
The Densest Subgraph Problem with a
Convex/Concave Size Function∗

Yasushi Kawase1 and Atsushi Miyauchi2

1 Tokyo Institute of Technology, Tokyo, Japan
kawase.y.ab@m.titech.ac.jp

2 Tokyo Institute of Technology, Tokyo, Japan
miyauchi.a.aa@m.titech.ac.jp

Abstract
Given an edge-weighted undirected graph G = (V,E,w), the density of S ⊆ V is defined as
w(S)/|S|, where w(S) is the sum of weights of the edges in the subgraph induced by S. The
densest subgraph problem asks for S ⊆ V that maximizes the density w(S)/|S|. The problem
has received significant attention recently because it can be solved exactly in polynomial time.
However, the densest subgraph problem has a drawback; it may happen that the obtained subset
is too large or too small in comparison with the desired size of the output.

In this study, we address the size issue by generalizing the density of S ⊆ V . Specifically, we
introduce the f -density of S ⊆ V , which is defined as w(S)/f(|S|), where f : Z≥0 → R≥0 is a
monotonically non-decreasing function. In the f -densest subgraph problem (f -DS), we are asked
to find S ⊆ V that maximizes the f -density w(S)/f(|S|). Although f -DS does not explicitly
specify the size of the output subset of vertices, we can handle the above size issue using a convex
size function f or a concave size function f appropriately. For f -DS with convex function f , we
propose a nearly-linear-time algorithm with a provable approximation guarantee. In particular,
for f -DS with f(x) = xα (α ∈ [1, 2]), our algorithm has an approximation ratio of 2 ·n(α−1)(2−α).
On the other hand, for f -DS with concave function f , we propose a linear-programming-based
polynomial-time exact algorithm. It should be emphasized that this algorithm obtains not only
an optimal solution to the problem but also subsets of vertices corresponding to the extreme
points of the upper convex hull of {(|S|, w(S)) | S ⊆ V }, which we refer to as the dense frontier
points. We also propose a flow-based combinatorial exact algorithm for unweighted graphs that
runs in O(n3) time. Finally, we propose a nearly-linear-time 3-approximation algorithm.

1998 ACM Subject Classification G.2.2 Graph Theory: Network problems

Keywords and phrases graphs, dense subgraph extraction, densest subgraph problem, approxi-
mation algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.44

1 Introduction

Finding dense components in a graph is an active research topic in graph mining. Techniques
for identifying dense subgraphs have been used in various applications. For example, in Web
graph analysis, they are used for detecting communities (i.e., sets of web pages dealing with the
same or similar topics) [9] and spam link farms [12]. As another example, in bioinformatics,
they are used for finding molecular complexes in protein interaction networks [4] and

∗ The first author is supported by a Grant-in-Aid for Young Scientists (B) (No. 16K16005). The second
author is supported by a Grant-in-Aid for JSPS Fellows (No. 26-11908).

© Yasushi Kawase and Atsushi Miyauchi;
licensed under Creative Commons License CC-BY

27th International Symposium on Algorithms and Computation (ISAAC 2016).
Editor: Seok-Hee Hong; Article No. 44; pp. 44:1–44:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.44
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

44:2 The Densest Subgraph Problem with a Convex/Concave Size Function

identifying regulatory motifs in DNA [10]. Furthermore, they are also used for expert team
formation [6, 17] and real-time story identification in micro-blogging streams [2].

To date, various optimization problems have been considered to find dense components
in a graph. The densest subgraph problem is one of the most well-studied optimization
problems. Let G = (V,E,w) be an edge-weighted undirected graph consisting of n = |V |
vertices, m = |E| edges, and a weight function w : E → Q>0, where Q>0 is the set of positive
rational numbers. For a subset of vertices S ⊆ V , let G[S] be the subgraph induced by
S ⊆ V , i.e., G[S] = (S,E(S)), where E(S) = {{i, j} ∈ E | i, j ∈ S}. The density of S ⊆ V

is defined as w(S)/|S|, where w(S) =
∑
e∈E(S) w(e). In the (weighted) densest subgraph

problem, given an (edge-weighted) undirected graph G = (V,E,w), we are asked to find
S ⊆ V that maximizes the density w(S)/|S|.

The densest subgraph problem has received significant attention recently because it can
be solved exactly in time polynomial in n and m. In fact, there exist a flow-based exact
algorithm [13] and a linear-programming-based (LP-based) exact algorithm [7]. Moreover,
Charikar [7] demonstrated that the greedy algorithm designed by Asahiro et al. [3], which is
called the greedy peeling, obtains a 2-approximate solution1 for any instance. This algorithm
runs in O(m+ n) time for unweighted graphs and O(m+ n logn) time for weighted graphs.

However, the densest subgraph problem has a drawback; it may happen that the obtained
subset is too large or too small in comparison with the desired size of the output. To
overcome this issue, some variants of the problem have often been employed. The densest
k-subgraph problem (DkS) is a straightforward size-restricted variant of the densest subgraph
problem. In this problem, given an additional input k being a positive integer, we are asked
to find S ⊆ V of size k that maximizes the density w(S)/|S|. Note that in this problem,
the objective function can be replaced by w(S) since |S| is fixed to k. Unfortunately, it is
known that this size restriction makes the problem much harder to solve. In fact, Khot [14]
proved that DkS has no PTAS under some reasonable computational complexity assumption.
The current best approximation algorithm has an approximation ratio of O(n1/4+ε) for any
ε > 0 [5].

Furthermore, Andersen and Chellapilla [1] introduced two relaxed versions of DkS.
The first problem, the densest at-least-k-subgraph problem (DalkS), asks for S ⊆ V that
maximizes the density w(S)/|S| under the size constraint |S| ≥ k. For this problem, Andersen
and Chellapilla [1] adopted the greedy peeling, and demonstrated that the algorithm yields
a 3-approximate solution for any instance. Later, Khuller and Saha [15] investigated the
problem more deeply. They proved that DalkS is NP-hard, and designed a flow-based
algorithm and an LP-based algorithm. These algorithms have an approximation ratio of 2,
which improves the above approximation ratio of 3. The second problem is called the densest
at-most-k-subgraph problem (DamkS), which asks for S ⊆ V that maximizes the density
w(S)/|S| under the size constraint |S| ≤ k. The NP-hardness is immediate since finding a
maximum clique can be reduced to it. Khuller and Saha [15] proved that approximating
DamkS is as hard as approximating DkS within a constant factor.

1.1 Our Contribution
In this study, we address the above size issue by generalizing the density of S ⊆ V . Specifically,
we introduce the f -density of S ⊆ V , which is defined as w(S)/f(|S|), where f : Z≥0 → R≥0

1 A feasible solution is called a γ-approximate solution if its objective value times γ is greater than or
equal to the optimal value. An algorithm is called a γ-approximation algorithm if it runs in polynomial
time and returns a γ-approximate solution for any instance. For a γ-approximation algorithm, γ is
referred to as an approximation ratio of the algorithm.

Y. Kawase and A. Miyauchi 44:3

is a monotonically non-decreasing function with f(0) = 0.2 Note that Z≥0 and R≥0 are the
set of nonnegative integers and the set of nonnegative real numbers, respectively. In the
f -densest subgraph problem (f -DS), we are asked to find S ⊆ V that maximizes the f -density
w(S)/f(|S|). For simplicity, we assume that E 6= ∅. Thus, any optimal solution S∗ satisfies
|S∗| ≥ 2. Although f -DS does not explicitly specify the size of the output subset of vertices,
we can handle the above size issue using a convex size function f or a concave size function f
appropriately. In fact, we see that any optimal solution to f -DS with convex (resp. concave)
function f has a size smaller (resp. larger) than or equal to that of the densest subgraph.
For details, see Section 2 and Section 3.

Here we mention the relationship between our problem and DkS. Any optimal solution
S∗ to f -DS is a maximum weight subset of size |S∗|, i.e., argmax{w(S) | S ⊆ V, |S| = |S∗|},
which implies that S∗ is also optimal to DkS with k = |S∗|. Furthermore, a γ-approximation
algorithm for DkS implies a γ-approximation algorithm for f -DS. Using the above O(n1/4+ε)-
approximation algorithm for DkS, we can obtain an O(n1/4+ε)-approximation algorithm for
f -DS.

We summarize our results for each of the case where f is convex and f is concave.

The case where f is convex. Let us describe our results for the case where the size function
f is convex. A function f : Z≥0 → R≥0 is called convex if f(x)− 2f(x+ 1) + f(x+ 2) ≥ 0
holds for any x ∈ Z≥0. We first prove the NP-hardness of f -DS with a certain convex
function by a reduction from DamkS. Thus, for f -DS with convex function f , one of the best
possible ways is to design algorithms with a provable approximation guarantee.

To this end, we propose a min
{

2f(n)/n
f(|S∗|)−f(|S∗|−1) ,

f(2)/2
f(|S∗|)/|S∗|2

}
-approximation algorithm,

where S∗ ⊆ V is an optimal solution to f -DS with convex function f . Our algorithm
consists of the following two procedures, and outputs the better solution found by them.
The first one is based on the brute-force search, which obtains an f(2)/2

f(|S∗|)/|S∗|2 -approximate
solution in O(m + n) time. The second one adopts the greedy peeling, which obtains a

2f(n)/n
f(|S∗|)−f(|S∗|−1) -approximate solution in O(m+ n logn) time. Thus, the total running time
of our algorithm is O(m+ n logn). Our analysis on the approximation ratio of the second
procedure extends the analysis by Charikar [7] for the densest subgraph problem.

At the end of our analysis, we observe the behavior of the approximation ratio of our
algorithm for three size functions. We consider size functions between linear and quadratic
because, as we will see later, f -DS with any super-quadratic size function only produces
constant-size optimal solutions. The first example is f(x) = xα (α ∈ [1, 2]). We show that
the approximation ratio of our algorithm is 2 ·n(α−1)(2−α), where the worst-case performance
of 2 · n1/4 is attained at α = 1.5. The second example is f(x) = λx+ (1− λ)x2 (λ ∈ [0, 1)).
For this case, the approximation ratio of our algorithm is (2−λ)/(1−λ), which is a constant
for a fixed λ. The third example is f(x) = x2/(λx+ (1− λ)) (λ ∈ [0, 1]). Note that this size
function is derived by density function λw(S)

|S| + (1− λ)w(S)
|S|2 . The approximation ratio of our

algorithm is 4/(1 + λ), which is at most 4.

The case where f is concave. Next let us describe our results for the case where the size
function f is concave. A function f : Z≥0 → R≥0 is called concave if f(x) − 2f(x + 1) +

2 To handle various types of functions (e.g., f(x) = xα for α > 0), we set the codomain of the function
f to be the set of nonnegative real numbers. We assume that we can compare p · f(i) and q · f(j) in
constant time for any p, q ∈ Q and i, j ∈ Z≥0.

ISAAC 2016

44:4 The Densest Subgraph Problem with a Convex/Concave Size Function

|S|

w(S)

0 1 2 3 4 5 6 7 80
2
4
6
8

10

Figure 1 An example graph and corresponding points in P = {(|S|, w(S)) | S ⊆ V }. The
diamond-shaped points, i.e., (0, 0), (4, 6), (7, 10), and (8, 11), are the dense frontier points.

f(x+ 2) ≤ 0 holds for any x ∈ Z≥0. Unlike the above convex case, f -DS in this case can be
solved exactly in polynomial time.

In fact, we present an LP-based exact algorithm, which extends Charikar’s exact algorithm
for the densest subgraph problem [7] and Khuller and Saha’s 2-approximation algorithm
for DalkS [15]. It should be emphasized that our LP-based algorithm obtains not only an
optimal solution to f -DS but also some attractive subsets of vertices. Let us see an example
in Figure 1. The graph consists of 8 vertices and 11 unweighted edges. For this graph, we
plotted all the points contained in P = {(|S|, w(S)) | S ⊆ V }. We refer to the extreme
points of the upper convex hull of P as the dense frontier points. The densest subgraph is a
typical subset of vertices that corresponds to a dense frontier point. Our LP-based algorithm
obtains a corresponding subset of vertices for every dense frontier point.

Moreover, in this concave case, we design a combinatorial exact algorithm for unweighted
graphs. Our algorithm is based on the standard technique for fractional programming. By
using the technique, we can reduce f -DS to a sequence of submodular function minimizations.
However, applying a submodular function minimization algorithm leads to a computationally
expensive algorithm, which runs in O(n5(m+ n) · logn) time. To reduce the computation
time, we replace a submodular function minimization algorithm with a much faster flow-based
algorithm that substantially extends a technique of Goldberg’s flow-based algorithm for the
densest subgraph problem [13]. The total running time of our algorithm is O(n3).

Although our flow-based algorithm is much faster than the reduction-based algorithm,
the running time is still long for large-sized graphs. To design an algorithm with much
higher scalability, we adopt the greedy peeling. As mentioned above, this algorithm runs in
O(m+ n) time for unweighted graphs and O(m+ n logn) time for weighted graphs. We see
that the algorithm yields a 3-approximate solution for any instance.

1.2 Related Work

Tsourakakis et al. [17] introduced a general optimization problem to find dense subgraphs,
which is referred to as the optimal (g, h, α)-edge-surplus problem. The problem asks for
S ⊆ V that maximizes edge-surplusα(S) = g(|E(S)|) − αh(|S|), where g and h are strictly
monotonically increasing functions, and α > 0 is a constant. The intuition behind this
optimization problem is the same as that of ours. In fact, the first term g(|E(S)|) prefers
S ⊆ V that has a large number of edges, whereas the second term −αh(|S|) penalizes S ⊆ V
with a large size. Tsourakakis et al. [17] were motivated by finding near-cliques (i.e., relatively
small dense subgraphs), and they derived the function OQCα(S) = |E(S)| − α

(|S|
2
)
, which is

called the OQC function, by setting g(x) = x and h(x) = x(x − 1)/2. For OQC function
maximization, they adopted the greedy peeling and a simple local search heuristic.

Y. Kawase and A. Miyauchi 44:5

Recently, Yanagisawa and Hara [18] introduced density function |E(S)|/|S|α for α ∈ (1, 2],
which they called the discounted average degree. For discounted average degree maximization,
they designed an integer-programming-based exact algorithm, which is applicable only to
graphs with thousands of edges. They also designed a local search heuristic, which is
applicable to Web-scale graphs but has no provable approximation guarantee. As mentioned
above, our algorithm for f -DS with convex function f runs in O(m+ n logn) time, and has
an approximation ratio of 2 · n(α−1)(2−α) for f(x) = xα (α ∈ [1, 2]).

2 Convex Case

In this section, we investigate f -DS with convex function f . A function f : Z≥0 → R≥0 is
called convex if f(x) − 2f(x + 1) + f(x + 2) ≥ 0 holds for any x ∈ Z≥0. We remark that
f(x)/x is monotonically non-decreasing for x since we assume that f(0) = 0. It should be
emphasized that any optimal solution to f -DS with convex function f has a size smaller than
or equal to that of the densest subgraph. To see this, let S∗ ⊆ V be an optimal solution to
f -DS and S∗DS ⊆ V be the densest subgraph. Then we have

f(|S∗|)
|S∗|

= w(S∗)/|S∗|
w(S∗)/f(|S∗|) ≤

w(S∗DS)/|S∗DS|
w(S∗DS)/f(|S∗DS|)

= f(|S∗DS|)
|S∗DS|

. (1)

This implies the statement because f(x)/x is monotonically non-decreasing.

2.1 Hardness
We first state that f -DS with convex function f contains DamkS as a special case.

I Theorem 1. For any integer k ∈ [2, n], S ⊆ V is optimal to DamkS if and only if S is
optimal to f -DS with (convex) function f(x) = max{x, 2w(V) · (x− k)/w(e) + k}, where e
is an arbitrary edge.

2.2 Our Algorithm
In this subsection, we provide an algorithm for f -DS with convex function f . Our algorithm
consists of the following two procedures, and outputs the better solution found by them.
Let S∗ be an optimal solution to the problem. The first one is based on the brute-force
search, which obtains an f(2)/2

f(|S∗|)/|S∗|2 -approximate solution in O(m+ n) time. The second
one adopts the greedy peeling [3], which obtains a 2f(n)/n

f(|S∗|)−f(|S∗|−1) -approximate solution
in O(m + n logn) time. Combining these results, which will be proved later, we have the
following theorem.

I Theorem 2. Let S∗ ⊆ V be an optimal solution to f -DS with convex function f . For the
problem, our algorithm runs in O(m+ n logn) time, and it has an approximation ratio of

min
{

2f(n)/n
f(|S∗|)− f(|S∗| − 1) ,

f(2)/2
f(|S∗|)/|S∗|2

}
.

2.2.1 Brute-Force Search
As will be shown below, to obtain an approximation ratio of f(2)/2

f(|S∗|)/|S∗|2 , it suffices to find
the heaviest edge. Clearly, this algorithm runs in O(m + n) time. However, we present
a more general algorithm, which is useful for some case. Our algorithm examines all the

ISAAC 2016

44:6 The Densest Subgraph Problem with a Convex/Concave Size Function

Algorithm 1 Brute-force search
1: for i← 2, . . . , k
2: Find S∗i ∈ argmax{w(S) | S ⊆ V, |S| = i} by examining all the candidate subsets
3: return S ∈ {S∗2 , . . . , S∗k} that maximizes w(S)/f(|S|)

subsets of vertices of size at most k, and then returns an optimal subset among them, where
k is a constant and k ≥ 2. For reference, we describe the procedure in Algorithm 1.

This algorithm can be implemented to run in O((m+ n)nk) time because the number of
subsets with at most k vertices is

∑k
i=0
(
n
i

)
= O(nk) and the value of w(S)/f(|S|) for S ⊆ V

can be computed in O(m+ n) time.
We analyze the approximation ratio of the algorithm. Let S∗i denote a maximum weight

subset of size i, i.e., S∗i ∈ argmax{w(S) | S ⊆ V, |S| = i}. We refer to w(S∗i)/
(
i
2
)
as the edge

density of i vertices. The following lemma gives a fundamental property of the edge density.

I Lemma 3. The edge density is monotonically non-increasing for the number of vertices,
i.e., w(S∗i)/

(
i
2
)
≥ w(S∗j)/

(
j
2
)
holds for any 1 ≤ i ≤ j ≤ n.

Using the above lemma, we can provide the result of the approximation ratio.

I Lemma 4. Let S∗ ⊆ V be an optimal solution to f -DS with convex function f . If |S∗| ≤ k,
then Algorithm 1 obtains an optimal solution. If |S∗| ≥ k, then it holds that

w(S∗)
f(|S∗|) ≤

2 · f(k)/k2

f(|S∗|)/|S∗|2 ·
w(S∗k)
f(k) .

Proof. If |S∗| ≤ k, then Algorithm 1 obtains an optimal solution since S∗ ∈ {S∗2 , . . . , S∗k}.
If |S∗| ≥ k, then we have

w(S∗)
f(|S∗|) ≤

f(k)/
(
k
2
)

f(|S∗|)/
(|S∗|

2
) · w(S∗k)

f(k)

= 1− 1/|S∗|
1− 1/k · f(k)/k2

f(|S∗|)/|S∗|2 ·
w(S∗k)
f(k) ≤

2 · f(k)/k2

f(|S∗|)/|S∗|2 ·
w(S∗k)
f(k) ,

where the first inequality follows from Lemma 3, and the last inequality follows from
|S∗| ≥ k ≥ 2. J

From this lemma, we see that Algorithm 1 with k = 2 has an approximation ratio of
f(2)/2

f(|S∗|)/|S∗|2 .

2.2.2 Greedy Peeling
Here we adopt the greedy peeling. For S ⊆ V and v ∈ S, let dS(v) denote the weighted
degree of the vertex v in the induced subgraph G[S], i.e., dS(v) =

∑
{u,v}∈E(S) w({u, v}). Our

algorithm iteratively removes the vertex with the smallest weighted degree in the currently
remaining graph, and then returns S ⊆ V with maximum w(S)/f(|S|) over the iteration.
For reference, we describe the procedure in Algorithm 2. This algorithm runs in O(m+ n)
time for unweighted graphs and O(m+ n logn) time for weighted graphs.

The following lemma provides the result of the approximation ratio.

I Lemma 5. Let S∗ be an optimal solution to f-DS with convex function f . Algorithm 2
returns a solution S ⊆ V that satisfies

w(S)
f(|S|) ≥

1
2 ·

f(|S∗|)− f(|S∗| − 1)
f(n)/n · w(S∗)

f(|S∗|) .

Y. Kawase and A. Miyauchi 44:7

Algorithm 2 Greedy peeling
1: Sn ← V

2: for i← n, . . . , 2
3: Find vi ∈ argminv∈Si

dSi(v) and Si−1 ← Si \ {vi}
4: return S ∈ {S1, . . . , Sn} that maximizes w(S)/f(|S|)

Proof. Choose an arbitrary vertex v ∈ S∗. By the optimality of S∗, we have

w(S∗)
f(|S∗|) ≥

w(S∗ \ {v})
f(|S∗| − 1) .

By using the fact that w(S∗ \ {v}) = w(S∗)− dS∗(v), this inequality can be transformed to

dS∗(v) ≥ (f(|S∗|)− f(|S∗| − 1)) · w(S∗)
f(|S∗|) . (2)

Let l be the smallest index that satisfies S∗ ⊆ Sl. Note that vl ∈ S∗. Using inequality (2),
we have

w(S)
f(|S|) ≥

w(Sl)
f(l) = 1

2 ·
∑
u∈Sl

dSl
(u)

f(l) ≥ 1
2 ·

l · dSl
(vl)

f(l) ≥ 1
2 ·

dS∗(vl)
f(l)/l

≥ 1
2 ·

f(|S∗|)− f(|S∗| − 1)
f(l)/l · w(S∗)

f(|S∗|) ≥
1
2 ·

f(|S∗|)− f(|S∗| − 1)
f(n)/n · w(S∗)

f(|S∗|) ,

where the second inequality follows from the greedy choice of vl, the third inequality follows
from Sl ⊇ S∗, and the last inequality follows from the monotonicity of f(x)/x. J

2.3 Examples
Here we observe the behavior of the approximation ratio of our algorithm for three convex
size functions. We consider size functions between linear and quadratic because f -DS with
any super-quadratic size function only produces constant-size optimal solutions. This follows
from the inequality f(2)/2

f(|S∗|)/|S∗|2 ≥ 1 (i.e., f(2)/2 ≥ f(|S∗|)/|S∗|2) by Lemma 4.

(i) The case where f(x) = xα (α ∈ [1, 2]). The following corollary provides the
approximation ratio of our algorithm.

I Corollary 6. For f-DS with f(x) = xα (α ∈ [1, 2]), our algorithm has an approximation
ratio of 2 · n(α−1)(2−α).

Proof. Let s = |S∗|. By Theorem 2, the approximation ratio is at most

min
{

2f(n)/n
f(s)− f(s− 1) ,

f(2)/2
f(s)/s2

}
= min

{
2nα−1

sα − (s− 1)α , 2α−1 · s2−α
}

≤ min
{

2nα−1

sα−1 , 2 · s2−α
}
≤ 2 · n(α−1)(2−α).

The first inequality follows from the fact that sα − (s − 1)α = sα − (s − 1)α−1(s − 1) ≥
sα− sα−1(s− 1) = sα−1. The last inequality follows from the fact that the first term and the
second term of the minimum function are monotonically non-increasing and non-decreasing
for s, respectively, and they have the same value at s = nα−1. J

Note that an upper bound on 2 · n(α−1)(2−α) is 2 · n1/4, which is attained at α = 1.5.

ISAAC 2016

44:8 The Densest Subgraph Problem with a Convex/Concave Size Function

(ii) The case where f(x) = λx + (1 − λ)x2 (λ ∈ [0, 1)). The following corollary
provides an approximation ratio of Algorithm 1, which is a constant for a fixed λ.

I Corollary 7. For f-DS with f(x) = λx+ (1− λ)x2 (λ ∈ [0, 1)), Algorithm 1 with k = 2
has an approximation ratio of (2− λ)/(1− λ). Furthermore, for any ε > 0, Algorithm 1 with
k ≥ 2

ε ·
λ

1−λ has an approximation ratio of 2 + ε.

(iii) The case where f(x) = x2/(λx+(1−λ)) (λ ∈ [0, 1]). This size function is derived
by density function λw(S)

|S| + (1− λ)w(S)
|S|2 . The following corollary provides an approximation

ratio of our algorithm, which is at most 4.

I Corollary 8. For f-DS with f(x) = x2/(λx+ (1− λ)) (λ ∈ [0, 1)), our algorithm has an
approximation ratio of 4/(1 + λ).

3 Concave Case

In this section, we investigate f -DS with concave function f . A function f : Z≥0 → R≥0 is
called concave if f(x)− 2f(x+ 1) + f(x+ 2) ≤ 0 holds for any x ∈ Z≥0. We remark that
f(x)/x is monotonically non-increasing for x since we assume that f(0) = 0. Note that any
optimal solution to f -DS with concave function f has a size larger than or equal to that of
the densest subgraph. This follows from inequality (1) and the monotonicity of f(x)/x.

3.1 Dense Frontier Points

Here we define the dense frontier points and prove some basic properties. We denote by P
the set {(|S|, w(S)) | S ⊆ V }. A point (x, y) ∈ P is called a dense frontier point if it is a
unique maximizer of y−λx over P for some λ > 0. In other words, the extreme points of the
upper convex hull of P are the dense frontier points. The densest subgraph is a typical subset
of vertices corresponding to a dense frontier point. We prove that (i) for any dense frontier
point, there exists some concave function f such that any optimal solution to f -DS with
the function f corresponds to the dense frontier point, and conversely, (ii) for any strictly
concave function f (i.e., f that satisfies f(x)− 2f(x+ 1) + f(x+ 2) < 0 for any x ∈ Z≥0),
any optimal solution to f -DS with the function f corresponds to a dense frontier point.

We first prove (i). Note that each dense frontier point can be written as (i, w(S∗i)) for
some i, where S∗i is a maximum weight subset of size i. Let (k,w(S∗k)) be a dense frontier
point and assume that it is a unique maximizer of y − λ̂x over P for λ̂ > 0. Consider the
concave function f such that f(x) = λ̂x+ w(S∗k)− λ̂k for x > 0 and f(0) = 0. Then, any
optimal solution S∗ to f -DS with the function f corresponds to the dense frontier point (i.e.,
(|S∗|, w(S∗)) = (k,w(S∗k)) holds) because w(S)/f(|S|) is greater than or equal to 1 if and
only if w(S)− λ̂|S| ≥ w(S∗k)− λ̂k.

We next prove (ii). Let f be any strictly concave function. Let S∗k be an optimal solution
to f -DS with the function f , and take λ̂ that satisfies (f(k) − f(k − 1)) · w(S∗

k)
f(k) > λ̂ >

(f(k+1)−f(k)) · w(S∗
k)

f(k) . Note that the strict concavity of f guarantees the existence of such λ̂.
Since f is strictly concave, we have w(S∗k)+ λ̂(|S|−k) ≥ w(S∗

k)
f(k) ·f(|S|) ≥ w(S)

f(|S|) ·f(|S|) = w(S)
for any S ⊆ V , and the equalities hold only when (|S|, w(S)) = (k,w(S∗k)). Thus, (k,w(S∗k))
is a unique maximizer of y − λ̂x over P, and hence is a dense frontier point.

Y. Kawase and A. Miyauchi 44:9

Algorithm 3 LP-based algorithm
1: for k ← 1, . . . , n
2: Solve LPk and obtain an optimal solution (xk, yk)
3: Compute r∗k that maximizes w(Sk(r))/f(|Sk(r)|)
4: return S ∈ {S1(r∗1), . . . , Sn(r∗n)} that maximizes w(S)/f(|S|)

3.2 LP-Based Algorithm

We provide an LP-based polynomial-time exact algorithm. We introduce a variable xe for
each e ∈ E and a variable yv for each v ∈ V . For k = 1, . . . , n, we construct the following
linear programming problem:

LPk : max.
∑
e∈E

w(e) · xe s.t.
∑
v∈V

yv = k, xe ≤ yu, xe ≤ yv (∀e = {u, v} ∈ E),

xe, yv ∈ [0, 1] (∀e ∈ E, ∀v ∈ V).

For an optimal solution (xk, yk) to LPk and a real parameter r, we define a sequence of
subsets Sk(r) = {v ∈ V | ykv ≥ r}. For k = 1, . . . , n, our algorithm solves LPk to obtain
an optimal solution (xk, yk), and computes r∗k that maximizes w(Sk(r))/f(|Sk(r)|). Note
here that to find such an r∗k, it suffices to check all the distinct sets Sk(r) by simply setting
r = ykv for every v ∈ V . The algorithm returns S ∈ {S1(r∗1), . . . , Sn(r∗n)} that maximizes
w(S)/f(|S|). For reference, we describe the procedure in Algorithm 3. Clearly, the algorithm
runs in polynomial time.

In what follows, we demonstrate that Algorithm 3 obtains an optimal solution to f -DS
with concave function f . The following lemma provides a lower bound on the optimal value
of LPk.

I Lemma 9. For any S ⊆ V , the optimal value of LP|S| is at least w(S).

We have the following key lemma.

I Lemma 10. Let S∗ ⊆ V be an optimal solution to f -DS with concave function f , and let
k∗ = |S∗|. Furthermore, let (x∗, y∗) be an optimal solution to LPk∗ . Then, there exists a
real number r such that Sk∗(r) is optimal to f -DS with concave function f .

Proof. For each e = {u, v} ∈ E, we have x∗e = min{y∗u, y∗v} from the optimality of (x∗, y∗).
Without loss of generality, we relabel the indices of (x∗, y∗) so that y∗1 ≥ · · · ≥ y∗n. Then we
have

∫ y∗
1

0
w(Sk

∗
(r))dr =

∫ y∗
1

0

 ∑
e={u,v}∈E

w(e) · [y∗u ≥ r and y∗v ≥ r]

 dr

=
∑

e={u,v}∈E

∫ y∗
1

0
(w(e) · [y∗u ≥ r and y∗v ≥ r]) dr

=
∑

e={u,v}∈E

w(e) ·min{y∗u, y∗v} ≥
∑
e∈E

w(e) · x∗e ≥ w(S∗),

where [y∗u ≥ r and y∗v ≥ r] is 1 if the condition in the square bracket is satisfied and 0

ISAAC 2016

44:10 The Densest Subgraph Problem with a Convex/Concave Size Function

otherwise, and the last inequality follows from Lemma 9. Moreover, we have∫ y∗
1

0
f(|Sk

∗
(r)|)dr =

n∑
h=1

f(h) · (y∗h − y∗h+1) =
n∑
h=1

(f(h)− f(h− 1)) · y∗h

≤
k∗∑
h=1

(f(h)− f(h− 1)) = f(k∗)− f(0) = f(k∗),

where we assume that y∗n+1 = 0, and the inequality holds by the concavity of f (i.e.,
f(h+ 2)− f(h+ 1) ≤ f(h+ 1)− f(h)),

∑n
h=1 y

∗
h = k∗, and y∗h ≤ 1.

Let r∗ be a real number that maximizes w(Sk∗(r))/f(|Sk∗(r)|) in [0, y∗1]. Using the above
two inequalities, we have

w(S∗)
f(k∗) ≤

∫ y∗
1

0 w(Sk∗(r))dr∫ y∗
1

0 f(|Sk∗(r)|)dr
=

∫ y∗
1

0

(
w(Sk∗

(r))
f(|Sk∗ (r)|) · f(|Sk∗(r)|)

)
dr∫ y∗

1
0 f(|Sk∗(r)|)dr

≤

∫ y∗
1

0

(
w(Sk∗

(r∗))
f(|Sk∗ (r∗)|) · f(|Sk∗(r)|)

)
dr∫ y∗

1
0 f(|Sk∗(r)|)dr

= w(Sk∗(r∗))
f(|Sk∗(r∗)|) .

This completes the proof. J

Clearly, Algorithm 3 examines Sk∗(r∗) as a candidate subset of the output. Therefore,
we have the result.

I Theorem 11. Algorithm 3 is a polynomial-time exact algorithm for f-DS with concave
function f .

By Lemma 10, for any concave function f , an optimal solution to f -DS with the function
f is contained in {Sk(r) | k = 1, . . . , n, r ∈ [0, 1]} whose cardinality is at most n2. As shown
above, for any dense frontier point, there exists some concave function f such that any
optimal solution to f -DS with the function f corresponds to the dense frontier point. Thus,
we have the following result.

I Theorem 12. We can find a corresponding subset of vertices for every dense frontier point
in polynomial time.

3.3 Flow-Based Algorithm
Here we provide a combinatorial exact algorithm for unweighted graphs (i.e., w(e) = 1 for
every e ∈ E). We first show that using the standard technique for fractional programming, we
can reduce f -DS with concave function f to a sequence of submodular function minimizations.
The critical fact is that maxS⊆V w(S)/f(|S|) is at least β if and only if minS⊆V (β · f(|S|)−
w(S)) is at most 0. Note that for β ≥ 0, the function β · f(|S|)−w(S) is submodular because
β · f(|S|) and −w(S) are submodular [11]. Thus, we can calculate minS⊆V (β · f(|S|)−w(S))
in O(n5(m + n)) time using Orlin’s algorithm [16], which implies that we can determine
maxS⊆V w(S)/f(|S|) ≥ β or not in O(n5(m+ n)) time. Hence, we can obtain the value of
maxS⊆V w(S)/f(|S|) by binary search. Note that the objective function of unweighted f -DS
may have at most O(mn) distinct values since w(S) is a nonnegative integer at most m.
Thus, the procedure yields an optimal solution in O(log(nm)) = O(logn) iterations. The
total running time is O(n5(m+ n) · logn).

To reduce the computation time, we replace Orlin’s algorithm with a much faster algorithm
that substantially extends a technique of Goldberg’s flow-based algorithm for the densest

Y. Kawase and A. Miyauchi 44:11

Algorithm 4 Flow-based algorithm
1: Construct the (unweighted) directed network (U,A)
2: {b1, . . . , br} = {p/f(q) | p = 0, 1, . . . ,m, q = 2, 3, . . . , n} such that b1 < · · · < br
3: imin ← 1 and imax ← r

4: while TRUE
5: i← b(imax + imin)/2c
6: Compute a minimum s–t cut (X,Y) in (U,A,wbi

)
7: if the cost of (X,Y) is larger than w(V) then imax ← i− 1
8: else if the cost of (X,Y) is less than w(V) then imin ← i+ 1
9: else return X ∩ V

subgraph problem [13]. The key technique is to represent the value of β · f(|S|)−w(S) using
the cost of minimum cut of a certain directed network constructed from G and β ≥ 0.

For a given graph G = (V,E,w) and a real number β ≥ 0, we construct a directed
network (U,A,wβ) as follows. The vertex set U is defined by U = V ∪ P ∪ {s, t}, where
P = {p1, . . . , pn}. The edge set A is given by A = As ∪At ∪A1 ∪A2, where

As = {(s, v) | v ∈ V }, At = {(p, t) | p ∈ P},
A1 = {(u, v), (v, u) | {u, v} ∈ E}, and A2 = {(v, p) | v ∈ V, p ∈ P}.

The edge weight wβ : A→ R≥0 is defined by

wβ(e) =


d(v)/2 (e = (s, v) ∈ As),
β · k · ak (e = (pk, t) ∈ At),
1/2 (= w({u, v})/2) (e = (u, v) ∈ A1),
β · ak (e = (v, pk) ∈ A2),

where d(v) is the degree of vertex v (i.e., d(v) = |{u ∈ V | {u, v} ∈ E}|), and

ak =
{

2f(k)− f(k + 1)− f(k − 1) (k = 1, . . . , n− 1),
f(n)− f(n− 1) (k = n).

Note that ak ≥ 0 holds since f is a monotonically non-decreasing concave function.
The following lemma reveals the relationship between an s–t cut in (U,A,wβ) and the

value of β · f(|S|)− w(S).

I Lemma 13. Let (X,Y) be any s–t cut in the network (U,A,wβ), and let S = X ∩ V .
Then, the cost of (X,Y) is equal to w(V) + β · f(|S|)− w(S).

From this lemma, we see that the minimum s–t cut value is w(V) + minS⊆V (β · f(|S|)−
w(S)). Therefore, for a given value β ≥ 0, we can determine whether there exists S ⊆ V

that satisfies w(S)/f(|S|) ≥ β by checking the minimum s–t cut value is at most w(V) or
not. Our algorithm applies binary search for β within the possible objective values of f -DS
(i.e., {p/f(q) | p = 0, 1, . . . ,m, q = 2, 3, . . . , n}). For reference, we describe the procedure in
Algorithm 4. The minimum s–t cut problem can be solved in O(N3/ logN) time for a graph
with N vertices [8]. Thus, the running time of our algorithm is O(n3

logn · log(mn)) = O(n3)
since |U | = 2n+ 2. We summarize the result in the following theorem.

I Theorem 14. Algorithm 4 is an O(n3)-time exact algorithm for unweighted f-DS with
concave function f .

Finally, we remark that Algorithm 4 can be modified for weighted f -DS with concave
function f so that a (1 + ε)-approximate solution is obtained in O(n3 · log(1/ε)) time.

ISAAC 2016

44:12 The Densest Subgraph Problem with a Convex/Concave Size Function

3.4 Greedy Peeling
Here we provide an approximation algorithm with much higher scalability. Specifically, we see
that the greedy peeling (Algorithm 2) has an approximation ratio of 3 for f -DS with concave
function f . As mentioned above, the algorithm runs in O(m+n) time for unweighted graphs
and O(m + n logn) time for weighted graphs. The proof of the following theorem relies
on the monotonicity of f(x)/x and the fact that the greedy peeling is a 3-approximation
algorithm for DalkS [1].

I Theorem 15. The greedy peeling (Algorithm 2) has an approximation ratio of 3 for f -DS
with concave function f .

References
1 R. Andersen and K. Chellapilla. Finding dense subgraphs with size bounds. In WAW’09,

pages 25–37, 2009.
2 A. Angel, N. Sarkas, N. Koudas, and D. Srivastava. Dense subgraph maintenance under

streaming edge weight updates for real-time story identification. In VLDB’12, pages 574–
585, 2012.

3 Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama. Greedily finding a dense subgraph.
J. Algorithms, 34(2):203–221, 2000.

4 G.D. Bader and C.W.V. Hogue. An automated method for finding molecular complexes
in large protein interaction networks. BMC Bioinformatics, 4(1):1–27, 2003.

5 A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan. Detecting
high log-densities: An O(n1/4) approximation for densest k-subgraph. In STOC’10, pages
201–210, 2010.

6 F. Bonchi, F. Gullo, A. Kaltenbrunner, and Y. Volkovich. Core decomposition of uncertain
graphs. In KDD’14, pages 1316–1325, 2014.

7 M. Charikar. Greedy approximation algorithms for finding dense components in a graph.
In APPROX’00, pages 84–95, 2000.

8 J. Cheriyan, T. Hagerup, and K. Mehlhorn. An o(n3)-time maximum-flow algorithm. SIAM
J. Comput., 25(6):1144–1170, 1996.

9 Y. Dourisboure, F. Geraci, and M. Pellegrini. Extraction and classification of dense com-
munities in the web. In WWW’07, pages 461–470, 2007.

10 E. Fratkin, B.T. Naughton, D. L. Brutlag, and S. Batzoglou. MotifCut: regulatory motifs
finding with maximum density subgraphs. Bioinformatics, 22(14):e150–e157, 2006.

11 S. Fujishige. Submodular Functions and Optimization, volume 58 of Annals of Discrete
Mathematics. Elsevier, 2005.

12 D. Gibson, R. Kumar, and A. Tomkins. Discovering large dense subgraphs in massive
graphs. In VLDB’05, pages 721–732, 2005.

13 A.V. Goldberg. Finding a maximum density subgraph. Technical report, University of
California Berkeley, 1984.

14 S. Khot. Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipartite clique.
SIAM J. Comput., 36(4):1025–1071, 2006.

15 S. Khuller and B. Saha. On finding dense subgraphs. In ICALP’09, pages 597–608, 2009.
16 J. B. Orlin. A faster strongly polynomial time algorithm for submodular function minimiza-

tion. Math. Program., 118(2):237–251, 2009.
17 C.E. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and M. Tsiarli. Denser than the densest

subgraph: Extracting optimal quasi-cliques with quality guarantees. In KDD’13, pages
104–112, 2013.

18 H. Yanagisawa and S. Hara. Axioms of density: How to define and detect the densest
subgraph. Technical report, IBM Research – Tokyo, 2016.

	Introduction
	Our Contribution
	Related Work

	Convex Case
	Hardness
	Our Algorithm
	Brute-Force Search
	Greedy Peeling

	Examples

	Concave Case
	Dense Frontier Points
	LP-Based Algorithm
	Flow-Based Algorithm
	Greedy Peeling

