
Computational and Proof Complexity of Partial
String Avoidability
Dmitry Itsykson1, Alexander Okhotin2, and Vsevolod Oparin3

1 St. Petersburg Department of V.A. Steklov Institute of Mathematics of the
Russian Academy of Sciences, St. Petersburg, Russia
dmitrits@pdmi.ras.ru

2 Department of Mathematics and Statistics, University of Turku, Finland
alexander.okhotin@utu.fi

3 St. Petersburg Academic University, St. Petersburg, Russia
oparin.vsevolod@gmail.com

Abstract
The partial string avoidability problem, also known as partial word avoidability, is stated as
follows: given a finite set of strings with possible “holes” (undefined symbols), determine whether
there exists any two-sided infinite string containing no substrings from this set, assuming that
a hole matches every symbol. The problem is known to be NP-hard and in PSPACE, and this
paper establishes its PSPACE-completeness. Next, string avoidability over the binary alphabet
is interpreted as a version of conjunctive normal form (CNF) satisfiability problem (SAT), with
each clause having infinitely many shifted variants. Non-satisfiability of these formulas can be
proved using variants of classical propositional proof systems, augmented with derivation rules for
shifting constraints (such as clauses, inequalities, polynomials, etc). Two results on their proof
complexity are established. First, there is a particular formula that has a short refutation in
Resolution with shift, but requires classical proofs of exponential size (Resolution, Cutting Plane,
Polynomial Calculus, etc.). At the same time, exponential lower bounds for shifted versions of
classical proof systems are established.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.4.1 Mathematical
Logic

Keywords and phrases partial strings, partial words, avoidability, proof complexity, PSPACE-
completeness

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.51

1 Introduction

The field of proof complexity is concerned with the size of proofs for different kinds of
logical formulas, under various measures of size. The most common subject, motivated
by SAT-solvers, are Boolean formulas in conjunctive normal form (CNF), and there is a
substantial body of literature on lower bounds on the size of a proof that a given CNF
formula is unsatisfiable. For instance, there are exponential lower bounds on the size of
Resolution [9, 16], Cutting Plane [14] and Polynomial Calculus proofs [15, 10], whereas for
Frege and Lovász–Schrijver proof systems, no superlinear lower bounds are known [7]. This
line of research is aimed, in particular, at separating the NP and co-NP complexity classes
[8].

This paper investigates the complexity issues for a variant of CNF formulae, in which
every clause exists in countably many variants, with variable numbers shifted by any constant.

© Dmitry Itsykson, Alexander Okhotin, and Vsevolod Oparin;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 51; pp. 51:1–51:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.51
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

51:2 Computational and Proof Complexity of Partial String Avoidability

For example, if a formula contains a clause x1 ∨ ¬x4, then it contains all clauses of the form
x1+i ∨ ¬x4+i, where i is any integer. The resulting Shift-CNF depends on countably many
variables, and represents uniformly defined constraints applied to all blocks of variables. It
can be alternatively written as a finite formula, with each clause using a universal quantifier
on position numbers, such as in (∀i ∈ Z)(xi+1 ∨ ¬xi+4). These formulas have a compactness
property (that is, their satisfiability can be tested on a sufficiently large finite block of
variables), and several proof systems, such as Resolution, can be applied to clauses of this
form. Those systems are a natural subject for proof complexity studies.

Another motivation to study the satisfiability problem for Shift-CNF is that it is equival-
ent to the partial substring avoidability problem, which received some attention in formal
language theory [6, 5]. To see this relationship, first consider the following (fairly obvious)
representation of the satisfiability problem for standard CNF formulae (SAT) in terms of
strings. Let x1, . . . , xn be the set of variables of a CNF formula. Then, each clause in the
formula may be written down as a string of length n over the 3-symbol alphabet Σ = {0, 1,�},
which lists the values of variables that make this clause false: to be precise, each i-th position
in the string contains 0 if the clause contains a literal xi, or 1 if there is a literal ¬xi, or a
“hole” (�) if this variable does not occur in the clause. Thus, a CNF formula is presented
as a set of forbidden strings, and its satisfying assignments are exactly all binary strings of
length n that do not match the string representation of each clause.

In this setting, all strings are of the same length n, and cannot be moved in relation to
each other, because that would mean shifting variable numbers. If this restriction is lifted,
then each forbidden partial string represents a pattern that may not occur in a desired binary
string beginning from any position. This is the partial substring avoidability problem, which
precisely corresponds to the Shift-CNF satisfiability problem (Shift-SAT).

In the special case when forbidden strings are complete strings (without holes), their
avoidability can be decided in linear time using the algorithm by Aho and Corasick [1].
Another solution to this problem, given in Lothaire [13], uses a special case of Resolution
proofs, applied to strings instead of clauses: two strings xy0 and y1 can be resolved to xy.
Lothaire [13] proves that a set of (complete) strings is unavoidable if and only if the empty
string can be derived; furthermore, the length of this derivation is linear.

The computational complexity of the full case of the partial string avoidability problem
was studied by Blanchet-Sadri et al. [6], who proved that it is NP-hard. Soon thereafter,
Blakeley et al. [5] showed that the problem is in PSPACE. Its exact complexity remained open.
The first result of this paper is that partial string avoidability is actually PSPACE-complete:
this is established in Section 3 by a direct reduction from the polynomial-space Turing
machine membership problem.

This result puts the Shift-SAT problem in the context of proof systems for PSPACE-
complete languages. The proof complexity of such systems is important, in particular, as
an approach to separating NP from PSPACE. A generalized Resolution proof system for
the Quantified Boolean Formula (QBF) problems—the Q-Resolution—was introduced by
Kleine Büning et al. [12], and other Resolution-based proof systems for QBF and their proof
complexity have recently been studied by Beyersdorff et al. [3, 4], by Balabanov et al. [2]
and by Janota and Marques-Silva [11].

The Shift-SAT problem is attractive for being similar to the classical SAT problem, to
the point that all proof systems for UNSAT, such as Resolution, Cutting Plane, Polynomial
Calculus, etc., can be directly applied to Shift-SAT formulas. For every such proof system Π,
there is its shifted version, Shift-Π, with an additional derivation rule for adding an arbitrary
integer to the numbers of all variables in a constraint.

D. Itsykson, A. Okhotin, and V. Oparin 51:3

Two results on the proof complexity of shifted systems are presented in this paper. Lower
bounds on the size of shifted proofs, given in Section 5, are obtained by encoding any of the
known superpolynomial lower bounds on classical proofs. Efficient proofs using shifts are
presented in Section 6, as an example of an unsatisfiable shifted CNF formula which has a
polynomial-sized Shift-Resolution proof, whereas its proofs in every classical proof system
are of at least exponential size.

The proof system for complete strings defined by Lothaire [13], is a special case of Shift-
Resolution. Lothaire’s [13] clauses contain contiguous blocks of variables xi, xi+1, . . . , xj ,
whereas general CNF and Shift-CNF clauses may have gaps between variable numbers. The
results on the proof complexity of Shift-Resolution obtained in this paper, in particular,
imply an unconditional separation between these two problems, in terms of the length of
resolution derivations—as compared to the separation in terms of computational complexity,
which is conditional to P 6= PSPACE.

2 The partial string avoidability problem

Any finite set of symbols Σ is called an alphabet. A (two-sided) infinite string over Σ is a
mapping α : Z→ Σ. If two infinite strings, α and β, are the same up to shifting them by a
constant number of positions, that is, if for some offset d ∈ Z, α(n) = β(n+ d) for all n ∈ Z,
then α and β are said to be equal, and are considered to be the same infinite string.

The set of all infinite strings over an alphabet Σ is denoted by Σ∞, whereas Σ∗ is the
set of all finite strings a1 . . . an, with n > 0 and a1, . . . , an ∈ Σ. Each i-th symbol of a finite
string w = a1 . . . an shall be denoted by w[i] = ai, and a substring ai . . . aj is denoted by
w[i..j]. The same notation is used to extract a finite substring α[i..j] from an infinite string
α.

For a set of finite strings L ⊆ Σ∗, the set of infinite strings formed by concatenating any
elements of L is denoted by L∞ = { . . . w−1w0w1w2 . . . | wi ∈ L for all i ∈ Z }. In particular,
the infinite string formed by repeating a finite string w ∈ Σ∗ is w∞ = . . . www . . .

A partial string over an alphabet Σ is a finite string over the alphabet Σ ∪ {�}, where a
square (�) denotes an unknown symbol (a hole). For the purposes of string matching, a hole
may stand for any symbol from Σ: to be precise, two partial strings of the same length, u
and v, are said to be compatible, if, whenever they differ in some j-th position (u[j] 6= v[j]),
either u[j] = � or v[j] = �.

An infinite string α over an alphabet Σ is said to avoid a partial string w, if every
substring of α of the same length as w is incompatible with w: that is, α[i+ 1..i+ |w|] is
incompatible with w for every i ∈ Z. A finite string avoiding w is defined similarly. A finite
or infinite string is said to avoid a set of partial strings L, if it avoids every element of L.

The partial string avoidability problem is then stated as follows: given an alphabet Σ and
a finite set of partial strings S over Σ, determine whether there exists an infinite string that
avoids this set.

The first thing to observe is that if a finite set of partial strings is avoided by a sufficiently
long finite string then it is avoided by an infinite string. Therefore, the avoidability problem
may be regarded as a problem on finite strings, and is guaranteed to have an effective solution.

I Lemma 1. Let Σ be an alphabet containing m symbols, let L ⊂ (Σ ∪ {�})∗ be a finite set
of partial strings, and let ` be the length of the longest string in L. Then, L is avoided by an
infinite string if and only if L is avoided by a finite string of length m` + `.

Lemma 1 provides an obvious NEXPTIME algorithm for testing partial string avoidability.
However, the problem is known to be easier.

MFCS 2016

51:4 Computational and Proof Complexity of Partial String Avoidability

I Lemma 2 (Blakeley et al. [5, Cor. 2]). The partial string avoidability problem is in PSPACE.

Sketch of a proof. Let k = maxw∈S |w|, and consider the graph with the set of vertices
{0, 1}k, which contains an arc from u ∈ {0, 1}k to v ∈ {0, 1}k, if the string uv contains no
forbidden substrings from S. An infinite string avoiding all substrings from S exists if and
only if there is a cycle in the graph. A polynomial-space nondeterministic Turing machine
can guess this cycle by walking over the graph. J

In addition, Blakeley et al. [6] proved that the partial string avoidability problem is
NP-hard, but its exact complexity remained open. The first contribution of this paper,
presented in Section 3, is that this problem is actually PSPACE-complete.

Another crucial property of the partial string avoidability problem is that it can be
reduced to the same problem over the binary alphabet.

I Lemma 3 (Blakeley et al. [5, Thm. 7]). The partial string avoidability problem is reducible
in polynomial time to the partial string avoidability problem over the alphabet Σ = {0, 1}.

This allows an interpretation of this problem as a logical formula. An investigation of the
proof complexity aspects of testing avoidability is carried out later in Sections 4–6.

3 The PSPACE-hardness proof

The first contribution of this paper is the exact computational complexity of the partial
substring avoidability problem (Avoidability).

I Theorem 4. Avoidability is PSPACE-complete.

The problem is in PSPACE by Lemma 2, and it remains to prove that it is PSPACE-hard.
Let L be any language in PSPACE, that is, there exists a one-tape Turing machine M and a
polynomial s(`), such that on any input string of length `, the machineM uses s(`) space and
eventually halts in an accepting state, if the input is in L, or in a rejecting state otherwise.
Assume that M is modified, so that, instead of halting in a rejecting state, it loops without
using any additional space.

Theorem 4 follows from Lemma 5 applied to M .

I Lemma 5. For every Turing machine that uses at most s(`) space on inputs of length
` and for every input string w ∈ Σ`, there exists an alphabet Ω and a finite set of partial
strings P ⊂ (Ω ∪ {�})∗, such that the Turing machine loops on w if and only if there exists
a two-sided infinite string α ∈ Ω∞ that avoids all partial strings in P . Given the machine, P
can be constructed in time polynomial in s(`).

Consider computation histories of a Turing machine, where its configurations are written
one after another. The general plan is to use forbidden strings to ensure that each listed
configuration is the successor of the previous one. If the Turing machine loops, then there is
an infinite string containing its infinite computation. A final configuration has no successor,
so if it is ever reached, then the list of configurations cannot be continued to an infinite
string.

However, there is a problem with this idea. If a Turing machine loops on the input, this
means that it loops starting from its initial configuration. But there could also exist some
looping computations beginning from unreachable configurations. These computations give
rise to undesired infinite strings.

D. Itsykson, A. Okhotin, and V. Oparin 51:5

This problem can be circumvented in the following way. Let the Turing machine be
augmented with an alarm clock containing a counter that is incremented at every step. The
time until the alarm is triggered must be long enough for any accepting computation to
terminate. Then, once the counter overflows, this means that the machine has looped, and
the alarm clock resets the machine to its initial configuration. This shall ensure that if the
machine does not loop starting from the initial configuration, then there is no infinite string.

Denote the Turing machine by T = (Σ,Γ, Q, q0, δ, qacc), where Σ is the input alphabet;
Γ is the tape alphabet, with Σ ⊆ Γ; Q is a finite set of states, q0 ∈ Q is the initial state,
δ : (Γ ∪ {`,a})×Q→ (Γ ∪ {`,a})×Q× {−1,+1} is the transition function, and qacc ∈ Q
is the accepting state.

The machine operates on a tape containing n = s(`) symbols from Γ enclosed between left
and right end-markers (`, a). It has (n+ 2) · |Q| · |Γ|n possible configurations. Attached to
the tape, there is a separate k-bit counter, with k = dlog2(n+ 2) + log2 |Q|+ n log2 |Γ|+ 1e,
that is, with 2k greater than the number of possible configurations. This information is
encoded in a (n+ k + 2)-symbol block that consists of a Turing machine configuration (n+ 2
symbols) and of the alarm clock’s counter (k digits).

Each symbol in the block is of the form (X, i), where i ∈ {0, . . . , n+ k + 1} is a number
of the position in the block, and X is a payload, to be defined later. The Turing machine
tape is encoded in positions 0, . . . , n+ 1, and the counter is in positions n+ 2, . . . , n+ k + 1.

For each symbol used for encoding the tape, the payload is a triple (a, q, f), where
a ∈ Γ ∪ {`,a} is a tape symbol, q ∈ Q ∪ {−} is either a state of the Turing machine (if the
head is in this square) or a minus sign (if the head is elsewhere), while the third component
f ∈ {n,r} is a flag used for restarting the machine.

In each cell of the counter, the payload is any of the two digits: zero (0) and one (1).
Altogether, the following alphabet is used.

Ω =
(
(Γ ∪ {`,a})× (Q ∪ {−})× {n,r} × {0, . . . , n+ 1}

)
∪

∪
(
{0, 1} × {n+ 2, . . . , n+ k + 1}

)
Some symbols of this alphabet are actually unnecessary. These symbols shall be identified in
the proof, and then they can either be removed from the alphabet, or, equivalently, they can
be listed as 1-symbol forbidden strings.

In this proof, the set of forbidden substrings P is constructed gradually, with each
instalment of substrings ensuring further properties of any infinite string avoiding those
substrings.

The first step of the construction is to ensure that the infinite string consists of blocks
of length n+ k + 2, each correctly split into tape symbols and counter digits, and with all
positions in the block correctly numbered. The payload is not checked yet, with the exception
for the correct position of end-markers, namely, that they occur in the beginning and in the
end of the tape, and nowhere else.

I Claim 6. If a two-sided infinite string contains no forbidden substrings from P , then it
is of the form . . . α−1α0α1α2 . . . α` . . ., where each αi is a string of the following form, for
some tape symbols a1, . . . , an ∈ Γ, states p0, . . . , pn+1 ∈ Q ∪ {−}, flags f0, . . . , fn+1 ∈ {n,r}
and counter digits d0, . . . , dk−1 ∈ {0, 1}.

αi = (`, p0, f0, 0)(a1, p1, f1, 1) . . . (an, pn, fn, n)(a, pn+1, fn+1, n+ 1)
(dk−1, n+ 2) . . . (d1, n+ k)(d0, n+ k + 1)

This is achieved by using two-symbol forbidden strings of the form (X, i)(Y, j), where
i + 1 6= j (mod n + 2 + k), while X and Y represent any payload. The correct use of

MFCS 2016

51:6 Computational and Proof Complexity of Partial String Avoidability

end-markers on the tape is enforced by removing a few invalid symbols, such as (a, 0), from
the alphabet (alternatively, they can be listed as one-symbol forbidden strings).

With the enumeration of positions in place, consider the implementation of the alarm
clock. The alarm clock uses a k-bit binary counter, with the least significant digit in position
n+ k + 1 and with the most significant digit in position n+ 2. The counter is incremented
at every step. Upon overflow, it is reset to zero, and at the same time a restart signal is sent
to the left into the Turing machine tape.

I Claim 7. In every block, the payload in the counter digits forms a binary string, dk−1 . . . d1d0.
The number represented by this string is greater by 1 (modulo 2k) than the number represented
in the previous block.

Then, in particular, the enumeration of the blocks (. . . , α−1, α0, α1, α2, . . .) assumed in
the proof can be shifted so that the value of the counter in each αi is exactly i modulo 2k.

The forbidden strings implementing Claim 7 ensure that the corresponding digits of two
subsequent counters, which are n + 2 + k positions apart, correctly implement addition
of 1. For example, two forbidden partial strings, (0, n + k + 1)�n+k+1(0, n + k + 1) and
(1, n+ k+ 1)�n+k+1(1, n+ k+ 1), set the least significant digit to alternate between 0 and 1.
Incrementation in further digits is controlled by similarly defined partial strings.

If the most significant digit of the counter changes from 1 to 0, this indicates counter
overflow, and therefore the alarm clock sends the restart signal (r) to the left of the current
symbol, from where it propagates to all tape squares in this block. The restart flag is handled
in the next group of forbidden strings.

I Claim 8. In every block αi, if i 6= 0 (mod 2k), then each tape square is marked as normal
(n). If i = 0 (mod 2k), then each tape square has a restart flag (r).

The next group of restrictions ensures that if the restart signal sweeps over the tape in
some block, then at the same time the Turing machine configuration to overwritten with its
initial configuration.

I Claim 9. If a restart occurs in a block, then this block contains the initial configuration of
the Turing machine on the input string w.

The last group of forbidden strings ensures the simulation of the Turing machine’s trans-
itions in normal situations, when no reset takes place. Every tape square in a configuration
depends on three squares in the previous configuration: namely, on the same square, its left
neighbour and its right neighbour. This dependence is checked by prohibiting all mismatches.

I Claim 10. If a block contains a syntactically correct Turing machine configuration, and
no reset occurs at the subsequent block, then the subsequent block contains a syntactically
correct configuration at the next step.

Once a set of forbidden partial strings satisfying Claims 6–10 is constructed, the proof of
Lemma 5 follows from these Claims.

4 Proof systems

As outlined in the introduction, the avoidability problem over a binary alphabet Σ = {0, 1}
can be treated as a logical question. Let Γ = {xi}i∈Z be the set of numbered Boolean
variables. Any variable xi or its negation ¬xi is called a literal; a literal of an unknown
sign can be denoted by xσi , with σ ∈ {0, 1}, so that x0

i = xi and x1
i = ¬xi. A clause

D. Itsykson, A. Okhotin, and V. Oparin 51:7

is a disjunction of finitely many literals, such as x1 ∨ ¬x4. A clause is shifted by adding
the same integer to all variable numbers. The conjunction of all shifts of a clause C is
denoted by Shifts(C) and called a moveable clause. For instance, in the above example,
Shifts(x1 ∨ ¬x4) =

∧
i∈Z(xi+1 ∨ ¬xi+4).

A conjunctive normal form (CNF) formula ϕ is a conjunction of finitely many clauses, and
it accordingly depends on finitely many variables. From the perspective of proof systems, it
may be regarded as a finite set of clauses. If these clauses are replaced with the corresponding
moveable clauses, the resulting formula, denoted by Shifts(ϕ), is called a Shift-CNF. A CNF,
or a Shift-CNF, it is said to be satisfiable, if, for some assignment of Boolean values to
variables, all its clauses hold true.

In terms of strings, a clause is a partial string that lists all values that make its literals
false, with holes instead of the unused variables. A clause is matched at a specific position
in the strings, whereas a moveable clause means that a string is matched at all positions.
For example, the above moveable clause Shifts(x1 ∨ ¬x4) may be regarded as a forbidden
partial string 0��1. If all the listed values hold at once, then the clause is false. Accordingly,
avoidance of all partial strings representing the moveable clauses in a Shift-CNF is equivalent
to its satisfiability.

In view of this equivalence, Lemma 1 states that satisfiability of a Shift-CNF can be
tested by considering finitely many shifts of each moveable clause—namely, those involving
the variables x1, x2, . . . , x2`+`.

Unsatisfiability of sets of clauses can be proved using proof systems. A refutation of a set
of clauses in the Resolution proof system is a sequence of clauses C1, C2, . . . , Cs, where Cs is
the empty clause (false), and each clause Ci, with i ∈ {0, . . . , s−1}, is either a clause from the
given set, or is derived from some earlier clauses using the weakening rule or the resolution
rule. By the weakening rule, a clause C ∨D is derived from a clause C by adding any extra
literals D. The resolution rule is applied to a pair of clauses x ∨C and ¬x ∨D, where x is a
variable, deriving the clause C ∨D. The length of a Resolution proof is the number of clauses
therein. For an unsatisfiable formula ϕ, the length of its shortest Resolution refutation is
denoted by SRes(ϕ).

The following estimation of the length of Resolution proofs is well-known.

I Lemma 11. Let F be an unsatisfiable CNF formula, and let x be one of its variables.
Then, SRes(F) 6 SRes(F [x := 0]) + SRes(F [x := 1]) + 1.

The definition of Resolution proofs equally applies to infinite sets of clauses. It is known
that a set of clauses, finite or infinite, has a Resolution refutation if and only if that set
is unsatisfiable. For infinite sets of clauses, this result generally holds by the compactness
theorem, although it gives no estimations of the size of a refutation. For infinite formulas of
the form Shifts(ϕ) studied in this paper, there is the following upper bound on the length of
their Resolution refutations.

I Lemma 12. Assume that an unsatisfiable CNF formula ϕ depends on variables x1, x2, . . . , xn,
and assume that in each clause, the least and the greatest variable numbers differ by at most
k > 2. Then ϕ has a Resolution refutation of size at most 2nk.

Sketch of a proof. Using Lemma 11, a Resolution proof for ϕ can be constructed by selecting
a few (t) variables and substituting all possible values into them. Each substituted formula
has a derivation; let T be the length of the longest of them. Then, ϕ has a derivation of
length 2tT + 2t − 1.

Let the middle block of k variables be selected: that is, all variables with numbers
between n−k

2 and n+k
2 . Substituting all their values splits the formula into two independent

MFCS 2016

51:8 Computational and Proof Complexity of Partial String Avoidability

subformulas, and it is sufficient to refute only one of them. Thus, the problem has been
reduced to the same problem for n−k

2 variables, and the result follows by an inductive
argument. J

Returning to the avoidability problem for partial strings w1, w2, . . . , wm, Lemma 1 implies
that the avoidability test is given by a CNF with 2k + k consecutive variables, where
k = maxi |wi|. Then, by Lemma 12, this formula has a Resolution refutation of size 2O(k2).

For the Resolution method for Shift-CNF formulas, there is a natural derivation rule
to be added: the shifting rule, by which, from any clause xσ1

i1
∨ xσ2

i2
∨ · · · ∨ xσkik , one can

derive any clause xσ1
i1+n ∨ x

σ2
i2+n ∨ · · · ∨ x

σk
ik+n, for any n ∈ Z. In the resulting system, called

Shift-Resolution, one can prove only the statements provable in the classical Resolution.
Indeed, every application of the shifting rule can be eliminated by deriving each shifted clause
from scratch: this is possible, because the formula contains all shifts of the original clauses.
However, as will be shown in Section 6, there is a formula, for which a Shift-Resolution proof
is exponentially shorter than any classical proofs.

The shifting rule can be similarly added to other proof systems, such as Cutting Plane,
Polynomial Calculus, etc. For a proof system Π, its extension with the shifting rule is denoted
by Shift-Π.

5 Lower bounds on the size of shifted proofs

Lower bounds on the size of proofs with shifting can be inferred from the known lower bounds
on classical proofs, as follows. Let ϕn be an unsatisfiable CNF formula in variables x1, . . . , xn.
This formula shall be encoded in a Shift-CNF formula Φn, in a way that for every proof
system Π, from any Shift-Π proof of Φn, one could extract a (typically, smaller) classical
Π-proof of ϕn. Then, every known lower bound on the size a Π-proof of ϕn translates to a
lower bound on the size of Shift-Π proof of Φn.

The general idea of encoding a CNF formula ϕ in a Shift-CNF Φ is that every satisfying
assignment x1, . . . , xn to ϕ should be repeated as something like an infinite binary string
(x1 . . . xn)∞ representing a satisfying assignment to Φ. The main challenge is that ϕ is not
designed to be shifted, and therefore Φ should somehow apply ϕ only to every n-th substring
of length n, that is, x1 . . . xn, and not to any improperly shifted substrings xi . . . xnx1 . . . xi−1,
with i ∈ {2, . . . , n}. Since, by definition, shifted formulas apply to all shifts, this selective
evaluation is not possible, and it is necessary to use some kind of encoding that would disable
all unintended shifts.

The proposed encoding of ϕ represents each of its variables xi as four consecutive Boolean
variables: y4i+1, y4i+2, y4i+3 and y4i+4. The first three of them shall always have values 011,
whereas the last variable, y4i+4, holds the actual value of xi. In order to distinguish the
encoded variable x1, a special separator code 0100 is inserted between every two complete
blocks of n encoded variables.

The formula Φn is a conjunction of two parts: the first part Wn ensures that the infinite
string representing the variable values is a valid encoding of the form described above, while
Hn simulates ϕ over that encoding.

The formula Wn has to make sure that the infinite string is of the form (${0̃, 1̃}n)∞,
where $ = 0100, 0̃ = 0110 and 1̃ = 0111. The first task towards this goal is to define all
sequences of the form {$, 0̃, 1̃}∞. This is done by nine constraints (Shift-CNF clauses). First,
all substrings of length 5 that do not contain the control pair 01 are forbidden: namely, 11111,
11110, 11100, 11000, 10000 and 00000. Two more forbidden partial substrings 01��1 and
01��00 ensure that for each control pair 01, after two symbols, there cannot be anything

D. Itsykson, A. Okhotin, and V. Oparin 51:9

except another control pair 01. The last forbidden substring 0101 makes sure that the data
digits between two control pairs cannot be 01.

It remains to ensure that separators ($) never occur close to each other, and that there is
a separator after every n encoded digits. The former is done by adding n forbidden partial
strings 0100�4k0100, for all k ∈ {0, ..., n− 1}, and the existence of separators is asserted by
prohibiting n+ 1 subsequent encoded digits using a partial string (011�)n+1. This completes
the formula Wn.

The second part of the formula, denoted by Hn, contains as many clauses as ϕn. Whenever
ϕn contains a clause xσ1

i1
∨ . . . ∨ xσkik , it is represented in Hn by the following corresponding

clause.

y1 ∨ ¬y2 ∨ y3 ∨ y4︸ ︷︷ ︸
D$: false only on 0100 ($)

∨ yσ1
4i1+4 ∨ . . . ∨ y

σk
4ik+4︸ ︷︷ ︸

p(xσ1
i1
∨...∨xσk

ik
)

The disjunction of the first four literals is true, unless there is a substring 0100 there, that is,
the separator ($). For that reason, any unintended shifts of this clause hold true, and are
therefore irrelevant. On a correct shift, the first four literals are false, and the rest, denoted
by p(C), correctly apply the original clause C to the encoded variables of ϕn.

Each satisfying assignment to the Shift-CNF formula Shifts(Wn ∧Hn) encodes at least
one satisfying assignment to the original CNF formula ϕ, and since the latter is unsatisfiable
by assumption, so is Shifts(Wn ∧Hn).

The proposed lower bound method applies to a class of proof systems, so that a lower
bound on the size of a Π-proof of ϕn, where Π is a proof system, implies a fairly close
lower bound on the size of Shift-Π proofs for Shifts(Wn ∧Hn). To keep things simple, in
this extended abstract, the theorem is formulated for three well-known proof methods, and
actually established only for the case of Resolution (other cases are similar).

I Theorem 13. Let Π be one of the three proof systems: Resolution, Cutting Plane or
Polynomial Calculus. Then the length of any Shift-Π refutation of Shifts(Wn ∧Hn) is at
least Ω

(
SΠ(ϕn)

n

)
, where SΠ(ϕn) is the length of the shortest Π-refutation of ϕn. The same

holds true for the total size of refutations.

The proof consists of two parts. First, a Shift-Π refutation of Shifts(Wn ∧ Hn) is
transformed to a Π-refutation of the same formula, by mapping each variable yi, with
i ∈ Z, to y(i mod 4n+4) and then eliminating the shift rules. Then the latter Π-refutation
of Shifts(Wn ∧Hn) is transformed by substituting the sequence $(011�)n into all auxiliary
variables, resulting in a Π-refutation of ϕn of the stated size.

Proof for the case of Resolution. Consider any refutation π of Shifts(Wn∧Hn) in the Shift-
Resolution proof system, and let λn be its length. Let σ be a substitution that maps each
variable yi, with i ∈ Z, to the variable y(i mod m), where m = 4(n+ 1). Then, π[σ] denotes
the sequence of clauses in π under the substitution σ.

As stated in the following lemma, this substituted refutation remains a valid resolution
refutation.

I Lemma 14. Let C1, C2, . . . , Cs be a Resolution refutation of a set of clauses F , and let τ
be a substitution of a variable with another variable (x := y) or with a constant (x := 0 or
x := 1). Then, the list of substituted clauses C1[τ], C2[τ], . . . , Cs[τ], with all constant true
clauses omitted, is a valid Resolution refutation of F [τ].

MFCS 2016

51:10 Computational and Proof Complexity of Partial String Avoidability

For every clause C with variables from Γ = {yi}i∈Z, under the substitution σ, there are
at most m distinct shifts of C. Hence, the size of the formula Shifts(Wn ∧Hn)[σ] is at most
m times the size of Wn ∧Hn. In order to transform the proof π[σ] to a Resolution refutation
of the formula Shifts(Wn ∧Hn)[σ], one should eliminate the shift rules. For that purpose,
along with every clause, all its shifts need to be deduced as well. Let π′ be the resulting
refutation, which is of size at most mλn.

Consider a substitution into π′, defined by y0 . . . ym−1 := $(011�)n, where each square
(�) indicates a variable unaffected by the substitution. Under such a substitution, all clauses
of Shifts(Wn)[σ] are satisfied. The clauses of Shifts(Hn)[σ] are either satisfied or are reduced
to clauses of the form p(C), where C is a clause from ϕn. In the end, all such clauses are
obtained. Let p(ϕn) denote their conjunction. By Lemma 14, there is a derivation that
contains no true clauses, that is, a refutation of the formula p(ϕn). Also, the lemma asserts
that the length of the proof is not increased.

Thus, a Resolution refutation of ϕn of size at most mλn has been obtained. Therefore,
λn > Ω

(
SΠ(ϕn)

n

)
. J

I Corollary 15. For each number n > 1, there exists a 3-CNF formula ϕn of n variables
and with O(n) clauses, such that every Shift-Resolution proof of the corresponding Shift-CNF
Φn is of size at least 2Ω(n).

Proof. It is sufficient to take any family of formulas with Resolution proof complexity 2Ω(n).
Such a family is constructed, for instance, by Urquhart [16]. J

I Corollary 16. There exists such a CNF formula ϕn of size n, that every Shift-Cutting
Plane proof of the corresponding Shift-CNF Φn is of size at least 2nΩ(1) .

Proof. The proof uses a family of formulas with the Cutting Plane proof complexity 2nΩ(1) .
Such formulas were constructed by Pudlák [14]. J

I Corollary 17. For some CNF formula ϕn of size O(n2), the size of every Shift-Polynomial
Calculus proof of the corresponding Shift-CNF Φn is at least 2nΩ(1) .

Proof. The proof uses the formulas that encode the pigeonhole principle PHPn+1
n . By the

results of Razborov [15] and of Impagliazzo et al. [10], every Polynomial Calculus derivation
of PHPn+1

n is of size at least 2nΩ(1) . J

6 Separation of Resolution with and without shift

In this section, it is shown that, in some cases, Shift-Resolution can be exponentially more
succinct than classical proof systems without shifts. This is proved by presenting a certain
false formula, which has a small refutation in Shift-Resolution, whereas in classical proof
systems, it requires exponential-size refutations.

For a constant n > 1, the formula Ψn asserts the existence of an infinite string of the
form . . . $w−1$w0$w1 . . ., where each wi is an n-digit binary notation of a certain natural
number, and every subsequent number in the list is greater by 1 than the previous number.
For every number i ∈ {0, . . . , 2n − 1}, let bin(i) ∈ {0, 1}n be its n-bit binary representation.
The longest finite string, on which this formula is true, is $bin(0)$bin(1)$. . . $bin(2n − 1)$,
but for any longer string, in particular for any infinite string, the counter eventually overflows
and the formula becomes false. In view of Lemma 1, this formula contains a finite set of
contradictory clauses, and hence is subject to classical proof methods.

D. Itsykson, A. Okhotin, and V. Oparin 51:11

The construction of the formula is based on the encoding of digits and separators given
in Section 5. In particular, the formula Shifts(Wn) ensuring that the infinite string is of the
form (${0̃, 1̃}n)∞, where $ = 0100, 0̃ = 0110 and 1̃ = 0111, is used again, and so is the clause
D$ = y1 ∨ ¬y2 ∨ y3 ∨ y4 that identifies a separator ($) beginning at y1.

With the syntactic structure defined by the formulaWn, the desired counter is implemented
by a CNF formula Stepnk (x1, x2, . . . , xn; y1, y2, . . . , yn), with n > 1 and k ∈ {0, 1, 2, . . . , n−1},
which is true if and only if the binary number (x1x2 . . . xn)2 is greater than (y1y2 . . . yn)2
exactly by 2k. There is a formula with this property that contains Θ(n) clauses of constant
size.

Given two propositions Stepnk about adding 2k, one asserting that x+ 2k = y and the
other that y + 2k = z, one can infer from them that x + 2k+1 = z, that is, a proposition
using the formula Stepnk+1. The next lemma formalizes this intuition, and shows that this
inference can be carried out using resolutions.

I Lemma 18. For any n > 1 and k ∈ {0, 1, 2, . . . , n − 2}, given all clauses of the CNF
formula Stepnk (x1, x2, . . . , xn; y1, y2, . . . , yn) ∧ Stepnk (y1, y2, . . . , yn; z1, z2, . . . , zn), all clauses
of Stepnk+1(x1, x2, . . . , xn; z1, z2, . . . , zn) can be derived using O(n) resolutions.

For every CNF formula ϕ = C1 ∧ . . . ∧ Ck and for every clause D, the CNF formula
obtained from ϕ by adding all literals from D into every clause is denoted by D ∨ ϕ =
(D ∨ C1) ∧ . . . ∧ (D ∨ Ck).

Furthermore, denote by Vn a CNF formula containing the following clauses which assert
that after the current separator ($), there is another one 4n symbols later: D$ ∨ ¬x4n+5,
D$ ∨ x4n+6, D$ ∨ ¬x4n+7 and D$ ∨ ¬x4n+8. These conditions actually follow from Wn, but
it is more convenient to add them than to derive them using Resolution.

In this notation, the formula separating classical proof systems from Shift-Resolution is
constructed as follows.

I Theorem 19. For every classical proof system Π, every Π-refutation of the following
formula is of size Ω(2n).

Ψn=Shifts
(
Wn∧

(
D$∨Stepn0 (x8, x12, . . . , x4n+4;x4n+12, x4n+16, . . . , x8n+8)

)
∧Vn∧(D$∨¬x8)

)
At the same time, there exists a Shift-Resolution refutation of Ψn of size poly(n).

The first part of Ψn is Wn, which enforces the syntactic structure of the string. The
second part (D$ ∨ Stepn0 (x8, x12, . . . , x4n+4;x4n+12, x4n+16, . . . , x8n+8) states that any two
subsequent values of the counter differ by 1. The last part (D$ ∨ ¬x8), requires the highest
digit of the counter to be 0. The formula Ψn is unsatisfiable, because, after a series of
incrementations, the highest digit shall eventually become 1.

Sketch of a proof. The lower bound on the size of Π-refutations of Ψn is based on the fact
that every such refutation must use more than 1

32n−2 clauses of this formula. This is proved
by showing that the conjunction of any 1

32n−2 clauses of Ψn is satisfiable.
The key element of a small Shift-Resolution refutation of Ψn is the use of Lemma 18.

The formula contains a clause about incrementing the counter by 1; by Lemma 18, it can
be shifted, and two such clauses resolved, to obtain a clause about incrementing by 2. The
latter clause can be again shifted and resolved, resulting in a clause about adding 4, and so
on. This gives a proof of an appropriate Stepnn−1 formula, in Θ(n) steps. A contradiction is
obtained by resolving that formula with other clauses of Ψn. J

MFCS 2016

51:12 Computational and Proof Complexity of Partial String Avoidability

7 Conclusion

An interesting direction for further research would be to prove a lower bound for any proof
system with shift, for which no non-trivial lower bounds are known in the classical case,
such as for the Lovász–Schrijver proof system. This task may potentially be easier than
proving a lower bound in the classical case, because some instances of shift-CNF encode
harder problems, such as PSPACE-complete problems, and therefore proving lower bounds
on their proof complexity could actually be less difficult.

Acknowledgements. The authors are grateful to Alexander Shen for bringing the resolution
method for string avoidability to their attention, and to Juhani Karhumäki for inspiring
discussions.

The research presented in Sections 3–5 was supported by Russian Science Foundation
(project 16-11-10123).

References
1 Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to bibliographic

search. Commun. ACM, 18(6):333–340, June 1975.
2 Valeriy Balabanov, Magdalena Widl, and Jie-Hong R. Jiang. QBF resolution systems and

their proof complexities. In Theory and Applications of Satisfiability Testing - SAT 2014
- 17th International Conference, Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 14-17, 2014. Proceedings, pages 154–169, 2014.

3 Olaf Beyersdorff, Leroy Chew, and Mikolas Janota. On unification of QBF resolution-
based calculi. In Mathematical Foundations of Computer Science 2014 - 39th International
Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings, Part II,
pages 81–93, 2014.

4 Olaf Beyersdorff, Leroy Chew, and Mikolás Janota. Proof complexity of resolution-based
QBF calculi. In 32nd International Symposium on Theoretical Aspects of Computer Science,
STACS 2015, March 4-7, 2015, Garching, Germany, pages 76–89, 2015.

5 Brandon Blakeley, Francine Blanchet-Sadri, Josh Gunter, and Narad Rampersad. On
the complexity of deciding avoidability of sets of partial words. Theor. Comput. Sci.,
411(49):4263–4271, 2010.

6 Francine Blanchet-Sadri, Raphaël M. Jungers, and Justin Palumbo. Testing avoidability
on sets of partial words is hard. Theor. Comput. Sci., 410(8-10):968–972, 2009.

7 Samuel R. Buss. Towards NP-P via proof complexity and search. Ann. Pure Appl. Logic,
163(7):906–917, 2012.

8 Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. The Journal of Symbolic Logic, 44(1):36–50, March 1979.

9 Armin Haken. The intractability of resolution. Theoretical Computer Science, 39:297–308,
1985.

10 Russell Impagliazzo, Pavel Pudlák, and Jirí Sgall. Lower bounds for the polynomial calculus
and the gröbner basis algorithm. Computational Complexity, 8(2):127–144, 1999.

11 Mikolás Janota and Joao Marques-Silva. Expansion-based QBF solving versus q-resolution.
Theor. Comput. Sci., 577:25–42, 2015.

12 Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. Resolution for quantified
boolean formulas. Inf. Comput., 117(1):12–18, 1995.

13 M. Lothaire. Algebraic Combinatorics on Words. Cambridge University Press, 2002. Cam-
bridge Books Online.

D. Itsykson, A. Okhotin, and V. Oparin 51:13

14 Pavel Pudlak. Lower bounds for resolution and cutting plane proofs and monotone compu-
tations. J. Symbolic Logic, 62(3):981–998, 1997.

15 Alexander A. Razborov. Lower bounds for the polynomial calculus. Computational Com-
plexity, 7(4):291–324, 1998.

16 Alasdair Urquhart. Hard examples for resolution. J. ACM, 34(1):209–219, 1987.

MFCS 2016

	Introduction
	The partial string avoidability problem
	The PSPACE-hardness proof
	Proof systems
	Lower bounds on the size of shifted proofs
	Separation of Resolution with and without shift
	Conclusion

