
On the Uncontended Complexity of Anonymous
Consensus∗

Claire Capdevielle1, Colette Johnen2, Petr Kuznetsov3, and
Alessia Milani4

1 Univ. Bordeaux, LaBRI, UMR 5800, Talence, France
claire.capdevielle@labri.fr

2 Univ. Bordeaux, LaBRI, UMR 5800, Talence, France
johnen@labri.fr

3 Télécom ParisTech, Paris, France
petr.kuznetsov@telecom-paristech.fr

4 Univ. Bordeaux, LaBRI, UMR 5800, Talence, France
milani@labri.fr

Abstract
Consensus is one of the central distributed abstractions. By enabling a collection of processes
to agree on one of the values they propose, consensus can be used to implement any generic
replicated service in a consistent and fault-tolerant way.

In this paper, we study uncontended complexity of anonymous consensus algorithms, counting
the number of memory locations used and the number of memory updates performed in operations
that encounter no contention. We assume that contention-free operations on a consensus object
perform “fast” reads and writes, and resort to more expensive synchronization primitives, such
as CAS, only when contention is detected. We call such concurrent implementations interval-
solo-fast and derive one of the first nontrivial tight bounds on space complexity of anonymous
interval-solo-fast consensus.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases space and time complexity, lower bounds, consensus, interval contention,
solo-fast

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.12

1 Introduction

Consensus is one of the central distributed abstractions. By enabling a collection of processes
to agree on one of the values they propose, consensus can be used to implement any generic
replicated service in a consistent and fault-tolerant way. Therefore, complexity of consensus
implementations has become one of the most important topics in the theory of distributed
computing.

It is known that consensus cannot be solved in an asynchronous read-write shared memory
system in a deterministic and fault-tolerant way [7, 16]. The difficulty stems from handling
contended executions. One way to circumvent this impossibility is to only guarantee progress

∗ Partially supported by the ANR project DISPLEXITY (ANR-11-BS02-014). This study has been
carried out in the frame of the Investments for the future Programme IdEx Bordeaux-CPU (ANR-10-
IDEX-03-02). The third author was supported by the ANR project DISCMAT, under grant agreement
N ANR-14-CE35-0010-01.

© Claire Capdevielle, Colette Johnen, Petr Kuznetsov, and Alessia Milani;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 12; pp. 12:1–12:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 On the Uncontended Complexity of Anonymous Consensus

(using reads and writes) in executions meeting certain conditions, e.g., in the absence of
contention. Alternatively, a process is guaranteed to decide in the wait-free manner, but
stronger (and more expensive) synchronization primitives, such as compare-and-swap, can be
applied in the presence of contention.

We are interested in consensus algorithms in which a propose operation is allowed to apply
primitives other than reads and writes on the base objects only in the presence of interval
contention, i.e., when another propose operation is concurrently active. These algorithms are
called interval-solo-fast.

Ideally, interval-solo-fast algorithms should have an optimized behavior in uncontended
executions. It appears therefore natural to explore the uncontended complexity of consensus
algorithms: how many memory operations (reads and writes) need to be performed and how
many distinct memory locations need to be accessed in the absence of interval contention?

In general, interval-solo-fast consensus can be solved with only constant uncontended
complexity [17]. We therefore restrict our study to anonymous consensus algorithms, i.e.,
algorithms not using process identifiers and, thus, programming all processes identically.
Besides intellectual curiosity, practical reasons to study anonymous algorithms in the shared
memory model are discussed in [10].

Our results. On the lower-bound side, we show that any anonymous interval-solo-fast
consensus algorithm exhibits non-trivial uncontended complexity that depends on n, the
number of processes, and m, where m is the size of the set V of input values that can be
proposed. More precisely, we show that, in the worst case, a propose operation running solo,
i.e., without any other process invoking propose, must write to Ω(min(

√
n, logm/ log logm))

distinct memory locations. This metrics, which we call solo-write complexity, is upper-
bounded by the step complexity of the algorithm, i.e., the worst-case number of all base-object
primitives applied by an individual operation. In the special case of input-oblivious algorithms,
where the sequence of memory locations written in a solo execution does not depend on the
input value, we derive a stronger lower bound of Ω(

√
n) on solo-write complexity. Our proof

only requires the algorithm to ensure that operations terminate in solo executions, so the lower
bounds also hold for abortable [2, 11] and obstruction-free [13] consensus implementations.

On the positive side, we show that our lower bound is tight. Our matching consensus
algorithm is based on our novel value-splitter abstraction, extending the classical splitter
mechanism [15, 18, 4], interesting in its own right. Informally, a value-splitter exports a
single operation split that takes a value in a value set V as a parameter and returns a boolean
response so that (1) if split(v) completes before any other split operation starts, then it
returns true, and (2) all processes that obtain true proposed the same value.

We describe a simple transformation of a value-splitter into anonymous and interval-solo-
fast consensus, using the classical splitter-based algorithm and incurring constant overhead
with respect to the value-splitter complexity [17]. Then, we present two value-splitter read-
write implementations that combined with the consensus algorithm provide the matching
upper bound O(min(

√
n, logm/ log logm)).

The first one is a novel anonymous and input-oblivious implementation of a value-splitter
that exhibits O(

√
n) space and solo-write complexity.

The second one is not input-oblivious, and is a slight modification of the weak conflict
detector proposed in [1], exhibiting O(logm/ log logm) space and step complexity.

Our results are summarized in Table 1. It is interesting to notice that the step
complexities are O(n) for the first algorithm and O(logm/ log logm) for the second one.
Aspnes and Ellen [1] showed that any anonymous consensus protocol has to execute

C. Capdevielle, C. Johnen, P. Kuznetsov, and A. Milani 12:3

Table 1 Space and solo-write complexity for anonymous interval-solo-fast consensus.

Input-oblivious Not input-oblivious

Ω(
√
n) Ω(min(

√
n, log m

log log m
))

O(
√
n) if

√
n ≤ log m

log log m
, O(
√
n) if

√
n ≥ log m

log log m
, O(log m

log log m
) [17, 1]

Ω(min(n, logm/ log logm)) steps in solo executions. Thus, our consensus algorithms have
also asympotically optimal step complexity.

Overall, our results imply one the first nontrivial tight lower bound on the space complexity
for consensus known so far, along with a concurrent result on the space complexity of solo-
terminating anonymous consensus [8].1 Our results also show that there is an inherent gap
between anonymous and non-anonymous consensus algorithms: non-anonymous consensus
has constant uncontended complexity [17].

Related work. The idea of optimizing concurrent algorithms for uncontended executions
was suggested by Lamport in his “fast” mutual exclusion algorithm [15].

Fich et al. [6] have shown that any solo-terminating (and, as a result, obstruction-
free) read-write (non-anonymous) consensus protocol must use Ω(

√
n) memory locations.

Gelashvili [8] proved a stronger Ω(n) lower bound for the anonymous case. Attiya et al. [2]
showed that any step-solo-fast (where operations only apply reads and writes in the absence
of interleaving steps) either use O(

√
n) space or incur O(

√
n) memory stalls per operation.

No obstruction-free or step-solo-fast algorithm matching these lower bounds is known so far:
existing algorithms typically expose O(n) space complexity. These lower bounds focus on
step contention and do not extend to uncontended executions, where no interval contention
is encountered.

Our value-splitter abstraction is inspired by the splitter mechanism in [18, 4], originally
suggested by Lamport [15]. Differently from the original splitter object, more than one process
can return true but all these processes have the same input value. The novel input-oblivious
value-splitter implementation we present is inspired by the obstruction-free leader election
algorithm recently proposed by Giakkoupis et al. [9].

Bouzid et al. [3] presented an anonymous consensus algorithm with asymptotically
optimal solo write and step complexity. But it relies on a failure detector (can be transformed
into obstruction-free though) and requires unbounded space.

A preliminary version of this paper has been presented as a brief announcement [5].

Roadmap. The rest of the paper is organized as follows. We give preliminary definitions in
Section 2. We present our lower bound in Section 3 and our upper bound in Section 4. We
conclude the paper in Section 5.

1 Informally, a solo-terminating algorithm ensures that every process running solo from any configuration
eventually terminates.

OPODIS 2015

12:4 On the Uncontended Complexity of Anonymous Consensus

2 Preliminaries

The model of computation

We consider a standard asynchronous shared-memory model in which n > 1 processes
communicate by applying atomic (or linearizable [14]) primitive operations on shared variables,
called base objects. We assume every base object maintains a state and exports a subset of
the Read, Write and Compare-And-Swap (CAS) primitives. The primitive Read(R) returns
the value of R, and Write(R, v) sets the state of R to v. The primitive CAS(R, e, v) checks
if the state of R is e and, if so, sets the state of R to v and returns true; otherwise, the state
remains unchanged and false is returned. A register is a base object that exports only the
Read and Write primitives.

Algorithms and executions

To implement a (high-level) object from a set of base objects, processes follow an algorithm A,
associating each process p with an deterministic automaton Ap. To avoid confusion between
the base objects and the implemented one, we reserve the term operation for the object being
implemented and we call primitives the operations on base objects. We say that an operation
is performed on a high-level object and that a primitive is applied to a base object.

Each process has a local state that consists of the values stored in its local variables
and a programme counter. A computation of the system proceeds in steps of an algorithm
performed by the processes. Each step is one of the following: (1) an invocation of a high-level
operation, (2) a primitive operation on a base object that returns a response and results in a
change of a process’s state, or (3) a response of a (high-level) operation. A configuration
specifies the state of each base object and the local state of each process at one moment. In
an initial configuration, all base objects have the initial values specified by the algorithm and
all processes are in their initial states.

A process is active if an operation has been invoked by the process but the operation has
not yet produced a matching response; otherwise the process is called idle. We assume that
an operation can only be invoked on an idle process and only active processes take steps. A
configuration is quiescent if every process is idle in it.

An execution fragment of an algorithm is a (possibly infinite) sequence C1, φ1, . . . , Ci, φi, . . .

of configurations alternating with steps, where each step is the application of a primitive
φi to configuration Ci resulting in configuration Ci+1. For any finite execution fragment α
ending with configuration C and any execution fragment α′ starting at C, the execution αα′
is the concatenation of α and α′; in this case α′ is called an extension of α. An execution is
an execution fragment starting from the initial configuration C0.

In an infinite execution, a process is correct if it takes an infinite number of steps or is
idle from some point on. Otherwise, the process is called crashed.

In a solo execution, only one process takes steps. An operation invoked by a process
in a given execution is completed if its invocation is followed by a matching response. An
operation invoked a process p in an execution E is uncontended if no process other than p is
active between its invocation and response steps. We also say that p executes its operation
in absence of interval contention.

Finally, we say that an operation executes in the absence of step contention if all the
steps of the operation are contiguous in the execution.

C. Capdevielle, C. Johnen, P. Kuznetsov, and A. Milani 12:5

Consensus

The consensus object exports one operation propose(v), where v is an input taken from some
domain V (|V | ≥ 2). The output values must satisfy the following properties:

Agreement: all output values are the same
Validity: Every output value is one of the input values.

Properties of algorithms

An algorithm is wait-free if in every execution, each correct process completes each of its
operation in a finite number of its own steps [12].

A wait-free algorithm is interval-solo-fast if, in absence of interval contention, a process
only applies Read and Write primitives. A wait-free algorithm is step-solo-fast [2] if a process
is allowed to apply only Reads and Writes in the absence of step contention, i.e.. when its
steps are not interleaved with the steps of another process.

An algorithm is input-oblivious if a process accesses the same sequence of base objects in
any solo execution of the algorithm, regardless of its input.

An algorithm A is anonymous if Ap does not depend on p, i.e., the algorithm programs
the processes identically, regardless of their identifiers.

In this paper we are concerned with two complexity metrics: space complexity, i.e., the
number of base objects an algorithm uses, and solo-write complexity, i.e., the maximal
number of writes performed in a solo execution of a single operation of an algorithm, taken
over all possible input values. Note that solo-write complexity is upper-bounded by the step
complexity of the algorithm, i.e., the number of base-object accesses a single operation may
perform.

3 Lower bounds for interval-solo-fast consensus

Consider any n-process anonymous implementation of interval-solo-fast consensus with a set
V of input values, |V | = m. In this section, we show that the implementation must have an ex-
ecution in which some propose operation, running solo, performs Ω(min(

√
n, logm/ log logm))

writes on distinct objects. Obviously, the implementation must use Ω(min(
√
n, logm/ log logm))

base objects.
We also show that in the special case when the algorithm is, additionally, input-oblivious

the lower bounds become Ω(
√
n).

Overview of the proof

By the way of contradiction, assume that there exists an interval-solo-fast anonymous
consensus algorithm A such that at most k distinct base objects are written in any solo
execution of A and k < min(

√
n,Γ−1(m)). Here Γ−1 is the inverse of the factorial function

Γ(m) = m!. Recall that Γ−1(m) = Θ(logm/ log logm).
We are going to establish a contradiction by showing that the algorithm has an execution

in which two different values are returned. In executions we are going to iteratively construct,
no process encounters interval contention and, thus, no process applies primitives other than
Reads and Writes.

Let C0 be the initial configuration of A. For each v ∈ V , let αv denote the execution
of A in which a process, starting from C0, invokes propose(u) and runs solo and until the
operation completes. Since the algorithm is anonymous, αv does not depend on the process
identifier.

OPODIS 2015

12:6 On the Uncontended Complexity of Anonymous Consensus

For a given v ∈ V , consider the sequence of base objects written in αv, ordered by
the times they are first written in αv. There are m possible values v (and, thus, possible
executions αv), and at most k! possible orders in which base objects can be written for the
first time in executions αv, v ∈ V .

Since k < Γ−1(m), we have k! < m and, thus, there must be two values v and w such
that the sequences of base objects written in αv and αw, in the order of the times they are
first written, are identical. (In an input-oblivious protocol, v and w can be any two distinct
values, regardless of the relation between m and k.) Let us denote this sequence of base
objects by r1, . . . , rk and fix it for the rest of the proof.

To construct the desired execution with different returned values and establish a contra-
diction, we assume that half of the processes propose v and the other half propose w. In
each iteration of the construction, we “wake up” a subset of the processes in each of the two
halves and let them run as clones, i.e., run them lock-step so that they ignore the presence
of each other, until they are about to write to a base object for the first time. On the way,
we carefully maintain the invariant that each previously written base object is covered by
“enough” processes in each of the two halves: a process p covers a base object r in a given
configuration C if p is about to write to r in C. Intuitively, these “covering” write operations,
once applied, ensure that one half of the processes will not be able to “notice” the presence
of the other half in an extended execution. As a result, in the subsequent iteration, we can
extend the execution in a way that “enough” processes in each of the two halves cannot
distinguish it from a solo run.

Using the assumption k <
√
n, we ensure that at the end of the kth iteration, we have

at least one process pi proposing v and at least one process pj proposing w, and both pi

and pj believe that they run solo. Moreover, in the resulting configuration Ck, each of the
k base objects r1, . . . , rk is covered by at least one process proposing v with the value last
written to it by pi and at least one process proposing w with the value last written to it by
pj . Therefore, we can extend Ck with a block write of the processes proposing v and then
let pi run until completion, without being able to distinguish the resulting execution from
αv. Thus, pi must eventually return v. But then we can extend the resulting execution with
a block write of the processes proposing wand let pj run until completion, without being
able to distinguish the current execution from αw. Thus, pj will have to return w, which
establishes the contradiction.

Notations and definitions

We now introduce some instrumental notions and definition.
Recall that αu denotes the complete solo execution of propose(u) from the initial con-

figuration C0. For u = v, w, 1 ≤ i ≤ k, let αi,u denote the longest prefix of αu which only
contains writes on base objects in {r1, . . . , ri}. Let α0,u denote the longest prefix of αu in
which no writes takes place. By the definition, αk,u = αu, and for all 0 ≤ i ≤ k − 1, the next
event of αu immediately after αi,u is a write on ri+1.

For j = 1, . . . , k, let xj,i,u denote the value of rj in the configuration right after αi,u.
Recall that for j = i + 1, . . . , k, no write on rj takes place in αi,u and, thus, xj,i,u is the
initial value of rj .

For i, j = 1, . . . , k and u = v, w, let Ij,i,u be a binary indicator that rj is written in αi,u

after the last event of αi−1,u. Note that Ii,i,u = 1 for all i = 1, . . . , k, and Ij,i,u = 0 for all
1 ≤ i < j ≤ k.

For example, consider the solo execution of a propose(u) operation depicted in Figure 1.
Here, I1,2,u is the binary indicator that r1 is written in α2,u after the last event of α1,u,

C. Capdevielle, C. Johnen, P. Kuznetsov, and A. Milani 12:7

C0

αu

First write to r1 First write to r2 First write to r3 First write to rk
…

α0,u

α1,u

α2,u

αk-1,u

δ

…

Figure 1 Solo execution of propose(u) by a process p, denoted αu.

C0

First write to ri+1 First write to ri+2 …

αi,u
αi+1,u

αl-1,u

First write to rl First write to rl+1

αl,u

β : no writes on rj

γ : some write on rj

Figure 2 Definition of sj,i,u: β contains `− i consecutive fragments in which rj is not written.

i.e., in the execution fragment δ. If there is a write on r1 in δ then I1,2,u = 1. Otherwise,
I1,2,u = 0.

For 1 ≤ i, j < k, we define sj,i,u as 1 plus the maximal number of consecutive prefixes
αt,u such that i < t < k and rj is not written in αt,u after the last event of αt−1,u, i.e.,
sj,i,u = min{` > i|` = k ∨ Ij,`,u = 1} − i.

Figure 2 depicts a fragment of the execution αu and graphically explains the notation
sj,i,u. In particular, for a given base object rj and a given prefix αi,u, we consider the
longest sequence of consecutive distinct fragments between the first write to rt up to (but not
including) the first write to rt+1, which contain no writes on rj , starting from t = i+ 1. This
sequence of fragments is denoted by β here. Then sj,i,u is simply the number of consecutive
fragments in β plus one, i.e., `− i in this case, as the fragment γ between the first write to
r` up to the first write to r`+1 contains a write to rj .

Clearly, sj,i,u ≥ 1 and sj,k−1,u = 1, for all i, j = 1, . . . , k− 1. Also, it is easy to check that∑k−1
i=1 Ij,i,usj,i,u = k − j for all j = 1, . . . , k − 1. Thus,

∑k−1
`=1

∑k−1
j=1 Ij,`,usj,`,u = (k2 − k)/2.

Cloning configurations.

We now introduce the central notion of our lower-bound proof:

I Definition 1. A configuration Ci is called i-cloning, 1 ≤ i ≤ k, if it satisfies the following
conditions:

For each u = v, w, j = 1, . . . , i− 1, rj is covered by sj,i−1,u processes writing xj,i−1,u.

OPODIS 2015

12:8 On the Uncontended Complexity of Anonymous Consensus

For each u = v, w, there are at least (k2 − k + 2)/2 −
∑i−1

`=1
∑i−1

j=1 Ij,`,usj,`,u processes
that do not distinguish the execution from αi−1,u and, thus, cover base object ri with
value xi,i,u.
Each base object in {ri, . . . , rk} stores the initial value.

I Lemma 2. Let A be any n-process m-valued interval-solo-fast anonymous consensus
algorithm. If at most k distinct base objects are written in any solo execution of A, where
k < min(

√
n,Γ−1(m)), then A has a k-cloning configuration.

Proof. By induction on k, we construct a k-cloning configuration starting from the initial
configuration C0 of A.

We divide the processes in two groups of size at most (k2 − k + 2)/2 where every process
in one group proposes value v and every process in the other group proposes value w. This
is possible, since k <

√
n.

Base case. Let γ be the concatenation of executions of A in which, starting at C0, a process
runs in isolation until it is about to write to base object r1 for the first time. Recall that r1
is the first base object written in both αv and αw, so no process can distinguish γ from its
solo execution and, thus, gamma is indeed an execution of A.

It is easy to see that, since no process writes in γ, C1 = C0γ is a 1-cloning configuration.
Indeed, half of the processes cannot distinguish C0γ from α0,v and the other half from α0,w,
and all base objects are in their initial states.

As an induction hypothesis, consider an i-cloning configuration Ci, for some 1 ≤ i < k.
For each u ∈ {v, w} we then perform the following procedure.
First for each j = 1, . . . , i − 1, we let one of the processes covering rj with xj,i−1,u

complete its write. By the induction hypothesis, there are at least sj,i−1,u ≥ 1 such processes.
Then we wake up (k2−k+2)/2−

∑i−1
j=1

∑i−1
`=1 Ij,`,usj,`,u processes that cannot distinguish

the execution from αi−1,u and run them lock-step (without noticing each other) until they
are about to perform their write on ri+1. No such process can distinguish the execution from
αi,u, and thus, we indeed obtain an execution of A. If αi,u contains a write on some rm,
m = 1, . . . , i, after the last event of αi−1,u, then sm,i,u of these processes are stopped just
before they perform the last write on rm in αi+1,u. This can be done because Im,i,u = 1 for
every such m and

∑i
`=1

∑i−1
j=1 Ij,`,usj,`,u ≤

∑k−1
`=1

∑i−1
j=1 Ij,`,usj,`,u = (k2 − k)/2 < n/2.

Let γ be the resulting extension of Ci and Ci+1 = Ciγ be the resulting configuration.
Notice that all base objects in {ri+1, . . . , rk} still store the initial value in Ci+1.

Now consider any j = 1, . . . , i and u = v, w. If rj is not written in αi+1,u, then, by the
induction hypothesis and the construction of γ, rj is covered by sj,i,u = sj,i−1,u− 1 processes
writing xj,i,u = xj,i−1,u. Otherwise, by construction, rj is covered by sj,i,u processes writing
xj,i,u.

Finally, for each u ∈ {v, w}, since
∑i

j=1 Ij,i,usj,i,u additional processes are used to cover
base objects r1, . . . , ri, at least (k2 − k + 2)/2−

∑i
`=1

∑i
j=1 Ij,`,usj,`,u remaining processes

cannot distinguish Ciγ from C0αi and, thus, these processes must cover ri+1.
Hence, Ci+1 is (i+ 1)-cloning, and, by induction, A has a k-cloning configuration. J

I Theorem 3. Any n-process m-valued interval-solo-fast anonymous consensus algorithm
must have space complexity Ω(min(

√
n, logm/ log logm)) and solo-write complexity

Ω(min(
√
n, logm/ log logm)). Moreover, if the algorithm is input-oblivious, then the bounds

become Ω(
√
n).

C. Capdevielle, C. Johnen, P. Kuznetsov, and A. Milani 12:9

Proof. Suppose, by contradiction, that an n-process m-valued interval-solo-fast anonymous
consensus algorithm uses k base objects such that n = k2 − k + 2 and k < Γ−1(m).

By Lemma 2, there exists a k-cloning configuration Ck for some input values v and w.
Note that in Ck, for each u ∈ {v, w}, every base object rj , j = 1, . . . , k, is covered by exactly
sj,k−1,u = 1 process writing value xj,k−1,u. Also, exactly n/2 −

∑k−1
`=1

∑k−1
j=1 Ij,`,usj,`,u =∑k−1

j=1 (k − j) = k(k − 1)/2 + 1 − k(k − 1)/2 = 1 process cannot distinguish the execution
from αk−1,u and, thus, this process must cover rk with xk,k,u.

Now we take u ∈ {v, w}, and let the single process covering rj , j = 1, . . . , k − 1 with
value xj,k−1,u perform its write. Then we let the single process proposing u and covering rk

run solo. Notice that the process cannot distinguish the execution from αk,u and, thus, it
should eventually terminate by outputting value u.

In the resulting execution two different input values v and w are decided, implying a
contradiction.

Thus, since Γ−1(m) = Θ(logm/ log logm), the algorithm has a solo execution in which
Ω(min(

√
n, logm/ log logm)) distinct base objects are written. Moreover, if the algorithm is

input-oblivious, then a k-cloning configuration exists for any two values u and w, and the
lower bounds become

√
n. J

I Remark 4. Lemma 2 shows that having at least k2−k+2 processes is sufficient to construct
a k-cloning configuration and, thus, establish a contradiction. The lower bound can be
refined to (k2 − k)/2 + 2 if we alternate the executions of processes proposing v with the
executions of processes proposing w in each iteration of the inductive construction of Ck.
Indeed, if processes proposing w were the last to execute in the construction of Ci, then
every base object rj , j = 1, . . . , i − 1 stores xj,i−1,w, so in the next iteration, we may run
processes proposing w first without the need to use the processes covering rj with xj,i−1,w.
This allows us to spare half of the covering processes, implying (k2 − k)/2 + 2 processes in
total, which makes k closer to the upper bound

√
2n we present in the next section. For the

sake of simplicity, we chose to show the rougher (but asymptotically equivalent) lower bound.

4 Optimal interval-solo-fast consensus

In this section we present an algorithm that implements an interval-solo-fast consensus. This
algorithm is similar to the splitter-based consensus algorithm in [17], except that we replace
the splitter object with the value-splitter object that we introduce in this paper.

Value-splitters

A splitter provides processes with a single operation split() that returns a boolean response,
so that (i) if a process runs solo, it must obtain true and (ii) true is returned to at most one
process. A value-splitter exports a single operation split(v) (v ∈ V , for some input domain
V) and relaxes property (ii) of splitters by allowing multiple processes to obtain true as long
as they have the same input value. More precisely:

I Definition 5. A value-splitter supports a single operation, split() taking a parameter in V
and returning a boolean response, and ensures that, for all v, v′ ∈ V , and in every execution:
1. VS-Agreement. If invocations split(v) and split(v′) return true, then v = v′.
2. VS-Solo execution. If a split(v) operation completes before any other split(v′) operation

is invoked, then it returns true.

OPODIS 2015

12:10 On the Uncontended Complexity of Anonymous Consensus

We use a value-splitter object to construct an anonymous consensus algorithm. The
algorithm incurs only a constant overhead with respect to the implementation of the value-
splitter it uses and is interval-solo-fast assuming that the underlying value-splitter is interval-
solo-fast.

Then we describe two anonymous interval-solo-fast implementations of a value-splitter.
The first one is input-oblivious and exhibits O(

√
n) solo-write and space complexity, regardless

of the number m of possible inputs. The second one exhibits complexities O(logm/ log logm),
regardless of the number of processes n. The two algorithms provide a matching upper bound
to our Ω(min(

√
n, logm/ log logm)) lower bound.

4.1 Consensus using value-splitter
The pseudocode of our consensus algorithm is given in Algorithm 1. The value decided by
the consensus is written in a variable D, initially ⊥ /∈ V . The first steps by a process p are to
check if D stores a non-⊥ value and if yes, return this value. Otherwise, the process accesses
the value-splitter object V S.

If it obtains true from its invocation of V S.split(v), p writes its input value v in a register
F . Then, it reads a register Z to check if some other process has detected contention and if
the value of Z is false (no contention) p decides its own value. Before returning the decided
value, process p writes it in D. The write primitives on F and D, with a read of Z in between
are intended to ensure that either process p detects that some other process is around and
resorts to applying a CAS primitive on D, or the contending process adopts the input value
of p.

If p obtains false from the value-splitter, it sets Z to true (contention is detected). Recall
that this may happen if more than one process accessed the value-splitter, regardless of their
input values. Then, p reads register F and, if F stores a non-⊥ value, adopts the value as its
current proposal. Finally, it applies the CAS primitive on D with its proposal and decides
the value read in D.

Notice that, assuming that the value-splitter is interval-solo-fast, a process running in
the absence of interval contention reaches a decision applying only reads and writes.

In the following we prove that Algorithm 1 indeed implements interval-solo-fast consensus,
assuming that V S is an interval-solo-fast implementation of a value-splitter. We show that
such implementations exist in the next subsection.

Proofs of Algorithm 1

I Lemma 6 (Agreement). No two processes return different values.

Proof. Given that only values written to D can be returned, it is sufficient to show that at
most one value can be written in D.

By the algorithm D is updated in lines 14 and 6. Note that, since a CAS succeeds in
updating the value of D in line 14 only if D stores ⊥ and, since D is updated with a non-⊥
value in V , at most one process may succeed. D is updated at line 6 only if the corresponding
process obtains true from the value-splitter. By the VS-Agreement property of value-splitters,
at most one distinct value can be written in D in line 6.

Thus, the only possibility for two different values to be written in D is when one process
, say p, applies a CAS in line 14 and updates D with a value v and another process writes
v′ 6= v in D in line 6.

Note that p must have obtained false from the value-splitter, otherwise it would try to
update D with value v. Thus, before applying CAS on D, p has read F in line 11. We

C. Capdevielle, C. Johnen, P. Kuznetsov, and A. Milani 12:11

Shared variables:
D, F , initially ⊥
Z, initially false
value-splitter V S

Procedure: propose(v)
1 if (t := Read(D)) 6= ⊥ then return t

2 ;
3 if VS.split(v) then
4 Write(F, v);
5 if ¬(Read(Z)) then
6 Write(D, v);
7 return v

8 end
9 else

10 Write(Z, true);
11 if (t := Read(F)) 6= ⊥ then v := t;
12 ;
13 end
14 CAS(D,⊥, v);
15 res := Read(D);
16 return res

Algorithm 1: Interval-solo-fast consensus

establish the contradiction by showing that p must have necessarily read v′ in F and adopt
it as its preferred value (line 11).

By the VS-Agreement property of value-splitters, at most one non-⊥ value can be found
in F . Thus, since q has written v′ to F in line 4, the only possible case is that p reads F
before any other process writes to it. But then p has previously set the “contention flag” Z
to true in line 10. Therefore, after q writes v′ in F it must find Z set to true (“contention is
detected”) and resort to CAS instead of writing in D in line 6—a contradiction. J

I Lemma 7 (Interval-solo-fast). Any operation that runs in the absence of interval contention
applies only reads and writes.

Proof. If a process p invokes its propose operation and finds a non-⊥ value in D, then p

returns after having applied a single read on D, so the claim follows.
Otherwise, suppose that p initially finds D = ⊥ and applies the CAS primitive (line 14).

We show that there is an operation that overlaps with the propose of p.
By inspecting the pseudo-code, it is easy to see that p applies the CAS primitive only if

(1) it has read Z = true (line 5) or (2) it has obtained false from V S. In both cases, by the
VS-Solo Execution property, there must be another process q that has invoked V S.split(v)
before p has completed its Propose operation.

By the algorithm, before completing its operation, q writes its decided (non-⊥) value
in D. Given that p has initially found ⊥ in D, we deduce that the operation of q has not
completed before the operation of p has started.

Thus, the two operations overlap. The assumption that the value-splitter is interval-
solo-fast and the fact the algorithm contains no loops or waiting statements, implies the
claim. J

Finally, we use Lemmata 6 and 7 to prove:

OPODIS 2015

12:12 On the Uncontended Complexity of Anonymous Consensus

I Theorem 8. If V S is an interval-solo-fast implementation of a value-splitter, then Al-
gorithm 1 implements interval-solo-fast consensus with space complexity O(k) and solo-write
complexity O(s), where k is the space complexity and s is the solo-write complexity of V S.

The complexity claims follow directly from the pseudo-code.

4.2 Interval-solo-fast value-splitter implementations
Input-oblivious value-splitter

Algoritm 2 describes our anonymous and input-oblivious implementation of a value-splitter.
The algorithm only uses an array R of k registers where k2 − 3k + 6 > 2n and is, trivially,
interval-solo-fast. Thus, by Theorem 3, the space complexity of the algorithm is asymptotically
optimal.

In the algorithm, a process p performing operation split(v) tries to write its input value
to registers R[0], . . . , R[k − 1]. Each time, before writing to R[i], p reads i+ 1 registers to
verify that R[0], . . . , R[i− 1] store v and R[i] stores the initial value ⊥. If this is not the case,
contention is detected and the operation returns false. After the last write to R[k − 1], the
operation returns true. Note that several processes proposing the same value and executing
lock-step may return true.

Shared variables:
Array of registers R[0 . . . k − 1] with k2 − 3k + 6 > 2n. Initially ⊥
Procedure: split(v)

1 Lastwritten := −1;
2 while (Lastwritten ≤ k − 1) do
3 i := 0;
4 while (i ≤ Lastwritten) do
5 if Read(R[i]) 6= v then return false

6 ;
7 i+ +;
8 end
9 if Read(R[Lastwritten + 1]) 6= ⊥ then return false;

10 ;
11 Lastwritten + +;
12 Write(R[Lastwritten], v);
13 end
14 return true;
15 B

Algorithm 2: Anonymous and input-oblivious value-splitter

Note also that the solo-write complexity of Algorithm 2 is k = O(
√
n). Since, for i = 1

to k, in the ith iteration, a process reads i registers, the algorithm also has optimal step
complexity of O(n) [1].

The following lemma will be instrumental in showing that Algorithm 2 satisfies the
VS-Agreement property.

I Lemma 9. If an execution E, two processes p and q write in R[i] and R[i+ 1] for some
0 < i < k − 1, two different values v and w, then there is a set Pi of at least i processes
(different from p and q) and the following conditions are satisfied: (1) at the configuration
that immediately succeeds the last write operation executed by processes in Pi, R[i+ 1] = ⊥;
(2) E passes through a configuration C such that R[i] 6= ⊥ in C and each process in Pi

executes exactly one write operation after C.

C. Capdevielle, C. Johnen, P. Kuznetsov, and A. Milani 12:13

time line

q reads w from R[j]p reads v from R[j]p writes v into R[i]

p
j
 writes w into R[j]

C'

Between the two read operations p
j
 has written

C' is the first configuration that follows the read R[i+1]=? by p and q : R[i+1]=?

p writes in R[i] before reads in R[j] : R[i]≠?

Figure 3 Execution for Lemma 9, assuming that p reads R[j] before q.

Proof. Fix an i such that 0 < i < k − 1 and let p and q be two processes that write,
respectively, values v and w in both R[i] and R[i+ 1], where v 6= w.

By the pseudocode of Algorithm 2, before writing in R[i+1], a process reads R[0], R[1], . . . ,
R[i+ 1], and the value it reads from R[j] is its input value for 0 ≤ j ≤ i and the initial value
for j = i+ 1.

Consider the sequences of read operations executed by p and q, respectively, after their
write in R[i] and before writing in R[i+ 1]. Let C ′ be the configuration immediately after
both p and q perform their reads of R[i+ 1] that return ⊥ in E. By the algorithm, writes in
R[i+ 1] by both p and q follow C ′ in E.

Also, since for each j = 0, . . . , i − 1 p reads v in R[j] and q reads w in R[j], there is a
process pj that has written in R[j] between these two read operations. We show that this
is the last write of pj . Indeed, before performing the next write (on R[j + 1]), pj reads
all registers and in particular it will read R[i], where i > j. Since the write by pj follows
the read on R[j] either by process p or by process q, it follows the write into R[i] by the
corresponding process. Thus, in the configuration immediately before the write into R[j] by
pj we have R[i] 6= ⊥. The check in line 9 implies that pj cannot write to any register after
R[j]. Note that pj must be different from p and q: otherwise, we contradict the fact that
both p and q write in R[i], i > j.

Finally, since the last write operation of pj preceeds configuration C ′, at the configuration
immediately after this write R[i+ 1] stores the initial value. This is illustrated in Figure 3
for the case when p reads R[j] before q. Moreover, for each j, ` ∈ {0, 1, . . . i− 1} with j 6= `,
pj 6= pl. Thus, the set Pi of i processes pj , j = 1, . . . , i− 1, satisfies the two conditions of the
lemma. J

I Lemma 10 (VS-Agreement). If invocations split(v) and split(v′) return true, then v = v′.

Proof. Suppose, by contradiction, that split(v) invoked by process p and split(w) invoked by
process q both return true with v 6= w. Recall that a process has to write its input value in
all the registers to return true. Then for each 0 ≤ i ≤ k − 1, p and q have written in register
R[i] the value v and w respectively. For each i = 1, . . . k − 2, let Pi be the i processes, as
defined in Lemma 9.

Consider any two set Pi, Pj , 0 < i < j < k − 1. We show that Pi ∩ Pj = ∅. Indeed, by
the definition of Pi, in the configuration when the processes in Pi have completed all their
writes, R[i + 1] stores ⊥ and, by the algorithm, since j > i, R[j] also stores ⊥. But, by
the definition of Pj , each process in Pj has executed a write operation after a configuration
where R[j] 6= ⊥. Thus, Pi and Pj are disjoint.

OPODIS 2015

12:14 On the Uncontended Complexity of Anonymous Consensus

Recall p and q write to R[k − 1] and, thus, do not belong to ∪k−2
i=1 Pi. Hence, we have at

least 2 +
∑k−2

i=1 i = 2 + k2−3k+2
2 processes in total, which contradicts the hypothesis that

k2 − 3k + 6 > 2n. J

I Theorem 11. Algorithm 2 is an interval-solo-fast anonymous input-oblivious implementa-
tion of a value-splitter with solo-write and space complexities in O(

√
n).

Proof. Since only read-write registers are used, the algorithm is trivially interval-solo-fast.
By Lemma 10, the algorithm satisfies the VS-Agreement property. We prove in the

following that the VS-Solo execution property is also satisfied. Consider any solo execution E
in which a split(v) by a process p completes and suppose, by contradiction, that the operation
returns false. By inspecting the pseudocode, it is easy to see that the value of Lastwritten
is equal to the index of the last register p wrote or to −1 if no such writes exists. To return
false p has either read a value different from its input (line 5) or a value different from ⊥
in a register p has not yet written (line 9). But this contradicts the fact that E is a solo
execution. Thus, the algorithm satisfies the Solo-Execution property of value-splitters. J

Non-input-oblivious value-splitter

For completeness, we briefly describe an anonymous value-splitter algorithm based on earlier
work [1] that exhibits O(logm/ log logm) complexity.

A trivial adaptation of the weak conflict-detector proposed in [1] implements an
interval-solo-fast value-splitter. A weak conflict-detector exports a single operation check(v)
with an input v and return true (conflict is detected) or false (no conflict is detected). If no
two operations are invoked with different inputs, then no operation returns true, otherwise,
at least one operation returns false.

Our value-splitter implementation presented in Algorithm 3 is obtained by the weak
conflict-detector algorithm in [1], where the output is determined as the negation of the
outcome of the weak conflict-detector.

Shared variables:
Registers R[1..k], initially ⊥
Procedure: split(v)

1 for i := 1..k do
2 t := Read(R[πv(i)]);
3 if t = ⊥ then Write(R[πv(i)], v);
4 ;
5 if t 6= v then return false;
6 ;
7 end
8 return true;

Algorithm 3: Non-input-oblivious value-splitter

The algorithm uses an array R of k registers, where k! = m. Each input value v of a split
operation determines a unique permutation πv of the registers in R that is used as the order
in which the processes access the registers. Therefore, the algorithm is not input-oblivious.
In its i-th access, a process executing split(v) first reads register R[πv(i)]; if ⊥ is read, the
process writes v to it; If a value v′ 6= v is read, it returns false (contention is detected). If the
process succeeds in writing v in all registers prescribed by πv, it returns true. The algorithm
is also trivially anonymous and interval-solo-fast.

C. Capdevielle, C. Johnen, P. Kuznetsov, and A. Milani 12:15

I Theorem 12. Algorithm 3 implements anonymous interval-solo-fast m-valued value-splitter
with solo-write and space complexity in O(logm/ log logm).

Proof. If an operation split(v) runs solo, then no value other than v can be found in any
R[πv(i)] (line 2). Thus the VS-Solo Execution property is ensured.

Suppose, by contradiction, that two operations, split(v), performed by pv, and split(v′),
performed by pv′ , return true. Let j, ` be two indexes in {1, . . . , k} such that j appears
before ` in πv but ` appears before j in πv′ . By the algorithm, before returning true, pv and
pv′ have read, respectively, v and v′ in both R[j] and R[`].

Without loss of generality, let v be written to R[j] before v′ is written to R[`]. By the
algorithm, before any process performing split(v′) reads R[j] in line 2 (and, thus, writes v′
to R[j] in line 4), v′ has been written to R[`], and, by the assumption, v has been written to
R[j]. Hence, the process will not find ⊥ in R[j] and will not write to R[`]—a contradiction.
Therefore, the algorithm satisfies the VS-Agreement property.

Since every operation performs k writes and k reads, where k! = m, the step and space
complexities of the algorithm are O(logm/ log logm). J

5 Concluding remarks

In this paper, we present matching lower and upper bounds Θ(min(
√
n, logm/ log logm))

on the space and solo-write complexity of anonymous interval-solo-fast consensus, which
appears to be one of the first non-trivial tight bound for consensus, along with a concurrent
result on the space complexity of solo-terminating anonymous consensus [8]. Given that
non-anonymous interval-solo-fast algorithms can be achieved with only constant space and
step complexities [17], our results exhibits a complexity gap between anonymous and non-
anonymous consensus. The proof of our lower bound is based on constructing executions in
which no process is aware of interval contention and, thus, the lower bounds also apply to
abortable [2, 11] consensus algorithms, where operations are allowed to return a specific abort
response when interval contention is detected, and be-reinvoked later. An interesting open
question is whether a matching abortable consensus algorithm can be found.

References
1 James Aspnes and Faith Ellen. Tight bounds for adopt-commit objects. Theory of Com-

puting Systems, 55(3):451–474, 2014. doi:10.1007/s00224-013-9448-1.
2 Hagit Attiya, Rachid Guerraoui, Danny Hendler, and Petr Kuznetsov. The complexity of

obstruction-free implementations. J. ACM, 56(4), 2009.
3 Zohir Bouzid, Pierre Sutra, and Corentin Travers. Anonymous agreement: The janus

algorithm. In Principles of Distributed Systems – 15th International Conference, OPODIS
2011, Toulouse, France, December 13-16, 2011. Proceedings, pages 175–190, 2011. doi:
10.1007/978-3-642-25873-2_13.

4 Harry Buhrman, Juan A. Garay, Jaap-Henki Hoepman, and Mark Moir. Long-lived renam-
ing made fast. In Proceedings of the Fourteenth Annual ACM Symposium on Principles of
Distributed Computing, PODC’95, pages 194–203, 1995.

5 Claire Capdevielle, Colette Johnen, Petr Kuznetsov, and Alessia Milani. Brief Announce-
ment: On the Uncontended Complexity of Anonymous Consensus. In DISC, October 2015.

6 Faith Fich, Maurice Herlihy, and Nir Shavit. On the space complexity of randomized
synchronization. J. ACM, 45(5):843–862, September 1998.

7 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, April 1985.

OPODIS 2015

http://dx.doi.org/10.1007/s00224-013-9448-1
http://dx.doi.org/10.1007/978-3-642-25873-2_13
http://dx.doi.org/10.1007/978-3-642-25873-2_13

12:16 On the Uncontended Complexity of Anonymous Consensus

8 Rati Gelashvili. On the Optimal Space Complexity of Consensus for Anonymous Processes.
In DISC, October 2015.

9 George Giakkoupis, Maryam Helmi, Lisa Higham, and Philipp Woelfel. An o(sqrt n) space
bound for obstruction-free leader election. In Distributed Computing – 27th International
Symposium, DISC 2013, Jerusalem, Israel, October 14-18, 2013. Proceedings, pages 46–60,
2013. doi:10.1007/978-3-642-41527-2_4.

10 Rachid Guerraoui and Eric Ruppert. Anonymous and fault-tolerant shared-memory com-
puting. Distributed Computing, 20(3):165–177, 2007. doi:10.1007/s00446-007-0042-0.

11 Vassos Hadzilacos and Sam Toueg. On deterministic abortable objects. In Proceedings of
the 2013 ACM Symposium on Principles of Distributed Computing, PODC’13, pages 4–12,
New York, NY, USA, 2013. ACM. doi:10.1145/2484239.2484241.

12 Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems, 13(1):123–149, January 1991.

13 Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free synchronization:
Double-ended queues as an example. In ICDCS, pages 522–529, 2003.

14 Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

15 Leslie Lamport. A fast mutual exclusion algorithm. ACM Trans. Comput. Syst., 5(1):1–11,
January 1987.

16 M.C. Loui and H.H. Abu-Amara. Memory requirements for agreement among unreliable
asynchronous processes. Advances in Computing Research, 4:163–183, 1987.

17 Victor Luchangco, Mark Moir, and Nir Shavit. On the uncontended complexity of con-
sensus. In FaithEllen Fich, editor, Distributed Computing, volume 2848 of Lecture Notes
in Computer Science, pages 45–59. Springer Berlin Heidelberg, 2003. doi:10.1007/
978-3-540-39989-6_4.

18 Mark Moir and James H. Anderson. Wait-free algorithms for fast, long-lived renaming. Sci.
Comput. Program., 25(1):1–39, October 1995. doi:10.1016/0167-6423(95)00009-H.

http://dx.doi.org/10.1007/978-3-642-41527-2_4
http://dx.doi.org/10.1007/s00446-007-0042-0
http://dx.doi.org/10.1145/2484239.2484241
http://dx.doi.org/10.1007/978-3-540-39989-6_4
http://dx.doi.org/10.1007/978-3-540-39989-6_4
http://dx.doi.org/10.1016/0167-6423(95)00009-H

	Introduction
	Preliminaries
	Lower bounds for interval-solo-fast consensus
	Optimal interval-solo-fast consensus
	Consensus using value-splitter
	Interval-solo-fast value-splitter implementations

	Concluding remarks

