
Approximation Algorithms for Parallel Machine
Scheduling with Speed-Up Resources
Lin Chen1, Deshi Ye2, and Guochuan Zhang3

1 Institute for Computer Science and Control, Hungarian Academy of Sciences
(MTA SZTAKI), Budapest, Hungary
chenlin198662@gmail.com

2 Zhejiang University, College of Computer Science, Hangzhou, China
yedeshi@zju.edu.cn

3 Zhejiang University, College of Computer Science, Hangzhou, China
zgc@zju.edu.cn

Abstract
We consider the problem of scheduling with renewable speed-up resources. Given m identical ma-
chines, n jobs and c different discrete resources, the task is to schedule each job non-preemptively
onto one of the machines so as to minimize the makespan. In our problem, a job has its original
processing time, which could be reduced by utilizing one of the resources. As resources are dif-
ferent, the amount of the time reduced for each job is different depending on the resource it uses.
Once a resource is being used by one job, it can not be used simultaneously by any other job until
this job is finished, hence the scheduler should take into account the job-to-machine assignment
together with the resource-to-job assignment.

We observe that, the classical unrelated machine scheduling problem is actually a special
case of our problem when m = c, i.e., the number of resources equals the number of machines.
Extending the techniques for the unrelated machine scheduling, we give a 2-approximation al-
gorithm when both m and c are part of the input. We then consider two special cases for the
problem, with m or c being a constant, and derive PTASes (Polynomial Time Approximation
Schemes) respectively. We also establish the relationship between the two parameters m and c,
through which we are able to transform the PTAS for the case when m is constant to the case
when c is a constant. The relationship between the two parameters reveals the structure within
the problem, and may be of independent interest.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics

Keywords and phrases approximation algorithms, scheduling, linear programming

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.5

1 Introduction

We consider a natural generalization of the classical scheduling problem in which there are
multiple different resources available. Each job has an original processing time which may be
reduced by utilizing one of the resources. Since resources are different, the amount of the
time reduced for each job is different depending on the resource it uses. It is a hard constraint
that the usage of the resources does not conflict, that is, once a specific resource is being
used by some job, it becomes unavailable to all the other jobs until this job is completed.
Consequently a good schedule not only needs to choose the right machine and resource for
each job but also needs to sequence jobs on each machine in a proper way such that the
usage of each resource does not conflict.

© Lin Chen, Deshi Ye, and Guochuan Zhang;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 5; pp. 5:1–5:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 Approximation Algorithms for Parallel Machine Scheduling with Speed-Up Resources

The problem arises naturally in production logistics where a task not only relies on the
machine but also on the personnel it is assigned to. It also has its own right from a theoretical
point of view. As we will provide details later, this problem is a special case of the general
multiprocessor task scheduling problem (P |set|Cmax), which does not admit any constant
ratio approximation algorithm [2], and meanwhile a generalization of the unrelated machine
scheduling problem (R||Cmax), for which a 2-approximation algorithm stands for more than
two decades [11].

We give a formal description of our model. There are m parallel identical machines, n
jobs and c discrete resources. Each job j has a processing time pj and has to be processed
non-preemptively on one of the machines. This processing time might be reduced by utilizing
a resource. Specifically, when resource k is allocated to job j then its processing time becomes
pjk. At most one resource could be allocated to a job and once a resource, say resource k, is
being used by job j, then it can no longer be used by any other job during the time interval
where job j is processed. Throughout this paper, we do not necessarily require pjk ≤ pj . We
assume all parameters are taking integral values.

As we have described, in our model jobs could be processed with or without a resource.
However, we always assume that each job is processed with a resource unless otherwise
specified. Such an assumption causes no loss of generality since we could always introduce m
dummy resources (that could not alter the processing time of any job), one for each machine,
and jobs scheduled on a machine without a resource could then be viewed as processed with
the dummy resource corresponding to this machine. This assumption works for the case that
c, the number of resources, is part of the input. For the case that c is a constant, we return
to the original assumption that the usage of resources is optional.

Related work. One special case of our problem with c = 1 and m = 2 is considered in [12],
in which an FPTAS (Fully Polynomial Time Approximation Scheme) is derived. Another
related problem is considered in [10], in which c = 1 again, but the machines are dedicated,
i.e., for each job the processing machine is known in advance. For the two-machine case,
they prove that the problem is NP-hard but admits an FPTAS. For an arbitrary number of
machines, they give a 3/2-approximation algorithm. Moreover, a PTAS is designed for a
constant number of machines.

Another closely related model is that a job can be given several resources and yet all
resources are identical, so the processing time of each job does not depend on which resource
but the number of resources it uses. For this problem on unrelated machines, Grigoriev et
al. [3] give a (3.75 + ε)-approximation algorithm. On identical machines, Kellerer [9] gives a
(3.5 + ε)-approximation algorithm, which is improved very recently by Jansen, Maack and
Rau [4] to an asymptotic PTAS.

Our problem is a generalization of the classical unrelated machine scheduling problem,
denoted as R||Cmax, in which each job j has a (machine dependent) processing time pij if
it is processed on machine i. Indeed, if the number of machines is equal to the number of
resources, i.e. m = c, and pj =∞ (indeed, it suffices to have pj >

∑
i,j′ pij′ , as in this case a

schedule that does not process job j with any resource is never optimal), then our problem
is equivalent to the unrelated machine scheduling problem. To see why, notice that given
any feasible solution of our problem, we can rearrange jobs so that all jobs using the same
resource, say, k, are scheduled on machine k. By doing so the makespan is not increased,
and meanwhile the new solution is a feasible solution of the unrelated machine scheduling
problem in which machine k is one of the unrelated machines which processes job j with
time pjk. The current best-known approximation ratio for the unrelated scheduling problem

L. Chen, D. Ye, and G. Zhang 5:3

is 2 if m is part of the input, whereas no approximation algorithm could achieve a ratio
strictly better than 2, assuming P 6= NP [11]. If m is a constant, an FPTAS exists [7] and
its current best running time is O(n) + (logm/ε)O(m logm) [5].

Meanwhile, our problem is also a special case of the general multiprocessor task scheduling
problem, denoted as P |set|Cmax, in which each task (job), say, j, could be processed
simultaneously on multiple machines, and its processing time is pj,S where S is the set of
machines we choose to process it. To see why our problem is a special case, we view each
resource as a special machine which we call a resource machine, and each job could either be
processed on a normal machine with processing time pj , or processed simultaneously on a
normal machine i and some resource machine k, with pj,{i,k} = pjk. Thus our problem could
be transformed to a multiprocessor task scheduling problem with m+ c machines. There is
a PTAS for the general multiprocessor task scheduling problem if the number of machines is
a constant, and no constant ratio approximation algorithm exists if the number of machines
is part of the input [2][6]. This result implies that for our problem, if both the number of
resources and the number of machines are constants, then there is a PTAS.

Our contribution. We study the scheduling problem with speed-up resources. As we have
mentioned, it is an intermediate model between the general model P |set|Cmax and the
classical unrelated machine scheduling R||Cmax. We hope our research could bridge the
study of these two well-known models and leads to a better understanding of them.

In this paper, we give the first 2-approximation algorithm when the number of machines
m and resources c are both part of the input. We then consider two special cases with either
m or c being a constant, and provide PTASes, respectively.

For the general case, we observe that the natural LP (Linear Programming) formulation
of the problem has too many constraints, whereas its extreme point solution may split too
many jobs which causes the classical rounding technique from [11] inapplicable. To handle
this, the key idea is to iteratively remove constraints from the LP. We will iteratively modify
the fractional solution such that either we get a new solution with fewer split jobs (which
is the same as the traditional rounding), or we get a new solution for which we need fewer
constraints to characterize it.

Given the lower bound of 1.5 for the unrelated machine scheduling problem R||Cmax, and
hence also for our problem, PTASes are only possible for special cases. We first consider the
case when m is a constant and present a PTAS. To achieve this, we first determine (through
enumeration) the scheduling of a constant number of jobs, and then handle the scheduling of
remaining jobs by formulating it as an LP. We prove that, the LP we construct has a special
structure which enforces that only a constant number among its huge number (non-constant)
of constraints could become tight and correspond to an extreme point solution. Using this
fact we are able to make use of the classical rounding technique from [11] to derive a PTAS.

We then consider the case when c is a constant. We establish an interesting relationship
between this special case and the case when m is a constant. Indeed, we show that it suffices
to consider solutions where all jobs using resources are scheduled only on O(c) machines.
Thus, this special case is a combination of scheduling with resources on O(c) machines,
together with the classical scheduling without resources on the remaining m−O(c) machines.

2 General case

In this section, we consider the problem when the number of machines and resources, i.e., m
and c, are both part of the input and give a 2-approximation algorithm. Recall that we can
assume every job is processed with one resource.

APPROX/RANDOM’16

5:4 Approximation Algorithms for Parallel Machine Scheduling with Speed-Up Resources

We start with a natural LP formulation of this problem. Let xijk = 1 denote that job j is
processed on machine i with resource k, and xijk = 0 otherwise. We first ignore the disjoint
condition, i.e., the usage of each resource is not in conflict, and establish the following LPr.

m∑
i=1

c∑
k=1

xijk = 1 ∀j (1a)

m∑
i=1

n∑
j=1

pjkxijk ≤ T ∀k (1b)

n∑
j=1

c∑
k=1

pjkxijk ≤ T ∀i (1c)

0 ≤ xijk ≤ 1 (1d)
xijk = 0 if pik > T. (1e)

Constraint (1a) ensures that every job is scheduled. Constraint (1b) ensures that the total
processing time of jobs processed with the same resource k does not exceed T . Constraint (1c)
ensures that the total processing time of jobs on each machine does not exceed T . Through
binary search we can find the minimum integer T = T ∗ such that LPr admits a feasible
solution, which is obviously a lower bound on the optimal solution. We denote by x∗ the
fractional solution of LPr for T = T ∗. Our rounding technique tries to make x∗ into an
integral solution so that (1b) and (1c) could be violated but not much, and the disjoint
condition becomes respected, i.e., the disjoint condition which is not met by the LPr will be
achieved via rounding.

We remark that in the classical unrelated machine scheduling problem, the LP relaxation
has only n+m constraints, hence in its extreme point solution only m jobs would get split.
By re-assigning these jobs to m machines, one per machine, a 2-approximation solution
is derived. However, our LPr has n + m + c constraints. Its extreme point solution may
cause m+ c jobs to be split, which is too many for carrying out the subsequent re-assigning
procedure. To handle this, the key idea of our rounding procedure is to reduce the number
of constraints via well structured fractional solutions.

In the following we define well structured solutions as well as its rank, both of which are
crucial for our rounding procedure.

Given any fractional solution x when T = T ∗, we can compute the fraction of job j

processed with resource k through xjk =
∑m
i=1 xijk ∈ [0, 1]. We call x̂ = (xjk) a semi-solution

to LPr.
Obviously it holds for every resource k that

∑n
j=1

∑m
i=1 pjkxijk =

∑n
j=1 pjkxjk ≤ T ∗. We

say resource k is saturated with respect to x̂ (and also x) if the equality holds. The number
of saturated resources is called the degree of x̂ (and x), and denoted as d(x̂) (= d(x)).

We call
∑n
j=1 pjkxjk the load of resource k. A semi-solution is called feasible, if the load

of each resource is no greater than T ∗, and the total load of all resources is no greater than
mT ∗. Obviously any feasible solution of LPr implies a feasible semi-solution. On the other
hand, any feasible semi-solution also implies a feasible solution of LPr through the following
Direct Schedule. (For simplicity we suppose resource 1 to resource d = d(x̂) are saturated.)

Direct schedule
1. For 1 ≤ k ≤ d, put (fractions of) jobs using resource k onto machine k.
2. For k > d, put (fractions of) jobs using unsaturated resources arbitrarily onto machine

d+ 1 to machine m such that the load of each machine is no greater than T ∗.

L. Chen, D. Ye, and G. Zhang 5:5

Consequently, each solution has its corresponding semi-solution, and vice versa.
A semi-solution x̂ (and also its corresponding solution x) is called well structured, if every

job uses at most one unsaturated resource. We have the following lemma.

I Lemma 1. Given a feasible semi-solution x̂, a feasible well structured semi-solution x̂′ can
be constructed such that d(x̂′) ≥ d(x̂).

Proof. For each job j, if it uses two or more unsaturated resources, then xj,k1 > 0 and
xj,k2 > 0 for some unsaturated resources k1 and k2. For simplicity we assume the total load
of jobs using the two resources are L1 and L2 respectively.

Suppose without loss of generality pj,k1 ≤ pj,k2 , we can choose δ = min{xj,k2 ,
T∗−L1
pj,k1

}
and replace xj,k1 and xj,k2 with xj,k1 + δ and xj,k2 − δ respectively. By doing so either
resource k1 becomes saturated or xj,k2 becomes 0. In both cases the number of unsaturated
resources used by job j is decreased by one. Notice that by altering x̂ in this way, the total
processing time of all jobs does not increase and the load of each resource is still no greater
than T ∗.

We iteratively apply the above procedure until every job uses at most one unsaturated
resource, and a feasible well structured semi-solution x̂′ with d(x̂′) ≥ d(x̂) is derived. J

Now we are able to define the rank of a well structured (semi-)solution.
Again we assume that resource 1 to resource d(= d(x̂)) are saturated. A bipartite graph

G(x̂) = (V1(x̂) ∪ V2(x̂), E(x̂)) corresponding to x̂ is constructed in the following way.
We let V1(x̂) = {J1, J2, · · · , Jn} be the set of job nodes. If d < m, then V2(x̂) =

{R0, R1, R2, · · · , Rd} with nodes R1 to Rd corresponding to the saturated resources, and R0
corresponding to all the unsaturated resources. Otherwise d = m, then there is no unsaturated
resources and V2(x̂) = {R1, R2, · · · , Rd}. Let xj0 =

∑c
k=d+1

∑m
i=1 xijk =

∑c
k=d+1 xjk ∈

[0, 1] if R0 exists. For 0 ≤ k ≤ d, there is an edge (j, k) ∈ E(x̂) if and only if 0 < xjk < 1.
Additionally, if there are any isolated nodes, we simply remove them (from V1(x̂)). This

completes the construction of G(x̂) for x̂.
The rank of a well structured semi-solution x̂ is defined as r(x̂) = |E(x̂)|+m− d(x̂).
The rank will serve as a potential function which allows us to iteratively round an initial

feasible solution until a certain criterion is satisfied. Indeed, we have the following.

I Lemma 2. Given a well structured semi-solution x̂ and its corresponding graph G(x̂) =
(V1(x̂) ∪ V2(x̂), E(x̂)), let Gi(x̂) = (V i1 (x̂) ∪ V i2 (x̂), Ei(x̂)) be any of its connected component.
If |Ei(x̂)| > |V i1 (x̂)|+ |V i2 (x̂)|, then a well structured solution x̂′ of LPr with a lower rank
(i.e. r(x̂′) ≤ r(x̂)− 1) can be constructed in polynomial time.

Given the above lemma, we are able to show the following key theorem, which directly
implies a 2-approximation algorithm.

I Theorem 3. Let x∗ be the fractional solution of LPr as we define before. Then an integer
solution xIP = (xIPijk) for the following Integer Programming can be derived in polynomial
time.

m∑
i=1

c∑
k=1

xijk = 1 ∀j

n∑
j=1

m∑
i=1

pjkxijk ≤ T ∗ + pmax ∀k

n∑
j=1

c∑
k=1

pjkxijk ≤ T ∗ + pmax ∀i

xijk ∈ {0, 1}

APPROX/RANDOM’16

5:6 Approximation Algorithms for Parallel Machine Scheduling with Speed-Up Resources

Here pmax = maxj,k{pjk|x∗ijk 6= 0}. And moreover, we could schedule jobs in a proper
sequence on each machine so that the disjoint condition is also satisfied. Hence the makespan
of the generated schedule is at most twice the optimal solution.

3 The special case with a constant number of machines

In this section, we show that the problem admits a PTAS if the number of machines m is a
given constant. Again, we assume that every job is processed with one resource.

Let p̄j = min{pj1, · · · , pjc} be the shortest possible processing time of job j and we call
it the critical processing time. The resource with which the processing time of job j achieves
p̄j is then called the critical resource of j (if there are multiple such resources, we choose
arbitrarily one). We sort jobs so that p̄1 ≥ p̄2 ≥ · · · ≥ p̄n. Consider the first q jobs where q
is some constant to be fixed later, we call them critical jobs, and others non-critical jobs.

Notice that we have a 2-approximation algorithm for the general case, thus we can
compute some value T such that the makespan of the optimum solution (i.e., OPT) falls
in [T/2, T]. We provide an algorithm such that given any t ∈ [T/2, T] and a small positive
ε > 0, it either determines that OPT > t, or produces a feasible schedule with makespan
bounded by t+O(εT).

The basic idea of the algorithm is simple. We first determine (through enumeration) the
scheduling of all the critical jobs. For each possible scheduling of the critical jobs, we set up
an LP (Linear Programming) for the remaining jobs. If such an LP does not admit a feasible
solution, then OPT > t. Otherwise we compute its extreme point solution and show that in
such a solution only a constant number (depending on q and ε) of jobs get split. Finally we
show how to construct a feasible schedule based on such a solution.

Configuration schedules. Let λ = 1/ε be an integer. Let ST = {0, T ε/q, 2Tε/q, · · · , T +
2Tε} be the set of scaled time points (and hence |ST | = λq + 2q + 1). Given a schedule, the
processing interval of job j is defined to be the interval (uj , vj) such that the processing of j
starts at time uj and ends at time vj . We say two jobs overlap if they use the same resource
and the intersection of their processing interval is nonempty.

A container for a critical job, say, j, is a four-tuple ~vj = (i, kj , aj , bj) where 1 ≤ i ≤ m,
1 ≤ kj ≤ c, aj , bj ∈ ST . It implies that job j is processed with resource kj on machine i
during the time window (aj , bj) (i.e., its processing interval (uj , vj) is a subset of (aj , bj)),
and furthermore, no other jobs are processed during (aj , bj) on machine i.

Obviously there are mc(λq + 2q + 1)2 different kinds of containers. A configuration is
then a list of containers for all the critical jobs, namely (~v1, ~v2, · · · , ~vq). It can be easily seen
that there are at most mqcq(λq + 2q + 1)2q different configurations.

A feasible schedule is called a configuration schedule if we can compute a container for
each critical job. Notice that this is not always the case since aj , bj ∈ ST , and it is possible
that any interval (aj , bj) during which the critical job j is processed contains some other
jobs. Nevertheless, with O(ε)-loss we can focus on configuration schedules, as is implied by
the following lemma.

I Lemma 4. Given a feasible schedule of makespan t, there exists a feasible configuration
schedule with makespan no more than t+ 2Tε.

Linear Programming for non-critical jobs. Lemma 4 ensures the existence of a configuration
schedule whose makespan is bounded by OPT + 2Tε. Thus for any t ∈ [T/2, T], if t ≥ OPT
then there exists a configuration schedule whose makespan is bounded by t+ 2Tε.

L. Chen, D. Ye, and G. Zhang 5:7

Recall that there are η ≤ mqcq(λq + 2q + 1)2q different configurations. Let them be CF1,
CF2, · · · , CFη. For each configuration, say, CFκ, the scheduling of critical jobs are fixed. In
the following we set up a linear programming LPm(CFκ) for the remaining jobs.

Suppose according to CFκ there are ζ ≤ 2q different container points (i.e., the time point
when a container starts or ends). We sort them in increasing order as t1 < t2 < · · · < tζ . We
plug in tζ+1 = t+ 2Tε and t0 = 0.

During each interval (ti, ti+1) (0 ≤ i ≤ ζ), if there is a critical job being processed on a
machine, then this machine is called occupied. Otherwise we call it a free machine. Let Mi

be the set of free machines during (ti, ti+1). Similarly during each interval (ti, ti+1), each
resource is either used by a critical job or is not used. Let Ri be the set of resources that are
not used during (ti, ti+1).

Recall that we sort jobs such that p̄1 ≥ p̄2 ≥ · · · ≥ p̄n, and the remaining non-critical
jobs are job q + 1 to job n. We set up a linear programming LPm(CFκ) as follows.

ζ∑
i=0

∑
k∈Ri

xijk = 1, q + 1 ≤ j ≤ n (2a)

n∑
j=q+1

∑
k∈Ri

pjkxijk ≤ (ti+1 − ti)|Mi|, 0 ≤ i ≤ ζ (2b)

n∑
j=q+1

pjkxijk ≤ ti+1 − ti, 0 ≤ i ≤ ζ, k ∈ Ri (2c)

xijk ≥ 0, 0 ≤ i ≤ ζ, q + 1 ≤ j ≤ n, k ∈ Ri (2d)

Here xijk denotes the fraction of job j processed during (ti, ti+1) with resource k. Constraint
(2a) ensures that each non-critical job is scheduled. Since during time interval (ti, ti+1), only
|Mi| machines are free, thus the total load (processing time) of non-critical jobs should not
exceed (ti+1 − ti)|Mi|, which is implied by (2b). Furthermore, during this interval, the total
load of non-critical jobs using any resource k ∈ Ri is no greater than ti+1 − ti (otherwise the
disjoint condition is violated), as is implied by (2c).

As long as t ≥ OPT , among all the configurations there exists some CFκ such that
LPm(CFκ) admits a feasible solution. If there is no such a configuration, then we conclude
that t < OPT . Otherwise, we show a feasible schedule with makespan t + 3tε could be
generated.

I Lemma 5. Let x be an extreme point solution of LPm(CFκ) for some κ, then we have
|{j|0 < xijk < 1 for some i, k}| ≤ (m + 1)(2q + 1), i.e., at most (m + 1)(2q + 1) jobs are
split.

Proof. Suppose there are ψ ≥ n− q non-zero variables in the extreme point solution, then
they correspond to exact ψ tight constraints among constraints (1), (2) and (3).

Notice that constraints (1) and (2) are composed of n− q and ζ + 1 different inequalities
respectively, while constraint (3) is made up of (ζ + 1)c inequalities. We show that, among
the ψ equalities (tight constraints), at most m(ζ + 1) ones could be from (3). To see
why, consider each 0 ≤ i ≤ ζ. For any i, there are at most |Mi| ≤ m equalities from (3)
since otherwise, the constraint

∑n
j=q+1

∑
k∈Ri pjkxijk ≤ (ti+1 − ti)|Mi| is violated. Thus

ψ ≤ n− q + (m+ 1)(ζ + 1) ≤ n− q + (m+ 1)(2q + 1).
Now using a similar argument as [11], we denote µ as the number of jobs getting split

(i.e., xijk ∈ (0, 1) for some i and k), then 2µ + n − q − µ ≤ ψ ≤ n − q + (m + 1)(2q + 1),
which completes the proof. J

APPROX/RANDOM’16

5:8 Approximation Algorithms for Parallel Machine Scheduling with Speed-Up Resources

Based on the solution satisfying the above lemma, we show how to generate a near optimal
feasible schedule.

First, all the critical jobs are fixed according to CFκ and we do not need to consider them.
Let D be the set of (at most (m+ 1)(2q + 1)) split jobs. Temporarily we do not consider
them. For each of the remaining non-critical jobs, say, j, there exist some i and k such that
xijk = 1, implying that job j should be scheduled during (ti, ti+1) with resource k. Let Ui
be the set of all non-critical jobs (excluding jobs in D) to be scheduled during (ti, ti+1).

Now we aim to schedule jobs of Ui onto |Mi| free machines during (ti, ti+1). A preemptive
schedule satisfying the disjoint condition could be constructed as follows: We order jobs
in Ui such that jobs using the same resource are adjacent. We pick a free machine of Mi

and put jobs one by one onto it according to the job sequence until their total processing
time exceeds ti+1 − ti. Then the last job is split and on the next machine we start with its
remaining fraction, followed by next jobs in the sequence.

Notice that Constraints (2b) and (2c) ensure that any job of Ui has a processing time
no more than ti+1 − ti, and their total processing time is no more than |Mi|(ti+1 − ti), thus
the above method returns a preemptive schedule where at most |Mi| ≤ m jobs are split.
Furthermore, the disjoint condition is satisfied. To see why, consider any resource k. All jobs
using this resource are adjacent in the job sequence and their total processing time is no
more than ti+1 − ti, hence they are scheduled either on one machine or on two machines. If
they are on one machine then certainly there is no overlap, otherwise on one machine they
are started from ti and on the other machine they are finished until ti+1, and if there is
overlap then their total processing time becomes strictly larger than ti+1 − ti, which is a
contradiction.

Carrying out the above procedure for each (ti, ti+1), we derive a preemptive schedule in
which at most m(2q + 1) jobs get split. We take them out and add them to D. Now it can
be easily seen that except for jobs in D, all the other jobs are scheduled integrally during
(0, t+ 2Tε) and the disjoint condition is satisfied.

There are at most (2m+1)(2q+1) jobs in D. Consider the sum of their critical processing
times. It remains to show that, there exists a constant q (depending on m and 1/ε), such that
this value is bounded by Tε. If this claim holds, then we simply put jobs in D on machine 1
during interval (t+ 2Tε, t+ 3Tε) and let each job be processed with its critical resource. A
feasible schedule with makespan no more than t+ 3Tε is derived.

The following lemma from [7] ensures the existence of such a q.

I Lemma 6 ([7]). Suppose d1 ≥ d2 ≥ · · · ≥ dn ≥ 0 is a sequence of real numbers and
D =

∑n
j=1 dj . Let u, v be nonnegative integers, α > 0, and assume that n is sufficiently large

(i.e., n > (d 1
αeu + 1)(v + 1)d 1

α e suffices). Then, there exists an integer q = q(u, v, α) such
that

dq + dq+1 + · · ·+ dq+u+vq−1 ≤ αD,

q ≤ (v + 1)d 1
α e−1 + u[1 + (v + 1) + · · ·+ (v + 1)d 1

α e−2].

In our problem,
∑n

j=1
p̄j

m ≤ OPT ≤ T , thus we choose α = ε
m , u = 2m+1 and v = 4m+2,

and derive that q ≤ (6m+ 3)(4m+ 2)dmε e, which is a constant. Thus we have the following.

I Theorem 7. There exists a PTAS for the scheduling with speed-up resources problem when
m is a constant.

L. Chen, D. Ye, and G. Zhang 5:9

4 The special case with a constant number of resources

In this section we assume that each job could be processed with or without a resource. We
show that the problem when c is a constant admits a PTAS. The following lemma, which
characterize the relationship between the two parameters m and c, is the key to the algorithm.

I Lemma 8. Given any positive integer λ = 1/ε, if there is a feasible solution with makespan
T and m > 3cλ, then there exists a feasible solution with makespan T (1 + ε) and all the jobs
processed with resources are distributed only on 3cλ machines.

Proof idea. The proof is constructive. We only give the main idea here and the reader
may refer to the full version of this paper for details. We start with the feasible solution of
makespan T and modify it iteratively into the solution satisfying the lemma. During the
modification, we only move jobs and do not change the resource each job uses. For simplicity,
given a solution, a job processed with resource is called a resource job, and otherwise it is
called a non-resource job.

We postpone all jobs by Tε and then divide the time horizon [0, T (1 + ε)] equally into
λ+ 1 = 1/ε+ 1 sub-intervals, each of length Tε. Consider each time point Tεη for 1 ≤ η ≤ λ.
On each machine, if there is any resource job whose processing interval contains one of these
time points, this machine becomes a good machine. It is not difficult to see there are at most
2cλ good machines. We consider the remaining bad machines. We additionally select cλ
machines out of them and move all resource jobs of bad machines onto them. This procedure
is carried out iteratively. For 1 ≤ η ≤ λ, suppose we have modified the solution so that the
following is true: Among all bad machines, there exist c(η − 1) special machines (called as
semi-good machines) such that if the processing of a resource job is finished earlier or at
the time Tεη, then it is either on a good machine or on a semi-good machine. Notice that
when η = 1 this condition is trivially true since we postpone all jobs by Tε and none of
them could finish before Tε. In step η, we try to additionally select c machines out of the
remaining machines (not good or semi-good) and try to move onto them all resource jobs
scheduled within (Tεη, T ε(η + 1)). Assume for simplicity that there is no job crossing time
points Tεη and Tε(η + 1) on the c machines we have selected. The crucial observation is
that these c additional machines are neither good nor semi-good, hence no resource jobs
are scheduled on them before Tεη. Given that we have postponed all jobs by Tε, on these c
additional machines we could shift back by Tε all the non-resource jobs before Tε(η + 1),
whereas enforcing that during (Tεη, T ε(η+ 1)) only resource jobs are left on these c machines.
Now we could simply take out all the resource jobs scheduled within (Tεη, T ε(η + 1)), and
let all jobs using the same resource be scheduled on one of the c machines. By doing so
the disjoint condition is respected and by adding these additional c machines to semi-good
machines, we can continue the above procedure for η + 1. J

Let pj0 = pj , τ be some constant to be fixed later and Λ = 3cτλ(λ + 1). Again
p̄j = min{pj0, pj1, · · · , pjc} is called the critical processing time of job j. We sort all jobs
in non-increasing order of their critical processing times. Let T be some integer such that
T/2 ≤ OPT ≤ T . A job is called big if p̄j > Tε/τ , and small otherwise. With O(ε)-loss we
could round (down) the processing times of big jobs such that pjk is a multiple of Tε/Λ (if
pjk > T we simply round it to ∞). It is easy to verify that there are φ ≤ (λΛ)c+1 different
kinds of big jobs.

According to Lemma 8, with additional O(ε)-loss we may assume that all jobs processed
with resources are on the first 3cλ machines. We call them critical machines and others non-
critical machines. With additional O(ε)-loss we could further assume that every (rounded)

APPROX/RANDOM’16

5:10 Approximation Algorithms for Parallel Machine Scheduling with Speed-Up Resources

big job j on critical machines has starting and ending times multiples of Tε/Λ. Let Sol
be the solution of makespan OPT + T ·O(ε) satisfying all above requirements (the reader
may refer to the full version of this paper for a formal proof). In the following we give an
algorithm such that given t ∈ [T/2, T], it either returns a feasible solution of makespan
t+O(Tε), or concludes there is no feasible solution of makespan no more than t.

Consider non-critical machines in Sol. We first classify jobs into groups according to pj0.
Let Gl = {j|(l − 1)Tε2 < pj0 ≤ lT ε2, 1 ≤ j ≤ n} for λ+ 1 ≤ l ≤ λ2 and Gλ = {j|pj0 ≤ Tε}.
Notice that now we do not round the processing times but only classify jobs into groups.
Similar as the traditional parallel machine scheduling problem [1], we use a (λ2 − λ + 2)-
tuple (νλ, νλ+1, · · · , νλ2) to represent the jobs scheduled on a non-critical machine. Here νl
(λ+ 1 ≤ l ≤ λ2) is the number of jobs from Gl on this machine. Furthermore, νλ is computed
in the following way: we first compute the total processing time of jobs from Gλ and let it be
ξ, then νλ = b ξTεc. It is easy to verify that there are at most λO(λ2) different kinds of tuples.
We list all the tuples as (νλ(i), · · · , νλ2(i)) for 1 ≤ i ≤ γ = λO(λ2). We say a non-critical
machine is of type i, if the jobs on it correspond to the tuple (νλ(i), · · · , νλ2(i)).

Now we define an outline of a feasible schedule. It indicates which big jobs are scheduled on
critical machines. Indeed, given a schedule, an outline for it is a φ-tuple ω = (ω1, ω2, · · · , ωφ),
where ωi the number of the i-th kind of big jobs that are scheduled on critical machines.
Recall that there are at most Λ big jobs on critical machines, there are (Λ + 1)φ different
possible outlines and we could guess out the outline for Sol. Let the outline be Oι. Let Jb
be the set of all big jobs and CR be the set of big jobs on critical machines according to Oι.

Similar as we did in Section 3, we define a container (i, kj , aj , bj) for a big job j on critical
machines, where kj is its resource, and aj , bj are the starting and ending times, which is a
multiples of Tε/Λ. We also define configurations in a similar way. Let q′ ≤ |CR| be some
constant to be determined later. We take out q′ jobs in CR with the largest critical processing
times and let W ⊂ CR be the set of them. A configuration is a list of q′ containers for the q′
jobs in W . Simple calculations show that there are (λΛ)O(q′) different configurations.

Suppose we guess the correct outline Oι and configuration CFκ. According to the
configuration, we sort all different container points as t1 < t2 < · · · tζ with ζ ≤ 2q′. Again we
plug in t0 = 0 and tζ+1 = t and set up a mixed integer linear programming MILP (Oι, CFκ).

ζ∑
i=0

∑
k∈Ri

xijk = 1, j ∈ CR \W (3a)

xj0 = 1, j ∈ Jb \ CR (3b)

xj0 +
ζ∑
i=0

∑
k∈Ri

xijk = 1, j 6∈W (3c)

∑
j 6∈W

∑
k∈Ri

pjkxijk ≤ (ti+1 − ti)|Mi|, 0 ≤ i ≤ ζ (3d)

∑
j 6∈W

pjkxijk ≤ ti+1 − ti, 0 ≤ i ≤ ζ, k ∈ Ri \ {0} (3e)

zi = 0 if
λ2∑
l=λ

νl(i)(l − 1)Tε2 ≥ t (3f)

γ∑
i=1

zi = m− 3cλ (3g)

L. Chen, D. Ye, and G. Zhang 5:11

∑
j∈Gl

xj0 =
γ∑
i=1

ziνl(i), λ+ 1 ≤ l ≤ λ2 (3h)

∑
j∈G0

xj0pj0 ≤
γ∑
i=1

ziνl(i)lT ε, λ ≤ l ≤ λ2 (3i)

xijk ≥ 0, xj0 ≥ 0 0 ≤ i ≤ ζ, j 6∈W,k ∈ Ri (3j)
zi ≥ 0, zi ∈ Z, 1 ≤ i ≤ γ (3k)

Here we use similar notations as that of Section 3. Note that the positions of jobs in W are
already fixed by CFκ and we do not need to consider them. Ri is the set of resources that
are not used by jobs of W during (ti, ti+1). Specifically, 0 is taken as a special resource such
that if job j is processed without any resource, then it is taken as processed with resource 0.
Thus resource 0 is always available and 0 ∈ Ri for any 0 ≤ i ≤ ζ. Mi is the set of critical
machines that are not occupied by jobs of W during (ti, ti+1) and again we call them as free
machines.

We explain the variables used. xijk is the fraction of job j scheduled during (ti, ti+1) with
resource k. Since during this interval only resources of Ri are available, thus it is only defined
for k ∈ Ri. Furthermore, xij0 denotes the fraction of job j scheduled without any resource
and as we mention before, it is viewed as processed with resource 0. xj0 is the fraction of
job j scheduled on non-critical machines. zi is the number of non-critical machines of type i.

We explain the constraints. Notice that a big job (of Jb) is either on critical machines or
on non-critical machines, and this is determined beforehand by Oι. For j ∈ CR, it should be
on critical machines and there are two cases. One is that j ∈W , then the position of this
job is further determined through CFκ and we do not need to consider it. The other case is
j ∈ CR \W , then it should be on critical machines, just as (3a) implies. For big jobs that
are not on critical machines, they are on non-critical machines, which is implied by (3b).
Constraint (3c) implies that each job should be scheduled either on critical machines or on
non-critical machines, and this holds for both big and small jobs.

Constraints (3d) and (3e) are the same with the constraints in LPm we derive in Section 3.
(3d) means the total processing time of jobs scheduled during (ti, ti+1) on critical machines
should not exceed the available times provided by free machines. This is straightforward
since the other 3cλ− |Mi| critical machines are occupied by jobs of W and we can not put
jobs on it. (3e) means the total processing time of jobs using resource k ∈ Ri during (ti, ti+1)
should not exceed ti+1 − ti. Notice that 0 should be excluded since it is not a real resource,
i.e., jobs processed without resource could be processed at the same time if they are on
different machines.

Constraints (3f),(3g),(3h),(3i) are standard constraints. (3f) excludes tuples that are
infeasible. (3g) holds as each non-critical machine is of a certain type. Both sides of (3h)
equal to the number of jobs in Gl that are scheduled on non-critical machines. Notice that
here Gλ is not taken account of since such jobs can be split, just as in the classical scheduling
problem. The left side of (3i) calculate the total processing time of jobs in Gl on non-critical
machines and the right side is obviously its upper bound.

It can be easily seen that the in the above MILP there is only a constant number of
integer variables which is bounded by γ = (λ+ 4)λ2−λ+1, i.e., 2O(1/ε2 log(1/ε)), thus it could
be solved in f(1/ε)poly(n, logP) time using Kannan’s algorithm [8]. Here P =

∑n
j=1 p̄j is a

natural upper bounded for T and f(1/ε) only depends on 1/ε. Given a feasible solution of
the MILP (Oι, CFκ), we can show that it could be rounded into an integer solution with an
additive loss of Tε · O(λ2 + cq′). This is again by observing that once we fix the value of

APPROX/RANDOM’16

5:12 Approximation Algorithms for Parallel Machine Scheduling with Speed-Up Resources

integer variables zi, there are only a limited number of constraints for the fractional variable
xijk, whereas we get at most O(λ2 + cq′) split (small) jobs. Choosing proper q′ and τ allows
us to bound the overall increase by O(ε)OPT . The reader is referred to the full version of
this paper for details.

I Theorem 9. There is a PTAS for the scheduling with speed-up resources problem when c
is a constant.

Acknowledgements. We thank Janer Chen for pointing out the relationship between the
problem we consider and P |set|Cmax and other useful communications.

References
1 N. Alon, Y. Azar, G.J. Woeginger, and T. Yadid. Approximation schemes for scheduling.

In 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’97), pages 493–500,
1997. doi:10.1109/SFCS.1975.23.

2 J. Chen and A. Miranda. A polynomial time approximation scheme for general multipro-
cessor job scheduling. SIAM journal on computing, 31(1):1–17, 2001. doi:10.1145/361604.
361612.

3 A. Grigoriev, M. Sviridenko, and M. Uetz. Machine scheduling with resource dependent
processing times. Mathematical programming, 110(1):209–228, 2007. doi:10.1145/361604.
361612.

4 K. Jansen, M. Maack, and M. Rau. Approximation schemes for machine scheduling with
resource (in-)dependent processing times. In 27th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 1526–1542, 2016. doi:10.1109/SFCS.1975.23.

5 K. Jansen and M. Mastrolilli. Scheduling unrelated parallelmachines: linear programming
strikes back. Technical report, University of Kiel, 2010. Technical Report Bericht-Nr. 1004.
doi:10.1109/SFCS.1975.23.

6 K. Jansen and L. Porkolab. General multiprocessor task scheduling: Approximate solutions
in linear time. In Workshop on Algorithms and Data Structures (WADS’99), pages 110–121,
1999. doi:10.1109/SFCS.1975.23.

7 K. Jansen and L. Porkolab. Improved Approximation Schemes for Scheduling Unrelated
Parallel Machines. Mathematics of Operations Research, 26(2):324–338, 2001. doi:10.
1145/361604.361612.

8 R. Kannan. Minkowski’s convex body theorem and integer programming. Mathematics of
Operations Research, 12:415–440, 1987. doi:10.1145/361604.361612.

9 H. Kellerer. An approximation algorithm for identical parallel machine scheduling with
resource dependent processing times. Operations Research Letters, 36(2):157–159, 2008.
doi:10.1145/361604.361612.

10 H. Kellerer and V.A. Strusevich. Scheduling parallel dedicated machines with the speeding-
up resource. Naval Research Logistics, 55(5):377–389, 2008. doi:10.1145/361604.361612.

11 J. K. Lenstra, D. B. Shmoys, and Eva Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Mathematical Programing, 46:259–271, 1990. doi:10.1145/
361604.361612.

12 H. Xu, L. Chen, D. Ye, and G. Zhang. Scheduling on two identical machines with a speed-
up resource. Information Processing Letters, 111(7):831–835, 2011. doi:10.1145/361604.
361612.

http://dx.doi.org/10.1109/SFCS.1975.23
http://dx.doi.org/10.1145/361604.361612
http://dx.doi.org/10.1145/361604.361612
http://dx.doi.org/10.1145/361604.361612
http://dx.doi.org/10.1145/361604.361612
http://dx.doi.org/10.1109/SFCS.1975.23
http://dx.doi.org/10.1109/SFCS.1975.23
http://dx.doi.org/10.1109/SFCS.1975.23
http://dx.doi.org/10.1145/361604.361612
http://dx.doi.org/10.1145/361604.361612
http://dx.doi.org/10.1145/361604.361612
http://dx.doi.org/10.1145/361604.361612
http://dx.doi.org/10.1145/361604.361612
http://dx.doi.org/10.1145/361604.361612
http://dx.doi.org/10.1145/361604.361612
http://dx.doi.org/10.1145/361604.361612
http://dx.doi.org/10.1145/361604.361612

	Introduction
	General case
	The special case with a constant number of machines
	The special case with a constant number of resources

