
Conditionally Optimal Algorithms for Generalized
Büchi Games∗

Krishnendu Chatterjee1, Wolfgang Dvořák2, Monika Henzinger3,
and Veronika Loitzenbauer4

1 IST Austria
2 University of Vienna, Faculty of Computer Science, Vienna, Austria
3 University of Vienna, Faculty of Computer Science, Vienna, Austria
4 University of Vienna, Faculty of Computer Science, Vienna, Austria

Abstract
Games on graphs provide the appropriate framework to study several central problems in com-
puter science, such as verification and synthesis of reactive systems. One of the most basic
objectives for games on graphs is the liveness (or Büchi) objective that given a target set of
vertices requires that some vertex in the target set is visited infinitely often. We study gener-
alized Büchi objectives (i.e., conjunction of liveness objectives), and implications between two
generalized Büchi objectives (known as GR(1) objectives), that arise in numerous applications
in computer-aided verification. We present improved algorithms and conditional super-linear
lower bounds based on widely believed assumptions about the complexity of (A1) combinatorial
Boolean matrix multiplication and (A2) CNF-SAT. We consider graph games with n vertices, m
edges, and generalized Büchi objectives with k conjunctions. First, we present an algorithm with
running time O(k · n2), improving the previously known O(k · n ·m) and O(k2 · n2) worst-case
bounds. Our algorithm is optimal for dense graphs under (A1). Second, we show that the basic
algorithm for the problem is optimal for sparse graphs when the target sets have constant size
under (A2). Finally, we consider GR(1) objectives, with k1 conjunctions in the antecedent and
k2 conjunctions in the consequent, and present an O(k1 · k2 ·n2.5)-time algorithm, improving the
previously known O(k1 · k2 · n ·m)-time algorithm for m > n1.5.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, F.3.1 Specify-
ing and Verifying and Reasoning about Programs

Keywords and phrases Generalized Büchi objective, GR(1) objective, Conditional lower bounds,
Graph games, Graph algorithms, Computer-aided verification

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.25

1 Introduction

Games on graphs. Two-player games on graphs, between player 1 and the adversary
player 2, are central in many problems in computer science, specially in formal analysis of
reactive systems, where vertices of the graph represent states of the system, edges represent
transitions, infinite paths of the graph represent behaviors (or non-terminating executions)

∗ K. C., M. H., and W. D. are partially supported by the Vienna Science and Technology Fund (WWTF)
through project ICT15-003. K. C. is partially supported by the Austrian Science Fund (FWF) NFN
Grant No S11407-N23 (RiSE/SHiNE) and an ERC Start grant (279307: Graph Games). For W. D., M.
H., and V. L. the research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant
Agreement no. 340506.

© Krishnendu Chatterjee, Wolfgang Dvořák, Monika Henzinger and Veronika Loitzenbauer;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 25; pp. 25:1–25:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 Conditionally Optimal Algorithms for Generalized Büchi Games

of the system, and the two players represent the system and the environment, respectively.
Games on graphs have been used in many applications related to verification and synthesis of
systems, such as, synthesis of systems from specifications and controller-synthesis [30, 54, 55],
verification of open systems [8], checking interface compatibility [31], well-formedness of
specifications [32], and many others. We will distinguish between results most relevant
for sparse graphs, where the number of edges m is roughly proportional to the number of
vertices n, and dense graphs with m = Θ(n2). Sparse graphs arise naturally in program
verification, as control-flow graphs are sparse [57, 28]. Graphs obtained as synchronous
product of several components (where each component makes transitions at each step) [45, 23]
can lead to dense graphs.

Objectives. Objectives specify the desired set of behaviors of the system. The most basic
objective for reactive systems is the reachability objective, and the next basic objective is
the Büchi (also called liveness or repeated reachability) objective that was introduced in
the seminal work of Büchi [17, 18, 19] for automata over infinite words. Büchi objectives
are specified with a target set T and the objective specifies the set of infinite paths in the
graph that visit some vertex in the target set infinitely often. Since for reactive systems
there are multiple requirements, a very central objective to study for games on graphs is
the conjunction of Büchi objectives, which is known as generalized Büchi objective. Finally,
currently a very popular class of objectives to specify behaviors for reactive systems is called
the GR(1) (generalized reactivity (1)) objectives [53]. A GR(1) objective is an implication
between two generalized Büchi objectives.

We present a brief discussion about the significance of the objectives we consider, for
a detailed discussion see [26]. The conjunction of liveness objectives is required to specify
progress conditions of mutual exclusion protocols, and deterministic Büchi automata can
express many important properties of linear-time temporal logic (LTL) (the de-facto logic
to specify properties of reactive systems) [47, 46, 9, 44]. The analysis of reactive systems
with such objectives naturally gives rise to graph games with generalized Büchi objectives.
Finally, graph games with GR(1) objectives have been used in many applications, such as
the industrial example of synthesis of AMBA AHB protocol [14, 36] as well as in robotics
applications [35, 21].

Basic problem and conditional lower bounds. In this work we consider games on graphs
with generalized Büchi and GR(1) objectives, and the basic algorithmic problem is to compute
the winning set, i.e., the set of starting vertices where player 1 can ensure the objective
irrespective of the way player 2 plays; the way player 1 achieves that is called her winning
strategy. These are core algorithmic problems in verification and synthesis. For the problems
we consider, while polynomial-time algorithms are known, there are no super-linear lower
bounds. Since for polynomial-time algorithms unconditional super-linear lower bounds are
extremely rare in the whole of computer science, we consider conditional lower bounds, which
assume that for some well-studied problem the known algorithms are optimal up to some
lower-order factors. In this work we consider two such well-studied assumptions: (A1) there
is no combinatorial1 algorithm with running time of O(n3−ε) for any ε > 0 to multiply two
n× n Boolean matrices; or (A2) for all ε > 0 there exists a k such that there is no algorithm
for the k-CNF-SAT problem that runs in O(2(1−ε)·n · poly(m)) time, where n is the number
of variables and m the number of clauses. These two assumptions have been used to establish

1 Combinatorial here means avoiding fast matrix multiplication [48], see also the discussion in [38].

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer 25:3

lower bounds for several well-studied problems, such as dynamic graph algorithms [3, 5],
measuring the similarity of strings [4, 15, 16, 10, 2], context-free grammar parsing [49, 1],
and verifying first-order graph properties [52, 61].

Our results. We consider games on graphs with n vertices, m edges, generalized Büchi
objectives with k conjunctions, and target sets of size b1, b2, . . . , bk, and GR(1) objectives
with k1 conjunctions in the assumptions and k2 conjunctions in the guarantee. Our results
are as follows.

Generalized Büchi objectives. The classical algorithm for generalized Büchi objectives
requires O(k ·min1≤i≤k bi ·m) time. Further there exists an O(k2 · n2)-time algorithm
via a reduction to Büchi games [13, 26].
1. Dense graphs. Since min1≤i≤k bi = O(n) and m = O(n2), the classical algorithm has

a worst-case running time of O(k · n3). First, we present an algorithm with worst-case
running time O(k · n2), which is an improvement for instances with min1≤i≤k bi ·m =
ω(n2). Second, for dense graphs with m = Θ(n2) and k = Θ(nc) for any 0 < c ≤ 1 our
algorithm is optimal under (A1); i.e., improving our algorithm for dense graphs would
imply a faster (sub-cubic) combinatorial Boolean matrix multiplication algorithm.

2. Sparse graphs. We show that for k = Θ(nc) for any 0 < c ≤ 1, for target sets of constant
size, and sparse graphs with m = Θ(n1+o(1)) the basic algorithm is optimal under
(A2). In fact, our conditional lower bound under (A2) holds even when each target set
is a singleton. Quite strikingly, our result implies that improving the basic algorithm
for sparse graphs even with singleton sets would require a major breakthrough in
overcoming the exponential barrier for SAT.

In summary, for games on graphs, we present an improved algorithm for generalized
Büchi objectives for dense graphs that is optimal under (A1); and show that under (A2)
the basic algorithm is optimal for sparse graphs and constant size target sets.
The conditional lower bound for dense graphs means in particular that for unrestricted
inputs the dependence of the runtime on n cannot be improved, whereas the bound for
sparse graphs makes the same statement for the dependence on m. Moreover, as the
graphs in the reductions for our lower bounds can be made acyclic by deleting a single
vertex, our lower bounds also apply to a broad range of digraph parameters. For instance
let w be the DAG-width [12] of a graph, then there is no O(f(w) · n3−ε)-time algorithm
under (A1) and no O(f(w) ·m2−ε)-time algorithm under (A2).
GR(1) objectives. We present an algorithm for games on graphs with GR(1) objectives
that has O(k1 ·k2 ·n2.5) running time and improves the previously known O(k1 ·k2 ·n ·m)-
time algorithm [43], for m > n1.5. Note that since generalized Büchi objectives are special
cases of GR(1) objectives, our conditional lower bounds for generalized Büchi objectives
apply to GR(1) objectives as well but are not tight.

All our algorithms can easily be modified to also return the corresponding winning strategies
for both players within the same time bounds.

Implications. We discuss the implications of our results.
1. Comparison with related models. We compare our results for game graphs to the special

case of standard graphs (i.e., games on graphs with only player 1) and the related model of
Markov decision processes (MDPs) (with only player 1 and stochastic transitions). First
note that for reachability objectives, linear-time algorithms exist for game graphs [11, 39],

MFCS 2016

25:4 Conditionally Optimal Algorithms for Generalized Büchi Games

whereas for MDPs2 the best-known algorithm has running time O(min(n2,m1.5)) [29, 26].
For MDPs with reachability objectives, a linear or even O(m logn) time algorithm is a
major open problem, i.e., there exist problems that seem harder for MDPs than for game
graphs. Our conditional lower bound results show that under assumptions (A1) and
(A2) the algorithmic problem for generalized Büchi objectives is strictly harder for games
on graphs as compared to standard graphs and MDPs. More concretely, for k = Θ(n),
(a) for dense graphs (m = Θ(n2)) and min1≤i≤k bi = Ω(logn), our lower bound for games
on graphs under (A2) is Ω(n3−o(1)), whereas both the graph and the MDP problems
can be solved in O(n2) time [25, 26]; and (b) for sparse graphs (m = Θ(n1+o(1))) with
min1≤i≤k bi = O(1), our lower bound for games on graphs under (A1) is Ω(m2−o(1)),
whereas the graph problem can be solved in O(m) time and the MDP problem in O(m1.5)
time [7, 24]; respectively.

2. Relation to SAT. We present an algorithm for game graphs with generalized Büchi
objectives and show that improving the algorithm would imply a better algorithm for
SAT, and thereby establish an interesting algorithmic connection for classical objectives
in game graphs and the SAT problem.

Due to the lack of space, some technical details are omitted. A full version is available at
http://eprints.cs.univie.ac.at/4708/.

2 Preliminaries

2.1 Basic definitions for Games on Graphs
Game graphs. A game graph G = ((V,E), (V1, V2)) is a directed graph G = (V,E) with n
vertices V andm edges E and a partition of V into player 1 vertices V1 and player 2 vertices V2.
Given such a game graph G, we denote with G the game graph where the player 1 and player 2
vertices of G are interchanged, i.e, G = ((V,E), (V2, V1)). We use p to denote a player and
p̄ to denote its opponent. For a vertex u ∈ V , we write Out(u) = {v ∈ V | (u, v) ∈ E} for
the set of successor vertices of u and In(u) = {v ∈ V | (v, u) ∈ E} for the set of predecessor
vertices of u. If necessary, we refer to the successor vertices in a specific graph by using, e.g.,
Out(G, u). We denote by Outdeg(u) = |Out(u)| the number of outgoing edges from u, and
by Indeg(u) = |In(u)| the number of incoming edges. We assume for technical convenience
Outdeg(u) ≥ 1 for all u ∈ V .

Plays and strategies. A play on a game graph is an infinite sequence ω = 〈v0, v1, v2, . . .〉 of
vertices such that (v`, v`+1) ∈ E for all ` ≥ 0. The set of all plays is denoted by Ω. Given a
finite prefix ω ∈ V ∗ · Vp of a play that ends at a player p vertex v, a strategy σ : V ∗ · Vp → V

of player p is a function that chooses a successor vertex σ(ω) among the vertices of Out(v).
We denote by Σ and Π the set of all strategies for player 1 and player 2 respectively. The play
ω(v, σ, π) is uniquely defined by a start vertex v, a player 1 strategy σ ∈ Σ, and a player 2
strategy π ∈ Π as follows: v0 = v and for all j ≥ 0, if vj ∈ V1, then vj+1 = σ(〈v1, . . . , vj〉),
and if vj ∈ V2, then vj+1 = π(〈v1, . . . , vj〉).

Objectives. An objective ψ is a set of plays that is winning for a player. We consider
zero-sum games where for a player-1 objective ψ the complementary objective Ω\ψ is winning

2 For MDPs the winning set refers to the almost-sure winning set that requires that the objective is
satisfied with probability 1.

http://eprints.cs.univie.ac.at/4708/

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer 25:5

for player 2. In this work we consider only prefix independent objectives, for which the set of
desired plays is determined by the set of vertices Inf(ω) that occur infinitely often in a play ω.
Given a target set T ⊆ V , a play ω belongs to the Büchi objective Büchi (T) iff Inf(ω)∩T 6= ∅.
For the complementary co-Büchi objective we have ω ∈ coBüchi (T) iff Inf(ω) ∩ T = ∅. A
generalized (or conjunctive) Büchi objective is specified by a set of k target sets T` for
1 ≤ ` ≤ k and is satisfied for a play ω iff Inf(ω)∩T` 6= ∅ for all 1 ≤ ` ≤ k. Its complementary
objective is the disjunctive co-Büchi objective that is satisfied iff Inf(ω) ∩ T` = ∅ for one of
the k target sets. A generalized reactivity-1 (GR(1)) objective is specified by two generalized
Büchi objectives,

∧k1
t=1 Büchi (Lt) and

∧k2
`=1 Büchi (U`), and is satisfied if whenever the first

generalized Büchi objective holds, then also the second generalized Büchi objective holds; in
other words, either

∨k1
t=1 coBüchi (Lt) holds, or

∧k2
`=1 Büchi (U`) holds.

All the games in this paper will be given by a game graph G and an objective ψ for
player 1 (player 2 has the complementary objective Ω \ ψ).

Winning strategies and sets. A strategy σ is winning for player p at a start vertex v if the
resulting play is winning for player p irrespective of the strategy of his opponent, player p̄,
i.e., ω(v, σ, π) ∈ ψ for all π. A vertex v belongs to the winning set Wp of player p if player p
has a winning strategy from v. Every vertex is winning for exactly one of the two players [50].
When required for explicit reference of a specific game graph G and objective ψ, we use
Wp(G, ψ) to refer to the winning sets.

Closed sets and attractors. A set U ⊆ V is p-closed (in G) if for all p-vertices u in U we
have Out(u) ⊆ U and for all p̄-vertices v in U there exists a vertex w ∈ Out(v) ∩ U . Note
that player p̄ can ensure that a play that currently ends in a p-closed set never leaves the
p-closed set against any strategy of player p by choosing an edge (v, w) with w ∈ Out(v)∩U
whenever the current vertex v is in U ∩ Vp̄ [62]. Given a game graph G and a p-closed set U ,
we denote by G[U] the game graph induced by the set of vertices U . Note that given that in
G each vertex has at least one outgoing edge, the same property holds for G[U]. We further
use the shortcut G \X to denote G[V \X].

In a game graph G, a p-attractor Attrp(G, U) of a set U ⊆ V is the set of vertices from
which player p has a strategy to reach U against all strategies of player p̄ [62]. We have that
U ⊆ Attrp(G, U). A p-attractor can be constructed inductively as follows: Let R0 = U ; and
for all j ≥ 0 let Rj+1 = Rj ∪ {v ∈ Vp | Out(v) ∩Rj 6= ∅} ∪ {v ∈ Vp̄ | Out(v) ⊆ Rj}. Then
Attrp(G, U)=

⋃
j≥0Rj . The computation of attractors can be done in linear time [11, 39].

Dominions. A set of vertices D ⊆ V is a player-p dominion if D 6= ∅ and player p has a
winning strategy from every vertex in D that also ensures only vertices in D are visited. The
notion of dominions was introduced by [42]. Note that a player-p dominion is also a p̄-closed
set and the p-attractor of a player-p dominion is again a player-p dominion.

I Lemma 1. The following assertions hold for game graphs G where each vertex has at least
one outgoing edge. The assertions referring to winning sets hold for graph games with prefix
independent objectives. Let X ⊆ V .
1. The set V \Attrp(G, X) is p-closed on G [62, Lemma 4].
2. Let X be p-closed on G. Then Wp̄(G[X]) ⊆Wp̄(G) [42, Lemma 4.4].
3. Let X be a subset of the winning set Wp(G) of player p and let A be its p-attractor

Attrp(G, X). Then the winning set Wp(G) of the player p is the union of A and the
winning set Wp(G[V \ A]), and the winning set Wp̄(G) of the opponent p̄ is equal to
Wp̄(G[V \A]) [42, Lemma 4.5].

MFCS 2016

25:6 Conditionally Optimal Algorithms for Generalized Büchi Games

2.2 Conjectured Lower Bounds
While classical complexity results are based on complexity-theoretical assumptions about
relationships between complexity classes, e.g., P 6= NP, polynomial lower bounds are often
based on widely believed, conjectured lower bounds about well studied algorithmic problems.
We next discuss the popular conjectures that will be the basis for our lower bounds.

First, we consider conjectures on Boolean matrix multiplication [58, 3] and triangle
detection [3] in graphs, which build the basis for our lower bounds on dense graphs. A
triangle in a graph is a triple x, y, z of vertices such that (x, y), (y, z), (z, x) ∈ E.

I Conjecture 2 (Combinatorial Boolean Matrix Multiplication Conjecture (BMM)). There is
no O(n3−ε) time combinatorial algorithm for computing the Boolean product of two n× n
matrices for any ε > 0.

I Conjecture 3 (Strong Triangle Conjecture (STC)). There is no O(n3−ε) time combinatorial
algorithm that can detect whether a graph contains a triangle for any ε > 0.

BMM is equivalent to STC [58]. A weaker assumption, without the restriction to combinatorial
algorithms, is that detecting a triangle in a graph takes super-linear time.

Second, we consider the Strong Exponential Time Hypothesis [40, 20] and the Orthogonal
Vectors Conjecture [6], the former dealing with satisfiability in propositional logic and the
latter with the Orthogonal Vectors Problem.

The Orthogonal Vectors Problem (OV). Given two sets S1, S2 of d-bit vectors with
|Si| ≤ N and d ∈ Θ(logN), are there u ∈ S1 and v ∈ S2 such that

∑d
i=1 ui · vi = 0?

I Conjecture 4 (Strong Exponential Time Hypothesis (SETH)). For each ε > 0 there is a k such
that k-CNF-SAT on n variables and m clauses cannot be solved in time O(2(1−ε)n poly(m)).

I Conjecture 5 (Orthogonal Vectors Conjecture (OVC)). There is no O(N2−ε) time algorithm
for the Orthogonal Vectors Problem for any ε > 0.

SETH implies OVC [59], i.e., whenever a problem is hard assuming OVC, it is also hard
when assuming SETH. Hence, it is preferable to use OVC for proving lower bounds. Finally,
to the best of our knowledge, no such relations between the former two conjectures and the
latter two conjectures are known.
I Remark. The conjectures that no polynomial improvements over the best known running
times are possible do not exclude improvements by sub-polynomial factors such as poly-
logarithmic factors or factors of, e.g., 2

√
logn as in [60].

3 Algorithms for Generalized Büchi Games

For generalized Büchi games we first present the basic algorithm that follows from the
results of [33, 51, 62]. The basic algorithm runs in time O(knm). We then improve it to an
O(k · n2)-time algorithm by exploiting ideas from the O(n2)-time algorithm for Büchi games
in [25]. The basic algorithm is fast for instances where one Büchi set, say T1, is small, i.e.,
the algorithm runs in time O(k · b1 ·m) time, where b1 = |T1|. Generalized Büchi games can
also be solved via a reduction to Büchi games [13], which yields an O(k2n2) time algorithm
when combined with the O(n2)-time Büchi algorithm [25].

Our algorithms iteratively identify sets of vertices that are winning for player 2, i.e.,
player-2 dominions, and remove them from the graph. We denote the sets in the jth-iteration
with superscript j, in particular G1 = G, where G is the input game graph, Gj is the graph
of Gj , V j is the vertex set of Gj , and T j` = V j ∩ T`. We also use {T j` } to denote the list of
Büchi sets (T j1 , T

j
2 , . . . , T

j
k), in particular when updating all the sets in a uniform way.

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer 25:7

Algorithm GenBuchiGame: Algorithm for Generalized Büchi Games
Input : Game graph G = ((V, E), (V1, V2)) and objective

∧
1≤`≤k

Büchi (T`)
Output : Winning set of player 1

1 G1 ← G; {T 1
` } ← {T`}; j ← 0

2 repeat
3 j ← j + 1
4 for i← 1 to dlog2 ne do
5 construct Gj

i

6 Zj
i ← {v ∈ V2 | Outdeg(Gj

i , v) = 0} ∪ {v ∈ V1 | Outdeg(Gj
i , v) > 2i}

7 for 1 ≤ ` ≤ k do
8 Y j

`,i ← Attr1(Gj
i , T j

` ∪ Zj
i)

9 Sj ← V j \ Y j
`,i

10 if Sj 6= ∅ then player 2 dominion found, continue with line 11

11 Dj ← Attr2(Gj , Sj)
12 Gj+1 ← Gj \Dj ; {T j+1

` } ← {T j
` \Dj}

13 until Dj = ∅
14 return V j

Basic Algorithm. For each set U that is closed for player 1 we have that from each vertex
u ∈ U player 2 has a strategy to ensure that the play never leaves U [62]. Thus, if there is
a Büchi set T` with T` ∩ U = ∅, then the set U is a player-2 dominion. Moreover, if U is
a player-2 dominion, also the attractor Attr2(G, U) of U is a player-2 dominion. The basic
algorithm proceeds as follows. It iteratively computes vertex sets Sj closed for player 1 that
do not intersect with one of the Büchi sets. If such a player-2 dominion Sj is found, then
all vertices of Attr2(Gj , Sj) are marked as winning for player 2 and removed from the game
graph; the remaining game graph is denoted by Gj+1. To find a player-2 dominion Sj , for
each 1 ≤ ` ≤ k the attractor Y j` = Attr1(Gj , T j`) of the Büchi set T j` is determined. If for
some ` the complement of Y j` is not empty, then we assign Sj = V j \ Y j` for the smallest
such `. The algorithm terminates if in some iteration j for each 1 ≤ ` ≤ k the attractor Y j`
contains all vertices of V j . In this case the set V j is returned as the winning set of player 1.
The winning strategy of player 1 from these vertices is then a combination of the attractor
strategies to the sets T j` .

I Theorem 6. The basic algorithm for generalized Büchi games computes the winning set
for player 1 in O(k ·min1≤`≤k b` ·m) time, where b` = |T`|, and thus also in O(knm) time.

Our Improved Algorithm. The O(k · n2)-time Algorithm GenBuchiGame for generalized
Büchi games combines the basic algorithm described above with the method used for the
O(n2)-time Büchi game algorithm [26], called hierarchical graph decomposition [37]. The
hierarchical graph decomposition defines for a directed graph G = (V,E) and integers
1 ≤ i ≤ dlog2 ne the graphs Gi = (V,Ei). Assume the incoming edges of each vertex in G
are given in some fixed order in which first the edges from vertices of V2 and then the edges
from vertices of V1 are listed. The set of edges Ei contains all the outgoing edges of each
v ∈ V with Outdeg(G, v) ≤ 2i and the first 2i incoming edges of each vertex. Note that
G = Gdlog2 ne and |Ei| ∈ O(n · 2i). The runtime analysis uses that we can identify small
player-2 dominions (i.e., player-1 closed sets that do not intersect one of the target sets) that
contain O(2i) vertices by only looking at Gi. The algorithm first searches for such a set Sj in
Gi for i = 1 and each target set and then increases i until the search is successful. In this way
the time spent for the search is proportional to k ·n times the number of vertices in the found

MFCS 2016

25:8 Conditionally Optimal Algorithms for Generalized Büchi Games

dominion, which yields a total runtime bound of O(k · n2). To obtain the O(k · n2) running
time bound, it is crucial to put the loop over the different Büchi sets as the innermost part of
the algorithm. Given a game graph G = (G, (V1, V2)), we denote by Gi the game graph where
G was replaced by Gi from the hierarchical graph decomposition, i.e., Gi = (Gi, (V1, V2)).

Properties of hierarchical graph decomposition. The following lemma identifies two es-
sential properties of the hierarchical graph decomposition. The first is crucial for correctness:
When searching in Gi for a player-1 closed set that does not contain one of the target sets,
we can ensure that such a set is also closed for player 1 in G by excluding certain vertices
that are missing outgoing edges in Gi from the search. The second is crucial for the runtime:
Whenever the basic algorithm would remove (i.e., identify as winning for player 2) a set with
at most 2i vertices, then we can identify this set also by searching in Gi instead of G.

I Lemma 7. Let G = (G = (V,E), (V1, V2)) be a game graph and {Gi} its hierarchical graph
decomposition. For 1 ≤ i ≤ dlog2 ne let Zi be the set consisting of the player 2 vertices that
have no outgoing edge in Gi and the player 1 vertices with > 2i outgoing edges in G.
1. If a set S ⊆ V \ Zi is closed for player 1 in Gi, then S is closed for player 1 in G.
2. If a set S ⊆ V is closed for player 1 in G and |Attr2(G, S)| ≤ 2i, then (i) Gi[S] = G[S],

(ii) the set S is in V \ Zi, and (iii) S is closed for player 1 in Gi.

With the above lemma we can show that whenever a player-2 dominion is found in Gi but not
in Gi−1, then at least Ω(2i) vertices are removed from the maintained game graph. Together
with a runtime bound of O(k · 2i · n) for the search, this yields a total runtime of O(k · n)
per vertex, i.e., time O(k · n2) in total.

I Theorem 8. Algorithm GenBuchiGame computes the winning set of player 1 in a
generalized Büchi game in O(k · n2) time.

4 Conditional Lower bounds for Generalized Büchi Games

In this section we present two conditional lower bounds, one for dense graphs (m = Θ(n2))
based on STC & BMM, and one for sparse graphs (m = Θ(n1+o(1))) based on OVC & SETH.

I Theorem 9. There is no combinatorial O(n3−ε) or O((k · n2)1−ε)-time algorithm (for any
ε > 0) for generalized Büchi games under Conjecture 3 (i.e., unless STC & BMM fail).

The result can be obtained from a reduction from triangle detection to disjunctive co-
Büchi objectives on graphs in [22], and we present the reduction in terms of game graphs
below and illustrate it on an example in Figure 1a.

I Reduction 10. Given a graph G = (V,E) (for triangle detection), we build a game graph
G′ = (G = (V ′, E′), (V1, V2)) (for generalized Büchi objectives) as follows. As vertices V ′
we have four copies V 1, V 2, V 3, V 4 of V and a vertex s. A vertex vi ∈ V i, i ∈ {1, 2, 3} has
an edge to a vertex ui+1 ∈ V i+1 iff (v, u) ∈ E. Moreover, s has an edge to all vertices of
V 1 and all vertices of V 4 have an edge to s. All the vertices are owned by player 2, i.e.,
V1 = ∅ and V2 = V . Finally, we consider the generalized Büchi objective

∧
v∈V Büchi (Tv),

with Tv = (V 1 \ {v1}) ∪ (V 4 \ {v4}).

We have that there is a triangle in the graph G if and only if the vertex s is winning for
player 2 in the generalized Büchi game on G′. Notice that the sets Tv in the above reduction
are of linear size but can be reduced to logarithmic size using a construction from [22]. Next
we present an Ω(m2−o(1)) lower bound for generalized Büchi objectives.

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer 25:9

s

a1

b1

c1

d1

a2

b2

c2

d2

a3

b3

c3

d3

a4

b4

c4

d4

(a) Reduction 10 applied to G = ({a, b, c, d},
{(a, b), (b, a), (b, c), (c, a), (c, d), (d, a)}).

s

(1,0,0)

(1,1,1)

(0,1,1)

c1

c2

c3

(1,1,0)

(1,1,1)

(0,1,0)

(0,0,1)

(b) Reduction 12 applied to S1 = {(1, 0, 0),
(1, 1, 1), (0, 1, 1)} and S2 = {(1, 1, 0), (1, 1, 1),
(0, 1, 0), (0, 0, 1)}.

Figure 1 Illustration of Reductions 10 and 12.

I Theorem 11. There is no O(m2−ε) or O(min1≤ i≤k bi · (k ·m)1−ε)-time algorithm (for any
ε>0) for generalized Büchi games under Conjecture 5 (i.e., unless OVC & SETH fail).

The above theorem is by a linear time reduction from OV provided below (cf. Figure 1b).

I Reduction 12. Given two sets S1, S2 of d-dimensional vectors, we build the following
game graph. The vertices V of the graph G are given by a start vertex s, vertices S1 and S2
representing the sets of vectors, and vertices C = {ci | 1 ≤ i ≤ d} representing the coordinates.
The edges E of G are defined as follows: the start vertex s has an edge to every vertex of S1
and every vertex of S2 has an edge to s; further for each x ∈ S1 there is an edge to ci ∈ C iff
xi = 1 and for each y ∈ S2 there is an edge from ci ∈ C iff yi = 1. The set of vertices V is
partitioned into player 1 vertices V1 = S1 ∪ S2 ∪ C and player 2 vertices V2 = {s}. Finally,
the generalized Büchi objective is given by

∧
v∈S2

Büchi (Tv) with Tv = {v}.

I Lemma 13. Given two sets S1, S2 of d-dimensional vectors and the corresponding graph
game G given by Reduction 12 with Tv = {v} for v ∈ S2, (1) there exist orthogonal vectors
x ∈ S1 and y ∈ S2 if and only if (2) s 6∈W1(G,

∧
v∈S2

Büchi (Tv)).

Proof. W.l.o.g. we assume that the 1-vector, i.e., the vector with all coordinates being 1, is
contained in S2 (adding the 1-vector does not change the result of the OV instance), which
guarantees that each vertex c ∈ C in the construction below has at least 1 outgoing edge.
Then a play in the game graph G proceeds as follows. Starting from s, player 2 chooses a
vertex x ∈ S1; then player 1 first picks a vertex c ∈ C and then a vertex y ∈ S2; then the play
goes back to s (at each y ∈ S2 player 1 has only this choice), starting another cycle of the
play. (1)⇒(2): Assume there are orthogonal vectors x ∈ S1 and y ∈ S2. Now player 2 can
satisfy coBüchi (Ty) by simply going to x whenever the play is in s. Then player 1 can choose
some adjacent c ∈ C and then some adjacent vertex in S2, but as x and y are orthogonal,
this c is not connected to y. Thus the play will never visit y. (2)⇒(1): By the fact that
W1 = V \W2 [50] we have that (2) is equivalent to s ∈ W2(G,

∧
v∈S2

Büchi (Tv)). Assume
s ∈W2(G,

∧
v∈S2

Büchi (Tv)) and consider a corresponding strategy for player 2 that satisfies∨
v∈S2

coBüchi (Tv). Notice that the graph is such that player 2 has to visit at least one of
the vertices v in S1 infinitely often. Moreover, for such a vertex v then player 1 can visit
all vertices v′ ∈ S2 that correspond to non-orthogonal vectors infinitely often. That is, if v
has no orthogonal vector, player 1 can satisfy all the Büchi constraints, a contradiction to
our assumption that s ∈W2(G,

∧
v∈S2

Büchi (Tv)). Thus there must be a vector x ∈ S1 such
that there exists a vector y ∈ S2 that is orthogonal to x. J

MFCS 2016

25:10 Conditionally Optimal Algorithms for Generalized Büchi Games

Let N = max(|S1|, |S2|). The number of vertices in the game graph, constructed by
Reduction 12, is O(N), the number of edges m is O(N logN) (recall that d ∈ O(logN)),
we have k ∈ Θ(N) target sets, each of size 1, and the construction can be performed in
O(N logN) time. Thus, if we would have an O(m2−ε) or O(min1≤i≤k bi · (k ·m)1−ε) time
algorithm for any ε > 0, we would immediately get an O(N2−ε) algorithm for OV, which
contradicts OVC (and thus SETH).
I Remark. Notice that the lower bounds apply to instances with k ∈ Θ(nc) for arbitrary
0 < c ≤ 1, although the reductions produce graphs with k ∈ Θ(n). This is because of the
specific type of the constructed instances, for which each O((k · f(n,m))1−ε)-time algorithm
for k ∈ Θ(nc) also implies an O((k · f(n,m))1−ε)-time algorithm for k ∈ Θ(n).

5 Generalized Reactivity-1 Games

GR(1) games deal with an objective of the form
∧k1
t=1 Büchi (Lt)→

∧k2
`=1 Büchi (U`) and can

be solved in O(k1k2 ·m · n) time [43] with an extension of the progress measure algorithm
of [41] and in O((k1k2 · n)2.5) time by combining the reduction to one-pair Streett objectives
by [13] with the algorithm of [27]. In this section we develop an O(k1k2 ·n2.5)-time algorithm
by modifying the algorithm of [43] to compute dominions. We further use our O(k · n2)-time
algorithm for generalized Büchi games with k = k1 as a subroutine.

We first describe a basic, direct algorithm for GR(1) games that is based on repeatedly
identifying player-2 dominions in generalized Büchi games. We then show how the progress
measure algorithm of [43] can be modified to identify player-2 dominions in generalized Büchi
games with k1 Büchi objectives in time proportional to k1 ·m times the size of the dominion.
In the O(k1k2 · n2.5)-time algorithm we use the modified progress measure algorithm in
combination with the hierarchical graph decomposition of [26, 27] to identify dominions that
contain up to

√
n vertices and our O(k1 · n2)-time algorithm for generalized Büchi games

to identify dominions with more than
√
n vertices. Each time we search for a dominion we

might have to consider k2 different subgraphs.
We denote the sets in the jth-iteration of our algorithms with superscript j, in particular

G1 = G, where G is the input game graph, Gj is the graph of Gj , V j is the vertex set of Gj ,
V j1 = V1 ∩ V j , V j2 = V2 ∩ V j , Ljt = Lt ∩ V j , and U j` = U` ∩ V j .

Basic Algorithm. Similar to generalized Büchi games, the basic algorithm for GR(1) games
identifies a player-2 dominion Sj , removes the dominion and its player-2 attractor Dj from
the graph, and recurses on the remaining game graph Gj+1 = Gj \Dj . If no player-2 dominion
is found, the remaining set of vertices V j is returned as the winning set of player 1. Given
the set Sj is indeed a player-2 dominion, the correctness of this approach follows from
Lemma 1(3). A player-2 dominion in Gj is identified as follows: For each 1 ≤ ` ≤ k2 first
the player-1 attractor Y j` of U j` is temporarily removed from the graph. Then a generalized
Büchi game with target sets Lj1, . . . , L

j
k1

is solved on Gj \ Y j` . The generalized Büchi player
in this game corresponds to player 2 in the GR(1) game and his winning set to a player-2
dominion in the GR(1) game. Note that V j \ Y j` is player-1 closed and does not contain U j` .
Thus if in the game induced by the vertices of V j \Y j` player 2 can win w.r.t. the generalized
Büchi objective

∧k1
t=1 Büchi(L

j
t), then these vertices form a player-2 dominion in the GR(1)

game. Further, we can show that when a player-2 dominion in the GR(1) games on Gj exists,
then for one of the sets U j` the winning set of the generalized Büchi game on Gj \ Y j` is
non-empty; otherwise we can construct a winning strategy of player 1 for the GR(1) game
on Gj . Note that this algorithm computes a player-2 dominion O(k2 · n) often using our
O(k1 · n2)-time generalized Büchi Algorithm GenBuchiGame.

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer 25:11

I Theorem 14. The basic algorithm for GR(1) games computes the winning set for player 1
in O(k1 · k2 · n3) time.

Improved Algorithm. The overall structure of our O(k1k2 · n2.5)-time algorithm for GR(1)
games (see Algorithm GR(1)Game) is the same as for the basic algorithm: We search for a
player-2 dominion Sj and if one is found, then its player-2 attractor Dj is determined and
removed from the current game graph Gj (with G1 = G) to create the game graph for the
next iteration, Gj+1. If no player-2 dominion exists, then the remaining vertices are returned
as the winning set of player 1. The difference to the basic algorithm lies in the way player-2
dominions are searched. Two different procedures are used for this purpose: First we search
for “small” dominions with the subroutine kGenBüchiDominion. If no small dominions exist,
then we search for player-2 dominions as in the basic algorithm. The guarantee that we find
a “large” dominion allows us to bound the number of times the second case can happen.

Progress Measure Algorithm. In the Procedure kGenBüchiDominion we use a subroutine
that finds in a generalized Büchi game all dominions of the generalized Büchi player that
have size at most h (where h is an input parameter). This subroutine is based on a so-called
progress measure for generalized Büchi objectives which is a special instance of the progress
measure for GR(1) objectives presented in [43, Section 3.1], which itself is based on [41]. We
modify the progress measure to efficiently identify dominions of size at most h (instead of
computing the whole winning set) by restricting the range of allowed values for the progress
measure functions similar to [56]. Finally, we give an O(k ·h·m)-time algorithm for computing
the progress measure functions based on [34, 43] (details are provided in the full version).

I Theorem 15. For a game graph G and objective ψ =
∧

1≤`≤k Büchi (T`), there is an
O(k ·h ·m) time procedure GenBüchiProgressMeasure(G, ψ, h) that either returns a player-1
dominion or the empty set, and, if there is at least one player-1 dominion of size ≤ h then
returns a player-1 dominion containing all player-1 dominions of size ≤ h.

Procedure kGenBüchiDominion. The procedure kGenBüchiDominion searches for player-2
dominions in the GR(1) game, and returns some dominion if there exists a dominion D with
|Attr2(G, D)| ≤ hmax. To this end we again consider generalized Büchi games with target
sets Lj1, . . . , L

j
k1
, where the generalized Büchi player corresponds to player 2 in the GR(1)

game. We use the same hierarchical graph decomposition as for Algorithm GenBuchiGame:
Let the incoming edges of each vertex be ordered such that the edges from vertices of V2
come first; for a given game graph Gj the graph Gji contains all vertices of Gj , for each vertex
its first 2i incoming edges, and for each vertex with outdegree at most 2i all its outgoing
edges. The set Zji contains all vertices of V1 with outdegree larger than 2i and all vertices
of V2 that have no outgoing edge in Gji . We start with i = 1 and increase i by one as
long as no dominion was found. For a given i we perform the following operations for each
1 ≤ ` ≤ k2: First the player 1 attractor Y ji,` of U j` ∪ Z

j
i is determined. Then we search

for player-1 dominions on Gji \ Y
j
i,` w.r.t. the objective

∧k1
t=1 Büchi (Lt) with the generalized

Büchi progress measure algorithm and parameter h = 2i, i.e., by Theorem 15 the progress
measure algorithm returns all generalized Büchi dominions in Gji \ Y

j
i,` of size at most h.

The following lemma shows how the properties of the hierarchical graph decomposition
extend to GR(1) games. The first part is crucial for correctness: Every non-empty set found
by the progress measure algorithm on Gji \ Y

j
i,` for some i and ` is indeed a player-2 dominion

in the GR(1) game. The second part is crucial for the runtime argument: Whenever the basic
algorithm for GR(1) games would identify a player-2 dominion D with |Attr2(G, D)| ≤ 2i,
then D is also a generalized Büchi dominion in Gji \ Y

j
i,` for some `.

MFCS 2016

25:12 Conditionally Optimal Algorithms for Generalized Büchi Games

Algorithm GR(1)Game: Algorithm for GR(1) Games

Input : Game graph G = ((V, E), (V1, V2)), Obj.
∧k1

t=1 Büchi (Lt)→
∧k2

`=1 Büchi (U`)
Output : Winning set of player 1

1 G1 ← G; {U1
` } ← {U`}; {L1

t} ← {Lt}
2 j ← 0
3 repeat
4 j ← j + 1
5 Sj ← kGenBüchiDominion(Gj , {U j

` }, {L
j
t},
√

n)
6 if Sj = ∅ then
7 for 1 ≤ ` ≤ k2 do
8 Y j

` ← Attr1(Gj , U j
`)

9 Sj ← GenBüchiGame(Gj \ Y j
` ,
∧k1

`=1 Büchi
(
Lj

t \ Y j
`

)
)

10 if Sj 6= ∅ then break

11 Dj ← Attr2(Gj , Sj)
12 Gj+1 ← Gj \Dj ; {U j+1

` } ← {U j
` \Dj}; {Lj+1

t } ← {Lj
t \Dj}

13 until Dj = ∅
14 return V j

15 Procedure kGenBüchiDominion(Gj , {U j
` }, {L

j
t}, hmax)

16 for i← 1 to dlog2(hmax)e do
17 construct Gj

i

18 Zj
i ← {v ∈ V2 | Outdeg(Gj

i , v) = 0} ∪ {v ∈ V1 | Outdeg(Gj
i , v) > 2i}

19 for 1 ≤ ` ≤ k2 do
20 Y j

i,` ← Attr1(Gj
i , U j

` ∪ Zj
i)

21 Xj
i,` ← GenBüchiProgressMeasure(Gj

i \ Y j
i,`,
∧k1

`=1 Büchi
(
Lj

t \ Y j
i,`

)
, 2i)

22 if Xj
i,` 6= ∅ then return Xj

i,`

23 return ∅

I Lemma 16. Let the notation be as in Algorithm GR(1)Game.
1. Every Xj

i,` 6= ∅ is a player-2 dominion in the GR(1) game on Gj with Xj
i,` ∩ U

j
` = ∅.

2. If for player 2 there exists in Gj a dominion D w.r.t. the generalized Büchi objective∧k1
t=1 Büchi(L

j
t) such that D ∩ U j` = ∅ for some 1 ≤ ` ≤ k2 and |Attr2(Gj , D)| ≤ 2i, then

D is a dominion w.r.t. the generalized Büchi objective
∧k1
t=1 Büchi(L

j
t \ Y

j
i,`) in Gji \ Y

j
i,`.

From this we can draw the following two corollaries: (1) When we had to go up to i∗
in the graph decomposition to find a dominion, then its attractor has size at least 2i∗−1

and (2) when kGenBüchiDominion returns an empty set, then all player-2 dominions in
the current game graph have more than hmax =

√
n vertices. In the second case either no

player-2 dominion exists or the subsequent call to GenBüchiGame returns one with more than√
n vertices, which can happen at most O(

√
n) times. Together with (1), this means we can

(a) charge the time spent in kGenBüchiDominion to the vertices in the dominion identified
in this iteration of the repeat-until loop (except for the last iteration) and (b) bound the
number of calls to GenBüchiGame with O(

√
n).

I Theorem 17. Algorithm GR(1)Game computes the winning set of player 1 in a GR(1)
game in O(k1 · k2 · n2.5) time.

6 Conclusion

In this work we present improved algorithms for generalized Büchi and GR(1) objectives,
and conditional lower bounds for generalized Büchi objectives. The existing upper bounds

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer 25:13

and our conditional lower bounds are tight for (a) for dense graphs, and (b) sparse graphs
with constant size target sets. Two interesting open questions are as follows: (1) For sparse
graphs with θ(n) many target sets of size θ(n) the upper bounds are cubic, whereas the
conditional lower bound is quadratic, and closing the gap is an interesting open question.
(2) For GR(1) objectives we obtain the conditional lower bounds from generalized Büchi
objectives, which are not tight in this case; whether better (conditional) lower bounds can
be established also remains open.

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the current clique

algorithms are optimal, so is Valiant’s parser. In FOCS, pages 98–117, 2015.
2 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight Hardness Results

For LCS and other Sequence Similarity Measures. In FOCS, pages 59–78, 2015.
3 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower

bounds for dynamic problems. In FOCS, pages 434–443, 2014.
4 Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster

alignment of sequences. In ICALP 2014, Proceedings, Part I, pages 39–51, 2014.
5 Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching triangles and

basing hardness on an extremely popular conjecture. In STOC, pages 41–50, 2015.
6 Amir Abboud, Virginia Vassilevska Williams, and Joshua R. Wang. Approximation and

fixed parameter subquadratic algorithms for radius and diameter in sparse graphs. In
SODA, pages 377–391, 2016.

7 Rajeev Alur and Thomas A. Henzinger. Computer-aided verification, 2004. Unpublished,
available at http://www.cis.upenn.edu/group/cis673/.

8 Rajeev Alur, Thomas. A. Henzinger, and Orna Kupferman. Alternating-time temporal
logic. Journal of the ACM, 49:672–713, 2002.

9 Rajeev Alur and Salvatore La Torre. Deterministic generators and games for ltl fragments.
ACM Trans. Comput. Log., 5(1):1–25, 2004.

10 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly sub-
quadratic time (unless SETH is false). In STOC, pages 51–58, 2015.

11 Catriel Beeri. On the membership problem for functional and multivalued dependencies in
relational databases. ACM Transactions on Database Systems, pages 241–259, 1980.

12 Dietmar Berwanger, Anuj Dawar, Paul Hunter, and Stephan Kreutzer. Dag-width and
parity games. In STACS, pages 524–536, 2006.

13 Roderick Bloem, Krishnendu Chatterjee, Karin Greimel, Thomas A. Henzinger, and Bar-
bara Jobstmann. Robustness in the presence of liveness. In CAV, pages 410–424, 2010.

14 Roderick Bloem, Stefan J. Galler, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and
Martin Weiglhofer. Interactive presentation: Automatic hardware synthesis from specifica-
tions: a case study. In DATE, pages 1188–1193, 2007.

15 Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly
subquadratic algorithms unless SETH fails. In FOCS, pages 661–670, 2014.

16 Karl Bringmann and Marvin Künnemann. Quadratic Conditional Lower Bounds for String
Problems and Dynamic Time Warping. In FOCS, pages 79–97, 2015.

17 J. Richard Büchi. Weak second-order arithmetic and finite automata. Zeitschrift für math-
ematische Logik und Grundlagen der Mathematik, 6:66–92, 1960.

18 J. Richard Büchi. On a decision method in restricted second-order arithmetic. In E. Nagel,
P. Suppes, and A. Tarski, editors, Proceedings of the First International Congress on Logic,
Methodology, and Philosophy of Science 1960, pages 1–11. Stanford University Press, 1962.

19 J. Richard Büchi and Lawrence H. Landweber. Solving sequential conditions by finite-state
strategies. Transactions of the AMS, 138:295–311, 1969.

MFCS 2016

http://www.cis.upenn.edu/group/cis673/

25:14 Conditionally Optimal Algorithms for Generalized Büchi Games

20 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiabil-
ity of small depth circuits. In IWPEC, pages 75–85, 2009.

21 Krishnendu Chatterjee, Martin Chmelik, Raghav Gupta, and Ayush Kanodia. Qualitative
analysis of pomdps with temporal logic specifications for robotics applications. In IEEE
International Conference on Robotics and Automation, ICRA, pages 325–330, 2015.

22 Krishnendu Chatterjee, Wolfgang Dvořák, Monika Henzinger, and Veronika Loitzenbauer.
Model and objective separation with conditional lower bounds: Disjunction is harder than
conjunction. In LICS, 2016. To appear, available at http://arxiv.org/abs/1602.02670.

23 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Rasmus Ibsen-Jensen, and Andreas
Pavlogiannis. Algorithms for algebraic path properties in concurrent systems of constant
treewidth components. In POPL, pages 733–747, 2016.

24 Krishnendu Chatterjee and Monika Henzinger. Faster and Dynamic Algorithms For Maxi-
mal End-Component Decomposition And Related Graph Problems In Probabilistic Verifi-
cation. In SODA, pages 1318–1336, 2011.

25 Krishnendu Chatterjee and Monika Henzinger. An O(n2) Time Algorithm for Alternating
Büchi Games. In SODA, pages 1386–1399, 2012.

26 Krishnendu Chatterjee and Monika Henzinger. Efficient and Dynamic Algorithms for Al-
ternating Büchi Games and Maximal End-component Decomposition. Journal of the ACM,
61(3):15, 2014.

27 Krishnendu Chatterjee, Monika Henzinger, and Veronika Loitzenbauer. Improved Algo-
rithms for One-Pair and k-Pair Streett Objectives. In LICS, pages 269–280, 2015.

28 Krishnendu Chatterjee, Rasmus Ibsen-Jensen, Andreas Pavlogiannis, and Prateesh Goyal.
Faster algorithms for algebraic path properties in recursive state machines with constant
treewidth. In POPL. ACM, 2015.

29 Krishnendu Chatterjee, Marcin Jurdziński, and Thomas A. Henzinger. Simple stochastic
parity games. In CSL, pages 100–113, 2003.

30 Alonzo Church. Logic, arithmetic, and automata. In Proceedings of the International
Congress of Mathematicians, pages 23–35. Institut Mittag-Leffler, 1962.

31 Luca de Alfaro and Thomas A. Henzinger. Interface automata. In FSE’01, pages 109–120.
ACM Press, 2001.

32 David L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-independent
Circuits. The MIT Press, 1989.

33 E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy.
In FOCS, pages 368–377, 1991.

34 Kousha Etessami, Thomas Wilke, and Rebecca A. Schuller. Fair simulation relations, parity
games, and state space reduction for büchi automata. SIAM J. Comput., 34(5):1159–1175,
2005.

35 Georgios E. Fainekos, Hadas Kress-Gazit, and George J. Pappas. Temporal logic motion
planning for mobile robots. In IEEE International Conference on Robotics and Automation,
ICRA, pages 2020–2025, 2005.

36 Yashdeep Godhal, Krishnendu Chatterjee, and Thomas A. Henzinger. Synthesis of AMBA
AHB from formal specification: A case study. Journal of Software Tools Technology Trans-
fer, 2011.

37 Monika Henzinger, Valerie King, and Tandy Warnow. Constructing a Tree from Homeo-
morphic Subtrees, with Applications to Computational Evolutionary Biology. Algorithmica,
24(1):1–13, 1999.

38 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranu-
rak. Unifying and strengthening hardness for dynamic problems via the online matrix-vector
multiplication conjecture. In STOC, pages 21–30, 2015.

http://arxiv.org/abs/1602.02670

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer 25:15

39 Neil Immerman. Number of quantifiers is better than number of tape cells. Journal of
Computer and System Sciences, pages 384–406, 1981.

40 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

41 Marcin Jurdziński. Small Progress Measures for Solving Parity Games. In STACS, pages
290–301, 2000.

42 Marcin Jurdziński, Mike Paterson, and Uri Zwick. A Deterministic Subexponential Algo-
rithm for Solving Parity Games. SIAM Journal on Computing, 38(4):1519–1532, 2008.

43 Sudeep Juvekar and Nir Piterman. Minimizing generalized büchi automata. In CAV, pages
45–58, 2006.

44 Sriram C. Krishnan, Anuj Puri, and Robert K. Brayton. Deterministic Ω automata vis-a-vis
deterministic buchi automata. In ISAAC, pages 378–386, 1994.

45 Wouter Kuijper and Jaco van de Pol. Computing weakest strategies for safety games of
imperfect information. In TACAS, pages 92–106, 2009.

46 Orna Kupferman and Moshe Y. Vardi. Freedom, weakness, and determinism: From linear-
time to branching-time. In LICS, pages 81–92, 1998.

47 Orna Kupferman and Moshe Y. Vardi. From linear time to branching time. ACM Trans-
actions on Computational Logic, 6(2):273–294, 2005.

48 François Le Gall. Powers of Tensors and Fast Matrix Multiplication. In ISSAC, pages
296–303, 2014.

49 Lillian Lee. Fast context-free grammar parsing requires fast boolean matrix multiplication.
J. ACM, 49(1):1–15, January 2002.

50 Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371, 1975.
51 Robert McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied

Logic, 65(2):149–184, 1993.
52 Mihai Patrascu and Ryan Williams. On the possibility of faster SAT algorithms. In SODA,

pages 1065–1075, 2010.
53 Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1) designs. In VMCAI,

LNCS 3855, Springer, pages 364–380, 2006.
54 Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In POPL, pages

179–190. ACM Press, 1989.
55 P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete-event processes.

SIAM Journal of Control and Optimization, 25(1):206–230, 1987.
56 Sven Schewe. Solving Parity Games in Big Steps. In FSTTCS, pages 449–460, 2007.
57 Mikkel Thorup. All Structured Programs Have Small Tree Width and Good Register

Allocation. Information and Computation, 142(2):159 – 181, 1998.
58 Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path,

matrix and triangle problems. In FOCS, pages 645–654, 2010.
59 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.

Theor. Comput. Sci., 348(2-3):357–365, 2005. Announced at ICALP’04.
60 Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In STOC, pages

664–673, 2014.
61 Ryan Williams. Faster decision of first-order graph properties. In CSL-LICS, pages 80:1–

80:6, 2014.
62 Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata

on infinite trees. Theoretical Computer Science, 200(1–2):135–183, 1998.

MFCS 2016

	Introduction
	Preliminaries
	Basic definitions for Games on Graphs
	Conjectured Lower Bounds

	Algorithms for Generalized Büchi Games
	Conditional Lower bounds for Generalized Büchi Games
	Generalized Reactivity-1 Games
	Conclusion

