
We define the subarray A`,t to represent the ` outputs during the right interval [t2, . . . , t3].
Lastly we define Ũ`,t to be the concatenation of U [0, (t0 − 1)] and U [(t1 + 1), (n− 1)]. That
is, Ũ`,t contains all values of U except for those in U`,t.

For ` ∈ L and t ∈ [n/2] we first define the information transfer to the gap, denoted
G`,t, to be the set of memory cells c such that c is probed during the left interval [t0, t1] of
arriving values and also probed during the arrivals of the values U [t1 + 1, t2 − 1] in the gap.
Similarly we define the information transfer to the right interval, or simply the information
transfer, denoted I`,t, to be the set of memory cells c such that c is probed during the left
interval [t0, t1] of arriving symbols and also probed during the arrivals of symbols in the right
interval [t2, t3] but not in the gap. That is, any cell c ∈ G`,t cannot also be contained in the
information transfer I`,t.
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31:6 Cell-Probe Lower Bounds for Bit Stream Computation

The cells in the information transfer I`,t may contain information about the values in
U`,t that the algorithm uses in order to correctly produce the outputs A`,t. However, since
cells that are probed in the gap are not included in the information transfer, the information
transfer might not contain all the information about the values in U`,t that the algorithm
uses while outputting A`,t. We will see that the gap is small enough that a large fraction of
the information about U`,t has to be fetched from cells in the information transfer I`,t.

Since cells in the information transfer are by definition probed at some point by the
algorithm, we can use I`,t to measure, or at least give a lower bound for, the number of cell
probes. As a shorthand we let I`,t = |I`,t| denote the size of the information transfer I`,t.
Similarly we let G`,t = |G`,t| denote the size of the information transfer to the gap. By adding
up the sizes I`,t of the information transfers over all ` ∈ L and certain values of t ∈ [n/2],
we get a lower bound on the total number of cells probed by the algorithm during the n
arriving values in U . The choice of the values t is crucial as we do not want to over-count
the number of cell probes. In the next two lemmas we will deal with the potential danger of
over-counting.

For a cell c ∈ I`,t, we write the probe of c with respect to I`,t to refer to the first probe of
c during the arrivals in the right interval. These are the probes of the cells in the information
transfer that we count.

I Lemma 2. For any ` ∈ L and t, t′ ∈ [n/2] such that |t− t′| ≥ `, if a cell c is in both I`,t
and I`,t′ then the probe of c with respect to I`,t and the probe of c with respect to I`′,t′ are
distinct.

Proof. Since t and t′ are at least ` apart, the right intervals associated with t and t′,
respectively, must be disjoint. Hence the probe of c with respect to I`,t and the probe of c
with respect I`,t′ must be distinct. J

From the previous lemma we know that there is no risk of over-counting cell probes of
a cell over information transfers I`,t under a fixed value of ` ∈ L, as long as no two values
of t are closer than `. The proof follows directly from the fact that as |t − t′| ≥ `, the
corresponding right intervals for t and t′ do not overlap. Distinctness then follows directly
from the definition of information transfer. In the next lemma we consider information
transfers under different values of ` ∈ L. The proof follows from the property introduced
in Section 2.1 that if (wlog.) `′ > `, the gap associated with `′ is spans all three intervals
associated with `. This implies that either the right intervals for t and t′ do not overlap or
the left intervals do not overlap. In either case, once again, distinctness follows directly from
the definition of information transfer.

I Lemma 3. For any `, `′ ∈ L such that ` 6= `′, and any t, t′ ∈ [n/2], if a cell c is in both
I`,t and I`′,t′ then the probe of c with respect to I`,t and the probe of c with respect to I`′,t′

must be distinct.

Proof. Let p be the probe of c with respect to I`,t, and let p′ be the probe of c with respect
I`′,t′ . We will show that p 6= p′. Suppose without loss of generality that ` < `′. From the
properties of the intervals that were given in the previous section we know that the length of
the gap associated with `′ is larger than the sum of lengths of the left interval, the gap and
the right interval associated with `.

Suppose for contradiction that p = p′. By definition of I`,t, the cell c is probed also in
the left interval associated with `. Let pfirst denote any such cell probe. Because the gap
associated with `′ is so large, pfirst must take place either in the right interval or the gap
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associated with `′. If pfirst is in the gap, then c cannot be in I`′,t′ . If pfirst is in the right
interval then p′ cannot equal p. J

In order to give a lower bound for the total number of cell probes performed by the
algorithm over the n arrivals in U we will define, for each ` ∈ L, a set T` ⊆ [n/2] of arrivals,
such that for any distinct t, t′ ∈ T`, |t− t′| ≥ `. It then follows from Lemmas 2 and 3 that∑

`∈L

∑
t∈T`

I`,t

is a lower bound on the number of cell probes. Our goal is to give a lower bound for the
expected value of this double-sum. The exact definition of T` will be given in Section 3.3
once we have introduced relevant notation.

3 Proving the lower bound

In this section we give the overall proof for the lower bound of Theorem 1. Let ` ∈ L and let
t ∈ [n/2]. Suppose that Ũ`,t is fixed but the values in U`,t are drawn at random in accordance
with the distribution for U , conditioned on the fixed value of Ũ`,t. This induces a distribution
for the outputs A`,t. We want to show that if the entropy of A`,t is large, conditioned on the
fixed Ũ`,t, then the information transfer I`,t is large, since only the variation in the inputs
U`,t can alter the outputs A`,t. We will soon make this claim more precise.

3.1 Upper bound on entropy
We write H(A`,t | Ũ`,t = ũ`,t) to denote the entropy of A`,t conditioned on fixed Ũ`,t. Towards
showing that high conditional entropy H(A`,t | Ũ`,t = ũ`,t) implies large information transfer
we use the information transfer I`,t and the information transfer to the gap, G`,t, to describe
an encoding of the outputs A`,t. The following lemma gives a direct relationship between
I`,t +G`,t and the entropy which is applicable to both of our online problems. A marginally
simpler version of the lemma, stated with different notation, was first given in [14] under the
absence of gaps.

I Lemma 4. Under the assumption that the address of any cell can be specified in w bits, for
any ` ∈ L and t ∈ [n/2], the entropy H(A`,t | Ũ`,t = ũ`,t) ≤ 2w+2w·E[I`,t+G`,t | Ũ`,t = ũ`,t].

Proof. The expected length of any encoding of A`,t under fixed Ũ`,t is an upper bound on
the conditional entropy of A`,t. We use the information transfer I`,t and the information
transfer to the gap, G`,t, to define an encoding of A`,t in the following way. For every cell
c ∈ I`,t ∪ G`,t we store the address of c, which takes at most w bits under the assumption
that a cell can hold the address of any cell in memory. We also store the contents of c that it
holds at the very end of the left interval, just before the beginning of the gap. The contents
of c is specified with w bits. In total this requires 2w · (I`,t +G`,t) bits.

We will use the algorithm, which is fixed, and the fixed values ũ`,t of Ũ`,t as part of the
decoder to obtain A`,t from the encoding. Since the encoding is of variable length we also
store the size I`,t of the information transfer and the size G`,t of the information transfer to
the gap. This requires at most 2w additional bits.

In order to prove that the described encoding of A`,t is valid we now describe how to
decode it. First we simulate the algorithm on the fixed input Ũ`,t from the first arrival U [0]
until just before the left interval when the first value in U`,t arrives. We then skip over all
inputs in U`,t and resume simulating the algorithm from the beginning of the gap, that is
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31:8 Cell-Probe Lower Bounds for Bit Stream Computation

when the value U [t1 + 1] arrives. We simulate the algorithm over the arrivals in the gap
and the right interval until all values in A`,t have been outputted. For every cell being
read, we check if it is contained in either the information transfer I`,t or the information
transfer to the gap G`,t by looking up its address in the encoding. If the address is found
then the contents of the cell is fetched from the encoding. If not, its contents is available
from simulating the algorithm on the fixed inputs Ũ`,t. J

3.2 Lower bound on entropy
Lemma 4 above provides a direct way to obtain a lower bound on the expected value of
I`,t+G`,t if given a lower bound on the conditional entropy H(A`,t | Ũ`,t = ũ`,t). In Lemma 5
we provide such an entropy lower bound for L2-rearrangement distance. The proof is deferred
to Section 4.

I Lemma 5. For the L2-rearrangement distance problem there exists a real constant κ > 0
and, for any n, a fixed array F ∈ {0, 1}n such that for all ` ∈ L and all t ∈ [n/2] such that
t mod 4 = 0, when U is chosen uniformly at random from {0101, 1010}n

4 then,

H(A`,t | Ũ`,t = ũ`,t) ≥ κ · ` · lgn, for any fixed ũ`,t.

Before we proceed with the lower bound on the information transfer we make a short
remark on the bounds that this lemmas gives. Observe that the maximum conditional
entropy of A`,t is bounded by the entropy of U`,t, which is O(` lg `) since the length of the
left interval is ` lg `. Recall also that the values in L range from n1/4 to n3/4. Thus, for a
constant κ, the entropy lower bound is tight up to a multiplicative constant factor.

3.3 A lower bound on the information transfer and quick gaps
In this section we prove our main lower bound results. We assume that κ is the constant
and F is the fixed array of Lemma 5, and that U is chosen uniformly at random from
{0101, 1010}n

4 .
By combining the upper and lower bounds on the conditional entropy from Lemmas 4

and 5 we have that there is a hard distribution and a real constant κ > 0 such that,

E[I`,t +G`,t | Ũ`,t = ũ`,t] ≥
κ · ` · lgn

2w − 1 for any ũ`,t.

We may remove the conditioning by taking expectation over Ũ`,t under random U . Thus,

E[I`,t +G`,t] ≥
κ · ` · lgn

2w − 1, or equivalently,

E[I`,t] ≥
κ · ` · lgn

2w − 1− E[G`,t]. (1)

Recall that our goal is to give a lower bound for

E

[∑
`∈L

∑
t∈T`

I`,t

]
=
∑
`∈L

∑
t∈T`

E [I`,t] , where T` contains suitable values of t.

Using inequality (1) would immediately provide such a lower bound, however, there is an
imminent risk that the E[G`,t] terms could devalue such a bound into something trivially
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small. Now, for this to happen, the algorithm must perform sufficiently many cell probes
in the gap. Since the length of the gap is considerably shorter than the right interval, a
cap on the worst-case number of cell probes per arriving value would certainly ensure that
E[G`,t] stays small, but as we want a stronger amortised lower bound we need something
more refined. The answer lies in how we define T`. We discuss this next.

For ` ∈ L and f ∈ [`] we first define T`,f =
{
f + i`

∣∣ i ∈ {0, 1, 2, . . . } and f + i` ≤ n
2
}

to be the set of arrivals. The values in T`,f are evenly spread out, distance ` apart, starting
at f . We may think of f as the offset of the sequence of values in T`,f . The largest value in
the set is no more than n/2. We will define the set T` to equal a subset of one of the sets
T`,f for some f . More precisely, we will show that there must exist an offset f such that at
least half of the values t ∈ T`,f have the property that the time spent in the gap associated
with ` and t is small enough to ensure that the information transfer to the gap is small. We
begin with some definitions.

I Definition 6 (Quick gaps and sets). For any ` ∈ L and t ∈ [n/2] we say that the gap
associated with ` and t is quick if the expected number of cell probes during the arrivals
in the gap is no more than κ` lgn/(4w), where κ is the constant from Lemma 5. Further,
for any f ∈ [`] we say that the set T`,f is quick if, for at least half of all t ∈ T`,f , the gap
associated with ` and t is quick.

The next lemma says that for sufficiently fast algorithms there is always an offset f such
that T`,f is quick. The proof intuition is that if T`,f is not quick for any offset f then the
whole algorithm must be slow which gives a contradiction.

I Lemma 7. Suppose that the expected total number of cell probes over the n arrivals in U
is less than κn(lg2 n)/(32w). Then, for any ` ∈ L, there is an f ∈ [`] such that T`,f is quick.

Proof. In accordance with the lemma, suppose that the expected total number of cell probes
over the n arrivals in U is less than κn(lg2 n)/(32w). For contradiction, suppose that there
is no f ∈ [`] such that T`,f is quick. We will show that the expected number of cell probes
over the n arrivals must then be at least κn(lg2 n)/(32w).

For any f ∈ [`], let Rf ⊆ [n] be the union of all arrivals that belong to a gap associated
with ` and any t ∈ T`,f . Let Pf be the number of cell probes performed by the algorithm
over the arrivals in Rf . Thus, for any set T`,f that is not quick we have by linearity of
expectation E [Pf ] ≥ |T`,f |

2 · κ·`·lgn4w = n/2
2` ·

κ·`·lgn
4w = κ·n·lgn

8w .

Let the set of offsets F =
{
i · 4`

lgn

∣∣∣ i ∈ [ lgn
4

] }
⊆ [`]. The values in F are spread out

with distance 4`/ lgn, which equals the gap length. Thus, for any two distinct f, f ′ ∈ F , the
sets Rf and Rf ′ are disjoint. We therefore have that the total running time over all n arrivals
in U must be bounded below by

∑
f∈F Pf . Under the assumption that no T`,f is quick,

we have that the expected total running time is at least E
[∑

f∈F Pf

]
=
∑
f∈F E [Pf ] ≥

|F| · κ·n·lgn8w = lgn
4 ·

κ·n·lgn
8w = κ·n·lg2 n

32w , which is the contradiction we wanted. Thus, under
the assumption that the running time over the n arrivals in U is less than κn(lg2 n)/(32w)
there must be an f ∈ [`] such that T`,f is quick. J

We now proceed under the assumption that the expected running time over the n arrivals
in U is less than κn(lg2 n)/(32w). If this is not the case then we have already established
the lower bound of Theorem 1.

Let f be a value in [`] such that T`,f is a quick set. Such an f exists due to Lemma 7.
We now let T` ⊆ T`,f be the set of all t ∈ T`,f for which the gap associated with ` and t is
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quick. Hence |T`| ≥ |T`,f |/2 = n/(4`). Since G`,t cannot be larger than the number of cell
probes in the gap, we have by the definition of a quick gap that for any t ∈ T`,

E [G`,t] ≤
κ · ` · lgn

4w .

By combining the inequalities we can finally provide a non-trivial lower bound on the sum of
the information transfers:∑

`∈L,t∈T`

E [I`,t] ≥
∑

`∈L,t∈T`

(
κ · ` · lgn

2w − 1− E[G`,t]
)

≥
∑

`∈L,t∈T`

(
κ · ` · lgn

2w − 1− κ · ` · lgn
4w

)
≥ κ · lgn

5w
∑

`∈L,t∈T`

`

≥ κ · lgn
5w

∑
`∈L

(|T`| · `) ≥
κ · lgn

5w
∑
`∈L

( n
4` · `

)
= κ · n · lgn

20w · |L|

≥ κ · n · lgn
20w · lgn

4 lg lgn ∈ Θ
(
n · lg2 n

w · lg lgn

)
.

By Lemmas 2 and 3 this lower bound is also a bound on the expected total number of cell
probes performed by the algorithm over the n arrivals in U . The amortised time per arriving
value is obtained by dividing the running time by n, concluding the proof of Theorem 1.

4 The hard distribution for L2-rearrangement

In this section we prove Lemma 5. Recall that U is chosen uniformly at random from
{0101, 1010}n

4 . For each ` ∈ L there is a subarray of F of length ` lg ` + `. Each such
subarray, which we denote F`, is at distance 4`/ lgn+ 1 from the right-hand end of F , which
is one more than the length of the gap associated with `. By the properties discussed in
Section 2.1 we know that the length of the gap associated with `′ is larger than the length
of F` plus the length of the gap associated with `. Hence there is no overlap between the
subarrays F` and F`′ .

Given any of the subarrays F` and an array U` of length (` lg `), we write F` � U` to
denote the (`/4)-length array that consists of the L2-rearrangement distances between U`
and every fourth (` lg `)-length substring of F`. More precisely, for 4i ∈ [`], the value of
F` � U`[i] is the L2-rearrangement distance between F`[4i, 4i+ ` lg `− 1] and U`.

The main focus of this section is proving Lemma 8 which can be seen as an analogue of
Lemma 5 for a fixed length of `:

I Lemma 8. There exists a real constant ε > 0 such that for all n and ` ∈ L there is a
subarray F` for which the entropy of F` � U` is at least ε · ` lg ` when U` is drawn uniformly
at random from {0101, 1010} `

4 lg `. F` contains an equal number of 0s and 1s.

In order to finish the description of the array F we choose each subarray F` in accordance
with Lemma 8. Any region of F that is not part of any of the subarrays F` is filled with
repeats of ‘01’. This ensures that these regions contain an equal number of zeros and ones.
This concludes the description of the array F .

The proof of Lemma 5 then follows from Lemma 8 by arguing that the outputs in F`�U`
can be calculated from the outputs in A`,t by subtracting the contributions from F`′ � U`′

for all `′ 6= `. As each required value from U`′ is contained in Ũ`,t which is fixed to equal ũ`,t,
we have that H(A`,t | Ũ`,t = ũ`,t) ≥ H(F` � U`) as required. This argument requires that
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for each output, the globally optimal (lowest cost) permutation is always compatible with
the locally optimal permutation of each U`. In particular we need to rule out the possibility
of characters from some U` being moved to positions in F`′ for ` 6= `′. The proof (and the
lower bound in general) relies on a key property of L2-arrangement (proven in Lemma 3.1
from [1]) which states that under the optimal permutation, the i-th one (resp. zero) in one
string is moved to the i-th one (resp. zero) in the other. By controlling how the zeros and
ones are distributed in U and F , we can limit how far any character is moved. For brevity
the details are left for the full version.

We are now ready to prove Lemma 5, the lower bound on the conditional entropy of A`,t.

Proof of Lemma 5. Let F be the array described above and let U be drawn uniformly at
random from {0101, 1010}n

4 . Let ` ∈ L and t ∈ [n/2]. Thus, conditioned on any fixed Ũ`,t,
the distribution of U`,t is uniform on {0101, 1010} `

4 lg `.
Recall that U`,t arrives in the stream between arrival t0 and t1, after which 4`/ lgn values

arrive in the gap. Thus, at the beginning of the right interval, at arrival t2, U`,t is aligned
with the (` lg `)-length suffix of the subarray F` of F . Over the ` arrivals in the right interval,
U`,t slides along F`. We now prove that since all values in Ũ`,t are fixed, the outputs A`,t
uniquely specify F` � U`,t. The analogous property for convolution was immediate. First
observe that by construction the prefix of F up to the start of F` contains an equal number
of 0s and 1s. Similarly for F` itself and the suffix from F` to the end of F . Once in every four
arrivals, the substring of U aligned with F is guaranteed (by construction) to also have an
equal number of 0s and 1s. Therefore the L2-rearrangement distance is finite. It was proven
in Lemma 3.1 from [1] that (rephrased in our notation) under the optimal rearrangement
permutation, the k-th one (resp. zero) in F is moved to the k-th one (resp. zero) in U .
Therefore, every element of U` is moved to an element in F`. We can therefore recover any
output in F` � U`,t by taking the corresponding output in A`,t and subtracting, the costs of
moving the elements that are in U but not in U`. It is easily verified that as t is divisible by
four, the corresponding output in A`,t is one of those guaranteed to have an equal number of
0s and 1s. Thus, by Lemma 8, the conditional entropy

H(A`,t | Ũ`,t = ũ`,t) ≥ ε · ` · lg `,≥
ε

4 · ` · lgn,

since ` ≥ n1/4. By setting the constant κ to ε/4 we have proved Lemma 5. J

4.1 High entropy for fixed ` – the proof of Lemma 8
In this section we prove Lemma 8. We begin by explaining the high-level approach which
will make one final composition of both F` and U` into subarrays. For any j ≥ 0, let
U j` = U`[` · j, ` · (j + 1)− 1] i.e. U j` is the j-th consecutive `-length subarray of U`. The key
property that we will need is given in Lemma 9 which intuitively states that given half of
the bits in U`, we can compute the other half with certainty.

I Lemma 9. Let U` be chosen arbitrarily from {0101, 1010} `
4 . Given F`, F`�U` and U2j+1

`

for all j ≥ 0, it is possible to uniquely determine U2j
` for all j ≥ 0.

We briefly justify why Lemma 8 is in-fact a straight-forward corollary of Lemma 9. If we
pick U` uniformly at random from {0101, 1010} `

4 then by Lemma 9, the conditional entropy,
H(F` � U` |U2j+1

` for all j) is Ω(` lg `). This is because we always recover Θ(lg `) distinct
U2j
` , each of which is independent and has entropy Ω(`) bits. It then immediately follows that

H(F` �U`) ≥ H(F` �U` |U2j+1
` for all j) as required. We also require for Lemma 8 that F`
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U`

`` ` ` ` ` ` `

44 4 4

`+ 4`− 4

F`,0 F`,1 F`,2 F`,3F`

`̀`̀`̀``̀`̀`̀

denotes a repeated stretch of 1001)((

unknown

knownF 0
` F 1

` F 2
` F 3

`

U1
` U3

` U5
` U7

`U0
` U2

` U4
` U6

`

Figure 1 We can determine U2j
` [` − 4, ` − 1] if we know F`, every U2j+1

` and F` � U`.

contains an equal number ones and zeros. This follows immediately from the description of
F` below.

4.2 The subarray F`

We now give the description of F` which requires one final decomposition into subarrays
which is also shown in Figure 1 below. For each j ∈ [b(lg `)/2c], F` contains a subarray
F j` of length `. Intuitively, each subarray F j` will be responsible for recovering U2j

` . These
subarrays occur in order in F`. Before and after each F j` there are stretches of repeats of the
string 1001. Specifically, before F 1

` there are `/4− 1 repeats the string 1001. Between each
F j` and F j+1

` there are `/4 repeats of the string 1001 and after F b(lg `)/2c−1
` there are `/4 + 1

repeats. These repeats of 1001 are simply for structural padding and as we will see the
contribution of these repeated 1001 strings to the L2-rearrangement distance is independent
of U`. This follows because the cost of permuting 1001 into 1010 or 0101 is always 2.

Finally, the structure of F j` is as follows F j` = 10(2j+3)1(`/4−1)0(`/4−(2j+3)). Here 0z (resp.
1z) is a string of z zeros (resp. ones). Intuitively, the reason that the stretch of 0s at the start
of F j` is the exponentially increasing with j is so that the number of positions the second one
in F j` (immediately after the stretch of 0s) is forced to move is also exponentially increasing
with j as demonstrated in Figure 2 below. This is will allow us to recover each U2j

` from a
different bit in the outputs. This will claim will be made precise in the proof below.

4.3 Recovering half of the updates – the proof of Lemma 9
We are now in a position to prove Lemma 9. Our main focus will be on first proving that
given F`, U2j+1

` for all j and F` � U`, we can uniquely determine U2j
` [`− 4, `− 1] for each

j ≥ 0. That is, for each j whether the last four symbols of U2j
` are 0101 or 1010. This is

shown diagrammatically in Figure 1. We will then argue that by a straight-forward repeated
application of this argument we can in-fact recover the whole of U2j

` for all j ≥ 0.
We will begin by making some simplifying observations about (F` � U`)[0]. Recall that

(F` � U`)[0] was defined to be the L2-rearrangement distance between F`[0, |U`| − 1] and
U`. The first observation is that the distance is finite because both strings contain an equal
number of zeros and ones.

The L2-rearrangement distance (F` � U`)[0] can be expressed as the sum of the contribu-
tions from moving each U`[i], over all i ∈ [m]. Let the contribution of U`[i], denoted, CT(i) be
the square of the number of positions that U`[i] is moved by under the optimal permutation.
We then have that (F` � U`)[0] =

∑
iCT(j). Finally, we let D? be the sum of the contribu-

tions of the locations in every U2j
` [`− 4, `− 1], i.e. D? =

∑
j

∑3
k=0 (CT(2j · `+ (`− 4) + k).

We will also refer to the contribution of a substring which is defined naturally to be the
sum of the contributions of its constituent characters. For example the contribution of the
substring U j` is equal to

∑
{CT(r) | r ∈ [` · j, ` · (j + 1)− 1]} .
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Our proof will be in two stages. First we will prove in Lemma 10 that we can compute
D? from F`, F` � U` and U2j+1

` for all j ≥ 0. Second we will prove that for any j > 0, we
can determine U2j

` [`− 4, `− 1] from D?.
In the proof of Lemma 10 we argue that D? can be calculated directly from (F` � U`)[0]

by subtracting the contributions of U2j+1
` and U2j

` [0, `−5] for all j ≥ 0. More specifically, we
will prove that the contribution of any U2j+1

` can calculated from U2j+1
` and F`, which are

both known. In particular, the contribution of any U2j+1
` is independent of every unknown

U2j
` . Further, we will prove that although U2j

` is unknown, the contribution of U2j
` [0, `− 5],

always equals `/2− 2, regardless of the choice of U`.

I Lemma 10. D? can be computed from F`, F` � U` and U2j+1
` for all j ≥ 0.

Proof. In this proof we rely heavily on Lemma 3.1 from [1] which states that under the
optimal permutation, the i-th one (resp. zero) in U` is moved to the i-th one (resp. zero) in
F`[0, |U`| − 1]. For any j, consider, U2j

` and U2j+1
` . The number of ones in U2j

` (resp. U2j+1
` )

is fixed, independent of the choice of U`. In particular there are exactly `/2 zeros and `/2
ones. It is easily verified that, by construction, F`[2j · `, (2j + 2) · `− 1] also contains exactly
` zeros and ` ones. Therefore, the i-th one (resp. zero) in U2j

` is moved to the i-th one (resp.
zero) in F`[2j · `, (2j + 2) · `− 1]. Similarly, the i-th one (resp. zero) in U2j

` is moved to the
(i+ `/2)-th one (resp. zero) in F`[2j · `, (2j + 2) · `− 1]

Consider any U2j+1
` which is known. By the above observation, we can therefore determine

which position in F`[2j · `, (2j + 2) · `− 1], each character in U2j+1
` is moved to under the

optimal permutation. From this we can then directly compute the contribution of each U2j+1
`

to (F` � U`)[0].
Consider any U2j

` which is unknown. As observed above, the i-th one (resp. zero) in
U2j
` is moved to the i-th one (resp. zero) in F`[2j · `, (2j + 2) · `− 1]. By construction, we

have that F`[2j · `, (2j + 1) · ` − 5] consists entirely of repeats of 1001. Further for any
i, we have that U2j

` [4i, 4i + 3] is either 1010 or 0101. Therefore for all i < `/4 we have
that the two ones (resp. zeros) in U2j

` [4i, 4i + 3] are moved to the two ones (resp. zeros)
in F`[2j · `+ 4i, 2j · `+ 4i+ 3] = 1001. The key observation is that regardless of whether
U2j
` [4i, 4i+ 3] = 1010 or 0101, the contribution of U2j

` [4i, 4i+ 3] is 2. Therefore for any U`,
the contribution of U2j

` [0, `− 5] is always `/2− 2.
Finally, the value of D? is can be calculated directly from (F` � U`)[0] as claimed by

subtracting the calculated contributions of U2j+1
` and U2j

` [0, `− 5] for all j ≥ 0. J

In Lemma 12 we will prove that we can compute U2j
` [` − 4, ` − 1] from D? (for any

sufficiently large j). The intuition behind this is given by Lemma 11 which gives an explicit
formula for the contribution of U2j

` [`− 4, `− 1]. Observe that the contribution depends only
on whether U2j

` [`− 4, `− 1] equals 1010 (vj = 1) or 0101 (vj = 0). In the proof we begin by
arguing that under the optimal permutation, the two ones (resp. zeros) in U2j

` [`− 4, `− 1]
are moved to the leftmost two ones (resp. zeros) in F j` as illustrated in Figure 2. The key
observation is that regardless of whether vj equals 0 or 1, by construction the right one in
U2j
` [`− 4, `− 1] is moved exponentially far (as a function of j). Furthermore, in the vj = 1

case the right one moves one position further than in the vj = 0 case. As the contribution is
the square of the number of positions a character moves, this creates a exponentially large
change in the contribution. The exact contribution given in the Lemma can be calculated
straightforwardly by considering each of the four symbols in U2j

` [`− 4, `− 1] individually.

I Lemma 11. For any j, let vj = 1 if U2j
` [`− 4, `− 1] = 1010 and vj = 0 otherwise. The

contribution of U2j
` [`− 4, `− 1] is exactly vj · 2j+1 + 22j + 2.
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1 0 0 0 0 0 01 1 1 1 1 11

0101U2j
`

2j + 3

U2j+1
`

F j
`

Figure 2 The permutation of the symbols in U2j
` [` − 4, ` − 1] under the optimal permutation.

The highlighted region is F j
` .

We can now prove Lemma 12 which follows almost immediately from Lemma 11.

I Lemma 12. For any j ≥ 0, it is possible to compute U2j
` [`− 4, `− 1] from D?.

Proof. Let D?
2 equal D? −

∑
j(22j + 2) which can be calculated directly from D?. An

alternative and equivalent definition of D?
2 follows from Lemma 11 and is given by D?

2 =∑
j vj · 2j+1. We can therefore compute vj and hence U2j

` [` − 4, ` − 1] by inspecting the
(j + 1)-th bit in the binary representation of D?

2 . J

Recall from Lemma 10 that D? can in turn be computed from F`, F` �U` and U2j+1
` for

all j ≥ 0. Therefore as claimed, given F`, F` � U` and U2j+1
` for all j ≥ 0, we can uniquely

determine U2j
` [` − 4, ` − 1] for each j ≥ 0. Lemma 9 now follows almost immediately by

repeat application of this argument as we now set out.

Recovering the rest of U`,(2j)

So far we have only proven that we can recover U2j
` [`− 4, `− 1] for all j. The claim that we

can in-fact recover the whole of U2j
` follows by repeatedly application of the argument above.

Specifically, once we have recovered U2j
` [` − 4, ` − 1] for all j, we can use this additional

information (and (F` � U`)[1] instead of (F` � U`)[0]) to recover U2j
` [` − 8, ` − 5] for all j

and so on. More formally we proceed by induction on increasing k by observing that using
the above argument given F`, (F` � U`)[k], U2j+1

` for all j ≥ 0 and U2j+1
` [`− 4k, `− 1] for

all j ≥ 0 we can recover U2j+1
` [`− 4k − 4, `− 4k − 1] for all j.
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