
Pattern Matching and Consensus Problems on
Weighted Sequences and Profiles∗

Tomasz Kociumaka1, Solon P. Pissis2, and Jakub Radoszewski†3

1 Institute of Informatics, University of Warsaw, Warsaw, Poland
kociumaka@mimuw.edu.pl

2 Department of Informatics, King’s College London, London, UK
solon.pissis@kcl.ac.uk

3 Institute of Informatics, University of Warsaw, Warsaw, Poland; and
Department of Informatics, King’s College London, London, UK
jrad@mimuw.edu.pl

Abstract
We study pattern matching problems on two major representations of uncertain sequences used
in molecular biology: weighted sequences (also known as position weight matrices, PWM) and
profiles (i.e., scoring matrices). In the simple version, in which only the pattern or only the
text is uncertain, we obtain efficient algorithms with theoretically-provable running times using
a variation of the lookahead scoring technique. We also consider a general variant of the pattern
matching problems in which both the pattern and the text are uncertain. Central to our solution
is a special case where the sequences have equal length, called the consensus problem. We
propose algorithms for the consensus problem parameterized by the number of strings that match
one of the sequences. As our basic approach, a careful adaptation of the classic meet-in-the-
middle algorithm for the knapsack problem is used. On the lower bound side, we prove that our
dependence on the parameter is optimal up to lower-order terms conditioned on the optimality
of the original algorithm for the knapsack problem.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases weighted sequence, position weight matrix, profile matching

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.46

1 Introduction

We study two well-known representations of uncertain texts: weighted sequences and profiles.
A weighted sequence (also known as position weight matrix, PWM) for every position and
every letter of the alphabet specifies the probability of occurrence of this letter at this
position; see Table 1 for an example. A weighted sequence represents many different strings,
each with the probability of occurrence equal to the product of probabilities of its letters
at subsequent positions of the weighted sequence. Usually a threshold 1

z is specified, and
one considers only strings that match the weighted sequence with probability at least 1

z . A
scoring matrix (or a profile) of length m is an m× σ matrix. The score of a string of length
m is the sum of scores in the scoring matrix of the subsequent letters of the string at the
respective positions. A string is said to match a scoring matrix if its matching score is above
a specified threshold Z.

∗ Work supported by the Polish Ministry of Science and Higher Education under the ‘Iuventus Plus’
program in 2015–2016 grant no 0392/IP3/2015/73.

† The author is a Newton Fellow.

© Tomasz Kociumaka, Solon P. Pissis, and Jakub Radoszewski;
licensed under Creative Commons License CC-BY

27th International Symposium on Algorithms and Computation (ISAAC 2016).
Editor: Seok-Hee Hong; Article No. 46; pp. 46:1–46:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.46
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

46:2 Pattern Matching and Consensus Problems on Weighted Sequences and Profiles

Table 1 A weighted sequence X of length 4 over the alphabet Σ = {a, b}.

X[1] X[2] X[3] X[4]

π
(X)
1 (a) = 1/2 π

(X)
2 (a) = 1 π

(X)
3 (a) = 3/4 π

(X)
4 (a) = 0

π
(X)
1 (b) = 1/2 π

(X)
2 (b) = 0 π

(X)
3 (b) = 1/4 π

(X)
4 (b) = 1

Weighted Pattern Matching and Profile Matching. First of all, we study the standard
variants of pattern matching problems on weighted sequences and profiles, in which only
the pattern or the text is an uncertain sequence. In the best-known formulation of the
Weighted Pattern Matching problem, we are given a weighted sequence of length n,
called a text, a solid (standard) string of length m, called a pattern, both over an alphabet of
size σ, and a threshold probability 1

z . We are asked to find all positions in the text where the
fragment of length m represents the pattern with probability at least 1

z . Each such position
is called an occurrence of the pattern in the text; we also say that the fragment of the text
and the pattern match. The Weighted Pattern Matching problem can be solved in
O(σn logm) time via the Fast Fourier Transform [5]. In a more general, indexing variant of
the problem, considered in [1, 12], one can preprocess a weighted text in O(nz2 log z) time to
report all occ occurrences of a given solid pattern of length m in O(m+ occ) time. (A similar
indexing data structure, which assumes z = O(1), was presented in [4].) Very recently, the
index construction time was reduced to O(nz) for constant-sized alphabets [2].

In the classic Profile Matching problem, the pattern is an m × σ profile, the text
is a solid string of length n, and our task is to find all positions in the text where the
fragment of length m has a score which is at least Z. A naïve approach to the Profile
Matching problem works in O(nm+mσ) time. A broad spectrum of heuristics improving
this algorithm in practice is known; for a survey see [16]. One of the principal techniques,
coming in different flavours, is lookahead scoring that consists in checking if a partial match
could possibly be completed by the highest scoring letters in the remaining positions of the
scoring matrix and, if not, pruning the naïve search. The Profile Matching problem can
also be solved in O(σn logm) time via the Fast Fourier Transform [17].

Weighted Consensus and Profile Consensus. As our most involved contribution, we study
a general variant of pattern matching on weighted sequences and the consensus problems
on uncertain sequences, which are closely related to the Multichoice Knapsack problem.
In the Weighted Consensus problem, given two weighted sequences of the same length,
we are to check if there is a string that matches each of them with probability at least 1

z .
A routine to compare user-entered weighted sequences with existing weighted sequences in
the database is used, e.g., in JASPAR1, a well-known database of PWMs. In the General
Weighted Pattern Matching (GWPM) problem, both the pattern and the text are
weighted. In the most common definition of the problem (see [3, 12]), we are to find all
fragments of the text that give a positive answer to the Weighted Consensus problem with
the pattern. The authors of [3] proposed an algorithm for the GWPM problem based on the
weighted prefix table that works in O(nz2 log z + nσ) time. Solutions to these problems can
be applied in transcriptional regulation: motif and regulatory module finding; and annotation
of regulatory genomic regions.

In an analogous way to the Weighted Consensus problem, we define the Profile
Consensus problem. Here we are to check for the existence of a string that matches both

1 http://jaspar.genereg.net

http://jaspar.genereg.net

T. Kociumaka, S. P. Pissis, and J. Radoszewski 46:3

the scoring matrices above threshold Z. The Profile Consensus problem is actually a
special case of the well-known (especially in practice) Multichoice Knapsack problem
(also known as the Multiple Choice Knapsack problem). In this problem, we are given
n classes C1, . . . , Cn of at most λ items each—N items in total—each item c characterized
by a value v(c) and a weight w(c). The goal is to select one item from each class so that the
sums of values and of weights of the items are below two specified thresholds, V and W . (In
the more intuitive formulation of the problem, we require the sum of values to be above a
specified threshold, but here we consider an equivalent variant in which both parameters are
symmetric.) The Multichoice Knapsack problem is widely used in practice, but most
research concerns approximation or heuristic solutions; see [14] and references therein. As far
as exact solutions are concerned, the classic meet-in-the middle approach by Horowitz and
Sahni [11], originally designed for the (binary) Knapsack problem, immediately generalizes
to an O∗(λdn

2 e)-time2 solution for Multichoice Knapsack.
Several important problems can be expressed as special cases of the Multichoice

Knapsack problem using folklore reductions (see [14]). This includes the Subset Sum
problem, which, for a set of n integers, asks whether there is a subset summing up to a given
integer Q, and the k-Sum problem which, for k = O(1) classes of λ integers, asks to choose
one element from each class so that the selected integers sum up to zero. These reductions
give immediate hardness results for the Multichoice Knapsack problem, and they can be
adjusted to yield the same consequences for Profile Consensus. For the Subset Sum
problem, as shown in [7, 10], the existence for every ε > 0 of an O∗(2εn)-time solution would
violate the Exponential Time Hypothesis (ETH) [13, 15]. Moreover, the O∗(2n/2) running
time, achieved in [11], has not been improved yet despite much effort. The 3-Sum conjecture
[9] and the more general k-Sum conjecture state that the 3-Sum and k-Sum problems cannot
be solved in O(λ2−ε) time and O(λd

k
2 e(1−ε)) time, respectively, for any ε > 0.

Our Results. As the first result, we show how the lookahead scoring technique combined
with a data structure for answering longest common prefix (LCP) queries in a string can
be applied to obtain simple and efficient algorithms for the standard pattern matching
problems on uncertain sequences. For a weighted sequence, by R we denote the size of its
list representation, and by λ the maximal number of letters with score at least 1

z at a single
position (thus λ ≤ min(σ, z)). In the Profile Matching problem, we set M as the number
of strings that match the scoring matrix with score above Z. In general M ≤ σm, however,
we may assume that for practical data this number is actually much smaller. We obtain the
following running times:
O(mσ + n logM) for Profile Matching;
O(R log2 log λ+ n log z) deterministic and O(R+ n log z) randomized (Las Vegas, failure
with probability R−c for any given constant c) for Weighted Pattern Matching.

The more complex part of our study is related to the consensus problems and to the
GWPM problem. Instead of considering Profile Consensus, we study the more general
Multichoice Knapsack. We introduce parameters based on the number of solutions with
feasible weight or value: AV = |{(c1, . . . , cn) : ci ∈ Ci for all i = 1, . . . , n,

∑
i v(ci) ≤ V }|,

that is, the number of choices of one element from each class that satisfy the value threshold;
AW = |{(c1, . . . , cn) : ci ∈ Ci for all i = 1, . . . , n,

∑
i w(ci) ≤W}|; A = max(AV , AW), and

a = min(AV , AW). We obtain algorithms with the following complexities:

2 The O∗ notation suppresses factors polynomial with respect to the instance size (encoded in binary).

ISAAC 2016

46:4 Pattern Matching and Consensus Problems on Weighted Sequences and Profiles

O(N +
√
aλ logA) for Multichoice Knapsack;

O(R+
√
zλ(log log z+ log λ)) for Weighted Consensus and O(n

√
zλ(log log z+ log λ))

for General Weighted Pattern Matching.

Note that a ≤ A ≤ λn and thus the running time of our algorithm for Multichoice
Knapsack is bounded by O(N + nλ(n+1)/2 log λ). Up to lower order terms (i.e., the factor
n log λ = (λ(n+1)/2)o(1)), this matches the time complexities of the fastest known solutions
for both Subset Sum (also binary Knapsack) and 3-Sum. The main novel part of our
algorithm for Multichoice Knapsack is an appropriate (yet intuitive) notion of ranks
of partial solutions. We also provide a simple reduction from Multichoice Knapsack to
Weighted Consensus, which lets us transfer the negative results to the GWPM problem.

The existence, for every ε > 0, of an O∗(zε)-time solution for Weighted Consensus
would violate the Exponential Time Hypothesis.
For every ε > 0, an O∗(z0.5−ε)-time solution for Weighted Consensus would imply an
O∗(2(0.5−ε)n)-time algorithm for Subset Sum.
For every ε > 0, an Õ(R+ z0.5λ0.5−ε)-time3 solution for Weighted Consensus would
imply an Õ(λ2−ε)-time algorithm for 3-Sum.

For the higher-order terms our complexities match the conditional lower bounds; therefore,
we put significant effort to keep the lower order terms of the complexities as small as possible.

Model of Computations. For problems on weighted sequences, we assume the word-RAM
model with word size w = Ω(logn+ log z) and σ = nO(1). We consider the log-probability
model of representations of weighted sequences, that is, we assume that probabilities in the
weighted sequences and the threshold probability 1

z are all of the form c
p

2dw , where c and d are
constants and p is an integer that fits in a constant number of machine words. Additionally,
the probability 0 has a special representation. The only operations on probabilities in our
algorithms are multiplications and divisions, which can be performed exactly in O(1) time
in this model. Our solutions to the Multichoice Knapsack problem only assume the
word-RAM model with word size w = Ω(logS + log a), where S is the sum of integers in the
input instance; this does not affect the O∗ running time.

Structure of the Paper. We start with Preliminaries, where we formally introduce the
problems and the main notions used throughout the paper. The following three sections
describe our algorithms: in Section 3 for Profile Matching and Weighted Pattern
Matching; in Section 4 for Profile Consensus; and in Section 5 for Weighted Con-
sensus and General Weighted Pattern Matching. We conclude with a few remarks
in Section 6.

2 Preliminaries

Let Σ = {s1, s2, . . . , sσ} be an alphabet of size σ. A string S over Σ is a finite sequence of
letters from Σ. We denote the length of S by |S| and, for 1 ≤ i ≤ |S|, the i-th letter of S by
S[i]. By S[i..j] we denote the string S[i] . . . S[j] called a factor of S (if i > j, then the factor
is an empty string). A factor is called a prefix if i = 1 and a suffix if j = |S|. For two strings
S and T , we denote their concatenation by S · T (ST in short).

3 The Õ notation ignores factors polylogarithmic with respect to the input size.

T. Kociumaka, S. P. Pissis, and J. Radoszewski 46:5

For a string S of length n, by lcp(i, j) we denote the length of the longest common prefix
of factors S[i..n] and S[j..n]. The following fact specifies a well-known efficient data structure
answering such queries. It consists of the suffix array with its inverse, the LCP table and a
data structure for range minimum queries on the LCP table; see [6] for details.

I Fact 1. Let S be a string of length n over an alphabet of size σ = nO(1). After O(n)-time
preprocessing, given indices i and j (1 ≤ i, j ≤ n) one can compute lcp(i, j) in O(1) time.

The Hamming distance between two strings X and Y of the same length, denoted by
dH(X,Y), is the number of positions where the strings have different letters.

2.1 Profiles
In the Profile Matching problem, we consider a scoring matrix (a profile) P of size m×σ.
For i ∈ {1, . . . ,m} and j ∈ {1, . . . , σ}, we denote the integer score of the letter sj at the
position i by P [i, sj]. The matching score of a string S of length m with the matrix P is

Score(S, P) =
m∑
i=1

P [i, S[i]].

If Score(S, P) ≥ Z for an integer threshold Z, then we say that the string S matches the
matrix P above threshold Z. We denote the number of strings S that match P above threshold
Z by NumStringsZ(P).

For a string T and a scoring matrix P , we say that P occurs in T at position i with
threshold Z if T [i..i+m− 1] matches P above threshold Z. Then OccZ(P, T) is the set of all
positions where P occurs in T . These notions let us define the Profile Matching problem:

Profile Matching Problem
Input: A string T of length n, a scoring matrix P of size m× σ, and a threshold Z.
Output: The set OccZ(P, T).
Parameters: M = NumStringsZ(P).

2.2 Weighted Sequences
A weighted sequence X = X[1] . . . X[n] of length |X| = n over alphabet Σ = {s1, s2, . . . , sσ}
is a sequence of sets of pairs of the form X[i] = {(sj , π(X)

i (sj)) : j ∈ {1, 2, . . . , σ}}. Here,
π

(X)
i (sj) is the occurrence probability of the letter sj at the position i ∈ {1, . . . , n}. These

values are non-negative and sum up to 1 for a given i.
For all our algorithms, it is sufficient that the probabilities sum up to at most 1 for each

position. Also, the algorithms sometimes produce auxiliary weighted sequences with sum of
probabilities being smaller than 1 on some positions.

We denote the maximum number of letters occurring at a single position of the weighted
sequence (with non-zero probability) by λ and the total size of the representation of a weighted
sequence by R. The standard representation consists of n lists with up to λ elements each, so
R = O(nλ). However, the lists can be shorter in general. Also, if the threshold probability 1

z

is specified, at each position of a weighted sequence it suffices to store letters with probability
at least 1

z , and clearly there are at most z such letters for each position. This reduction can
be performed in linear time, so we shall always assume that λ ≤ z.

The probability of matching of a string S with a weighted sequence X, |S| = |X| = m, is

P(S,X) =
m∏
i=1

π
(X)
i (S[i]).

ISAAC 2016

46:6 Pattern Matching and Consensus Problems on Weighted Sequences and Profiles

We say that a string S matches a weighted sequence X with probability at least 1
z , denoted

by S ≈ 1
z
X, if P(S,X) ≥ 1

z . Given a weighted sequence T , by T [i..j] we denote weighted
sequence, called a factor of T , equal to T [i] . . . T [j] (if i > j, then the factor is empty). We
say that a string P occurs in T at position i if P matches the factor T [i..i+m− 1]. The set
of positions where P occurs in T is denoted by Occ 1

z
(P, T).

Weighted Pattern Matching Problem
Input: A string P of length m and a weighted sequence T of length n with at most λ
letters at each position and R in total, and a threshold probability 1

z .
Output: The set Occ 1

z
(P, T).

3 Profile Matching and Weighted Pattern Matching

In this section we present a solution to the Profile Matching problem. Afterwards, we
show that it can be applied for Weighted Pattern Matching as well.

For a scoring matrix P , the heavy string of P , denoted H(P), is constructed by choosing
at each position the heaviest letter, that is, the letter with the maximum score (breaking ties
arbitrarily). Intuitively, H(P) is a string that matches P with the maximum score.

I Observation 2. If we have Score(S, P) ≥ Z for a string S of length m and an m × σ
scoring matrix P , then dH(H(P), S) ≤ blogMc where M = NumStringsZ(P).

Proof. Let d = dH(H(P), S). We can construct 2d strings of length |S| that match P with
a score above Z by taking either of the letters S[j] or H(P)[j] at each position j such that
S[j] 6= H(P)[j]. Hence, 2d ≤M , which concludes the proof. J

Our solution for the Profile Matching problem works as follows. We first construct
P ′ = H(P) and the data structure for finding lcp values between suffixes of P ′ and T . Let the
variable s store the matching score of P ′. In the p-th step, we calculate the matching score of
T [p..p+m−1] by iterating through subsequent mismatches between P ′ and T [p..p+m−1] and
making adequate updates in the matching score s′, which starts at s′ = s. The mismatches
are found using lcp-queries. This process terminates when the score s′ drops below Z or
when all the mismatches have been found. In the end, we include p in OccZ(P, T) if s′ ≥ Z.
This gives the following result.

I Theorem 3. Profile Matching problem can be solved in O(mσ + n logM) time.

Proof. Let us bound the time complexity of the presented algorithm. The heavy string P ′ can
be computed in O(mσ) time. The data structure for lcp-queries in P ′T can be constructed
in O(n+m) time by Fact 1. Each query for lcp(P ′[i..m], T [j..n]) can then be answered in
constant time by a corresponding lcp-query in P ′T , potentially truncated to the end of P ′.
Finally, for each position p in the text T we will consider at most blogMc+ 1 mismatches
between P ′ and T , as afterwards the score s′ drops below Z due to Observation 2. J

Basically the same approach can be used for Weighted Pattern Matching. In a
natural way, we extend the notion of a heavy string to weighted sequences. Now we can
restate Observation 2 in the language of probabilities instead of scores:

I Observation 4. If a string P matches a weighted sequence X of the same length with
probability at least 1

z , then dH(H(X), P) ≤ blog zc.

T. Kociumaka, S. P. Pissis, and J. Radoszewski 46:7

Comparing to the solution to Profile Matching, we compute the heavy string of the
text instead of the pattern. An auxiliary variable α stores the matching probability between
a factor of H(T) and the corresponding factor of T ; it is updated when we move to the next
position of the text. The rest of the algorithm is basically the same as previously. In the
implementation, we perform the following operations on a weighted sequence:

computing the probability of a given letter at a given position,
finding the letter with the maximum probability at a given position.

In the standard list representation, the latter can be performed on a single weighted sequence
in O(1) time after O(R)-time preprocessing. We can perform the former in constant time
if, in addition to the list representation, we store the letter probabilities in a dictionary
implemented using perfect hashing [8] (we build a single hash table for all positions). This way,
we can implement the algorithm in O(n log z +R) time w.h.p. Alternatively, deterministic
dictionaries [18, Theorem 3] (one for each position) can be used to obtain a deterministic
solution in O(R log2 log λ+ n log z) time. We arrive at the following result.

I Theorem 5. Weighted Pattern Matching can be solved in O(R+ n log z) time with
high probability by a Las-Vegas algorithm or in O(R log2 log λ+n log z) time deterministically.

I Remark. In the same complexity one can solve the GWPM problem with a solid text.

4 Profile Consensus as Multichoice Knapsack

Let us start with a precise statement of the Multichoice Knapsack problem.

Multichoice Knapsack Problem
Input: A set C of N items partitioned into n disjoint classes Ci, each of size at most λ,
two integers v(c) and w(c) for each item c ∈ C, and two thresholds V and W .
Question: Does there exist a choice S (a set S ⊆ C such that |S ∩ Ci| = 1 for each i)
satisfying both

∑
c∈S v(c) ≤ V and

∑
c∈S w(c) ≤W?

Parameters: AV and AW : the number of choices S satisfying
∑
c∈S v(c) ≤ V and∑

c∈S w(c) ≤W , respectively; as well as A = max(AV , AW) and a = min(AV , AW).

Indeed, we see that the Profile Consensus problem reduces to the Multichoice
Knapsack problem. For two m× σ scoring matrices, we construct n = m classes of λ = σ

items each, with values equal to the negated scores of the letters in the first matrix and
weights equal to the negated scores in the second matrix; both thresholds V and W are equal
to −Z.

For a fixed instance of Multichoice Knapsack, we say that S is a partial choice if
|S ∩ Ci| ≤ 1 for each class. The set D = {i : |S ∩ Ci| = 1} is called its domain. For a partial
choice S, we define v(S) =

∑
c∈S v(c) and w(S) =

∑
c∈S w(c).

The classicO(2n/2)-time solution to the Knapsack problem [11] partitionsD = {1, . . . , n}
into two domains D1, D2 of size roughly n/2, and for each Di it generates all partial choices S
ordered by v(S). Hence, it reduces the problem to an instance of Multichoice Knapsack
with two classes. It is solved using the following folklore lemma.

I Lemma 6. The Multichoice Knapsack problem can be solved in O(N) time if n = 2
and the elements c of C1 and C2 are sorted by v(c).

The same approach generalizes to Multichoice Knapsack. The partition is chosen to
balance the number of partial choices in each domain, and the worst-case time complexity is
O(
√
Qλ), where Q =

∏n
i=1 |Ci| is the number of choices.

ISAAC 2016

46:8 Pattern Matching and Consensus Problems on Weighted Sequences and Profiles

Our aim in this section is to replace Q with the parameter a (which never exceeds Q).
The overall running time is going to be O(N +

√
aλ logA).

Two challenges arise when adapting the meet-in-the-middle approach: how to restrict
the set of partial choices to be generated so that a feasible solution is not missed, and how
to define a partition D = D1 ∪D2 to balance the number of partial choices generated for
D1 and D2. A natural idea to deal with the first issue is to consider only partial choices
with small values v(S) or w(S). This is close to our actual solution, which is based on the
notion of ranks of partial choices. Our approach to the second problem is to consider multiple
partitions: those of the form D = {1, . . . , j}∪ {j+ 1, . . . , n} for 1 ≤ j ≤ n. This results in an
extra O(n) factor in the time complexity. However, preprocessing can assure n = O(logA

logλ).
While dealing with these two issues, a careful implementation is required to avoid several
further extra factors in the running time. In case of our algorithm, this is only O(log λ),
which stems from the fact that we need to keep partial solutions ordered by v(S).

For a partial choice S, we define rankv(S) as the number of partial choices S′ with
the same domain for which v(S′) ≤ v(S). We symmetrically define rankw(S). Ranks are
introduced as an analogue of match probabilities in weighted sequences. Probabilities are
multiplicative, while for ranks we have submultiplicativity:

I Fact 7. If S = S1 ∪ S2 is a decomposition of a partial choice S into two disjoint subsets,
then rankv(S1) rankv(S2) ≤ rankv(S) (and same for rankw).

Proof. Let D1 and D2 be the domains of S1 and S2, respectively. For every partial choices
S′1 over D1 and S′2 over D2 such that v(S′1) ≤ v(S1) and v(S′2) ≤ v(S2), we have v(S′1∪S′2) =
v(S′1) + v(S′2) ≤ v(S). Hence, S′1 ∪ S′2 must be counted while determining rankv(S). J

For 0 ≤ j ≤ n, let Lj be the list of partial choices with domain {1, . . . , j} ordered by
value v(S), and for ` > 0 let V (`)

Lj
be the value v(S) of `-th element of Lj (∞ if ` > |Lj |).

Analogously, for 1 ≤ j ≤ n + 1, we define Rj as the list of partial choices over {j, . . . , n}
ordered by v(S), and for r > 0, V (r)

Rj
as the value of the r-th element of Rj (∞ if r > |Rj |).

The following two observations yield a decomposition of each choice into a single item
and two partial solutions of a small rank. In particular, we do not need to know AV in order
to check if the ranks are sufficiently large.

I Lemma 8. Let ` and r be positive integers such that V (`)
Lj

+V
(r)
Rj+1

> V for each 0 ≤ j ≤ n.
For every choice S with v(S) ≤ V , there is an index j ∈ {1, . . . , n} and a decomposition
S = L ∪ {c} ∪R such that v(L) < V

(`)
Lj−1

, c ∈ Cj, and v(R) < V
(r)
Rj+1

.

Proof. Let S = {c1, . . . , cn} with ci ∈ Ci and, for 0 ≤ i ≤ n, let Si = {c1, . . . , ci}. If
v(Sn−1) < V

(`)
Ln−1

, we set L = Sn−1, c = cn, and R = ∅, satisfying the claimed conditions.
Otherwise, we define j as the smallest index i such that v(Si) ≥ V (`)

Li
, and we set L = Sj−1,

c = cj , and R = S \ Sj . The definition of j implies v(L) < V
(`)
Lj−1

and v(L ∪ {c}) ≥ V
(`)
Lj

.
Moreover, we have v(L∪{c})+v(R) = v(S) ≤ V < V

(`)
Lj

+V (r)
Rj+1

, and thus v(R) < V
(r)
Rj+1

. J

I Fact 9. Let `, r > 0. If V (`)
Lj

+ V
(r)
Rj+1

≤ V for some j ∈ {0, . . . , n}, then ` · r ≤ AV .

Proof. Let L and R be the `-th and r-th entry in Lj and Rj+1, respectively. Note that
v(L ∪R) ≤ V implies rankv(L ∪R) ≤ AV by definition of AV . Moreover, rankv(L) ≥ ` and
rankv(R) ≥ r (the equalities may be sharp due to draws). Now, Fact 7 yields the claimed
bound. J

T. Kociumaka, S. P. Pissis, and J. Radoszewski 46:9

Note that Lj can be obtained by interleaving |Cj | copies of Lj−1, where each copy
corresponds to extending the choices from Lj−1 with a different item. If we were to construct
Lj having access to the whole Lj−1, we could proceed as follows. For each c ∈ Cj , we
maintain an iterator on Lj−1 pointing to the first element S on Lj−1 for which S ∪ {c}
has not yet been added to Lj . The associated value is v(S ∪ {c}). All iterators initially
point at the first element of Lj−1. Then the next element to append to Lj is always S ∪ {c}
corresponding to the iterator with minimum value. Having processed this partial choice,
we advance the pointer (or remove it, once it has already scanned the whole Lj−1). This
process can be implemented using a binary heap Hj as a priority queue, so that initialization
requires O(|Cj |) time and outputting a single element takes O(log |Cj |) time.

For r ≥ 0, let L(r)
j be the prefix of Lj of length min(r, |Lj |) and R(r)

j be the prefix of Rj
of length min(r, |Rj |). A technical transformation of the procedure stated above leads to an
online algorithm that constructs the prefixes L(r)

j and R(r)
j (details will be provided in the

full version). Along with each reported partial choice S, the algorithm also computes w(S).

I Lemma 10. After O(N)-time initialization, one can construct L(i)
1 , . . . ,L(i)

n online for
i = 0, 1, . . ., spending O(n log λ) time per each step. Symmetrically, one can construct
R(i)

1 , . . . ,R(i)
n in the same time complexity.

Also the following reduction can be obtained (details are left for the full version).

I Lemma 11. Given an instance I of the Multichoice Knapsack problem, one can
compute in O(N +λ logA) time an equivalent instance I ′ with A′V ≤ AV , A′W ≤ AW , λ′ ≤ λ,
and n′ = O(logA

logλ).

Note that we may always assume that λ ≤ a. Indeed, if we order the items c ∈ Ci
according to v(c), then only the first AV of them might belong to a choice S with v(S) ≤ V .

I Theorem 12. Multichoice Knapsack can be solved in O(N +
√
aλ logA) time.

Proof. Below, we give an algorithm working in O(N +
√
AV λ logA) time. The final solution

runs it in parallel on the original instance and on the instance with v and V swapped with w
and W , waiting until at least one of them terminates.

We increment an integer r starting from 1, maintaining ` =
⌈
r
λ

⌉
and the lists L(`)

j and
R(r)
j+1 for 0 ≤ j ≤ n, as long as V (`)

Lj
+ V

(r)
Rj+1

≤ V for some j (or until all the lists have been
completely generated). By Fact 9, we stop at r = O(

√
AV λ). Lemma 11 lets us assume that

n = O(logA
logλ), so the running time of this phase is O(N +

√
AV λ logA) due to Lemma 10.

The preprocessing time of Lemma 11 is dominated by this complexity.
Due to Lemma 8, every feasible solution S admits a decomposition S = L ∪ {c} ∪R with

L ∈ L(`)
j−1, c ∈ Cj , and R ∈ R

(r)
j+1 for some index j. We consider all possibilities for j. For

each of them we will reduce searching for S to an instance of the Multichoice Knapsack
problem with N ′ = O(

√
AV λ) and n′ = 2. By Lemma 6, these instances can be solved in

O(n
√
AV λ) = O(

√
AV λ

logA
logλ) time in total.

The items of the j-th instance are going to belong to classes L(`)
j−1 �Cj and R(r)

j+1, where
L(`)
j−1�Cj = {L∪{c} : L ∈ L(`)

j−1, c ∈ Cj}. The set L(`)
j−1�Cj can be constructed by merging

|Cj | ≤ λ sorted lists, each of size ` = O(
√
AV /λ), i.e., in O(

√
AV λ log λ) time. Summing up

over all indices j, this gives O(
√
AV λ log λ logA

logλ) = O(
√
AV λ logA) time.

Clearly, each feasible solution of the constructed instances represents a feasible solution
of the initial instance, and by Lemma 8, every feasible solution of the initial instance has its
counterpart in one of the constructed instances. J

ISAAC 2016

46:10 Pattern Matching and Consensus Problems on Weighted Sequences and Profiles

5 Weighted Consensus and General Weighted Pattern Matching

The Weighted Consensus problem is formally defined as follows.

Weighted Consensus Problem
Input: Two weighted sequences X and Y of length n with at most λ letters at each
position and R in total, and a threshold probability 1

z .
Output: A string S such that S ≈ 1

z
X and S ≈ 1

z
Y or NONE if no such string exists.

If two weighted sequences satisfy the consensus, we write X ≈ 1
z
Y and say that X

matches Y with probability at least 1
z . With this definition of a match, we extend the notion

of an occurrence and the notation Occ 1
z
(P, T) to arbitrary weighted sequences.

General Weighted Pattern Matching (GWPM) Problem
Input: Two weighted sequences P and T of length m and n, respectively, with at most
λ letters at each position and R in total, and a threshold probability 1

z .
Output: The set Occ 1

z
(P, T).

In the case of the GWPM problem, it is more useful to provide an oracle that finds
witness strings that correspond to the respective occurrences of the pattern. Such an oracle,
given i ∈ Occ 1

z
(P, T), computes a string that matches both P and T [i..i+m− 1].

Our algorithms rely on the following simple observation, originally due to Amir et al. [1].

I Fact 13 ([1]). A weighted sequence has at most z different matching strings.

The Weighted Consensus problem is actually a special case of Multichoice Knap-
sack. Namely, given an instance of the former, we can create an instance of the latter with
n classes Ci, each containing an item ci,s for every letter s which has non-zero probability at
position i in both X and Y . We set v(ci,s) = − log π(X)

i (s) and w(ci,s) = − log π(Y)
i (s) for

this item, whereas the thresholds are V = W = log z. It is easy to see that this reduction
indeed yields an equivalent instance and that it can be implemented in linear time. By
Fact 13, we have A ≤ z for this instance, so Theorem 12 yields the following result:

I Corollary 14. Weighted Consensus problem can be solved in O(R+
√
zλ log z) time.

The GWPM problem can be clearly reduced to n + m − 1 instances of Weighted
Consensus. This leads to a naïve O(nR+ n

√
zλ log z)-time algorithm. Below, we remove

the first term in this complexity. Our solution applies the approach used in Section 3 for
Weighted Pattern Matching and uses an observation analogous to Observation 4.

I Observation 15. If X and Y are weighted sequences that match with threshold 1
z , then

dH(H(X),H(Y)) ≤ 2 blog zc. Moreover there exists a consensus string S such that S[i] =
H(X)[i] = H(Y)[i] unless H(X)[i] 6= H(Y)[i].

Our algorithm starts by computing P ′ = H(P) and T ′ = H(T) and the data structure
for lcp-queries in P ′T ′. We try to match P with every factor T [p..p + m − 1] of the text.
Following Observation 15, we check if dH(T ′[p..p+m− 1], P ′) ≤ 2 blog zc . If not, then we
know that no match is possible. Otherwise, let D be the set of positions of mismatches
between T ′[p..p+m− 1] and P ′. Assume that we store α =

∏m
j=1 π

(T)
p+j−1(T ′[p+ j − 1]) and

β =
∏m
j=1 π

(P)
j (P ′[j]). Then, in O(|D|) time we can compute α′ =

∏
j /∈D π

(T)
p+j−1(T ′[p+j−1])

and β′ =
∏
j /∈D π

(P)
j (P ′[j]). Now, we only need to check what happens at the positions in D.

T. Kociumaka, S. P. Pissis, and J. Radoszewski 46:11

If D = ∅, then it suffices to check if α ≥ 1
z and β ≥ 1

z . Otherwise, we construct two
weighted sequences X and Y by selecting only the positions from D in T [p..p+m− 1] and
in P . We multiply the probabilities of all letters at the first position in X by α′ and in Y by
β′. It is clear that X ≈ 1

z
Y if and only if T [p..p+m− 1] ≈ 1

z
P .

Thus, we have reduced the GWPM problem to at most n − m + 1 instances of the
Weighted Consensus problem for strings of length O(log z). By Corollary 14, solving
each instance takes O(λ log z +

√
zλ log z) = O(

√
zλ log z) time. Our reduction requires

O(R log2 log λ) time to preprocess the input (as in Theorem 5), but this is dominated by the
O(n
√
zλ log z) total time of solving the Weighted Consensus instances. If we memorize

the solutions to all those instances together with the underlying sets of mismatches D, we
can also implement the oracle for the GWPM problem with O(m)-time queries.

A tailor-made solution can be designed (details will be provided in the full version)
to replace the generic algorithm for the Multichoice Knapsack problem, which lets us
improve the log z factor to log log z + log λ.

I Theorem 16. The GWPM problem can be solved in O(n
√
zλ(log log z + log λ)) time. An

oracle for the GWPM problem using O(n log z) space and supporting queries in O(m) time
can be computed within the same time complexity.

A reduction from Multichoice Knapsack to Weighted Consensus (proofs will
be provided in the full version) immediately yields that any significant improvement in
the dependence on z and λ in the running time of our algorithm would lead to breaking
long-standing barriers for special cases of Multichoice Knapsack.

I Theorem 17. Weighted Consensus problem is NP-hard and cannot be solved in:
1. O∗(zε) time for every ε > 0, unless the Exponential Time Hypothesis (ETH) fails;
2. O∗(z0.5−ε) time for some ε > 0, unless there is an O∗(2(0.5−ε)n)-time algorithm for the

Subset Sum problem;
3. Õ(R+ z0.5λ0.5−ε) time for some ε > 0 and for n = O(1), unless there is an O(λ2(1−ε))-

time algorithm for 3-Sum.

Nevertheless, it might still be possible to improve the dependence on n in the GWPM
problem. For example, one may hope to achieve Õ(nz0.5−ε + z0.5) time for λ = O(1).

6 Final Remarks

In Section 4, we gave an O(N + a0.5λ0.5 logA)-time algorithm for the Multichoice Knap-
sack problem. Improvement of either exponent to 0.5− ε would result in a breakthrough
for the Subset Sum and 3-Sum problems, respectively. Nevertheless, this does not refute
the existence of faster algorithms for some particular values (a, λ) other than those emerging
from instances of Subset Sum or 3-Sum. Indeed, we can show an algorithm that is superior
if log a

logλ is a constant other than an odd integer. We can also prove it to be optimal (up to
lower order terms) for every constant log a

logλ unless the k-Sum conjecture fails. The details will
be provided in the full version.

References
1 Amihood Amir, Eran Chencinski, Costas S. Iliopoulos, Tsvi Kopelowitz, and Hui Zhang.

Property matching and weighted matching. Theor. Comput. Sci., 395(2-3):298–310, April
2008. doi:10.1016/j.tcs.2008.01.006.

ISAAC 2016

http://dx.doi.org/10.1016/j.tcs.2008.01.006

46:12 Pattern Matching and Consensus Problems on Weighted Sequences and Profiles

2 Carl Barton, Tomasz Kociumaka, Solon P. Pissis, and Jakub Radoszewski. Efficient index
for weighted sequences. In Roberto Grossi and Moshe Lewenstein, editors, Combinatorial
Pattern Matching, CPM 2016, volume 54 of LIPIcs, pages 4:1–4:13. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.CPM.2016.4.

3 Carl Barton and Solon P. Pissis. Linear-time computation of prefix table for weighted
strings. In Florin Manea and Dirk Nowotka, editors, Combinatorics on Words,
WORDS 2015, volume 9304 of LNCS, pages 73–84. Springer, 2015. doi:10.1007/
978-3-319-23660-5_7.

4 Sudip Biswas, Manish Patil, Sharma V. Thankachan, and Rahul Shah. Probabilistic
threshold indexing for uncertain strings. In Evaggelia Pitoura, Sofian Maabout, Georgia
Koutrika, Amélie Marian, Letizia Tanca, Ioana Manolescu, and Kostas Stefanidis, edit-
ors, 19th International Conference on Extending Database Technology, EDBT 2016, pages
401–412. OpenProceedings.org, 2016. doi:10.5441/002/edbt.2016.37.

5 Manolis Christodoulakis, Costas S. Iliopoulos, Laurent Mouchard, and Kostas Tsichlas.
Pattern matching on weighted sequences. In Algorithms and Computational Methods for
Biochemical and Evolutionary Networks, CompBioNets 2004, KCL publications, 2004.

6 Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on Strings.
Cambridge University Press, New York, NY, USA, 2007.

7 Michael Etscheid, Stefan Kratsch, Matthias Mnich, and Heiko Röglin. Polynomial kernels
for weighted problems. In Giuseppe F. Italiano, Giovanni Pighizzini, and Donald Sannella,
editors, Mathematical Foundations of Computer Science, MFCS 2015, Part II, volume 9235
of LNCS, pages 287–298. Springer, 2015. doi:10.1007/978-3-662-48054-0_24.

8 Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with O(1)
worst case access time. J. ACM, 31(3):538–544, 1984. doi:10.1145/828.1884.

9 Anka Gajentaan and Mark H. Overmars. On a class of O(n2) problems in computational
geometry. Comput. Geom., 5:165–185, 1995. doi:10.1016/0925-7721(95)00022-2.

10 Eitan M. Gurari. Introduction to the theory of computation. Computer Science Press, 1989.
11 Ellis Horowitz and Sartaj Sahni. Computing partitions with applications to the knapsack

problem. J. ACM, 21(2):277–292, 1974. doi:10.1145/321812.321823.
12 Costas S. Iliopoulos, Christos Makris, Yannis Panagis, Katerina Perdikuri, Evangelos

Theodoridis, and Athanasios K. Tsakalidis. The weighted suffix tree: An efficient
data structure for handling molecular weighted sequences and its applications. Fun-
dam. Inform., 71(2-3):259–277, 2006. URL: http://content.iospress.com/articles/
fundamenta-informaticae/fi71-2-3-07.

13 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput.
Syst. Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

14 Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer, 2004.
15 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the Ex-

ponential Time Hypothesis. Bulletin of the EATCS, 105:41–72, 2011. URL: http:
//bulletin.eatcs.org/index.php/beatcs/article/view/92.

16 Cinzia Pizzi and Esko Ukkonen. Fast profile matching algorithms – A survey. Theor.
Comput. Sci., 395(2-3):137–157, 2008. doi:10.1016/j.tcs.2008.01.015.

17 Sanguthevar Rajasekaran, X. Jin, and John L. Spouge. The efficient computation of
position-specific match scores with the fast Fourier transform. J. Comp. Biol., 9(1):23–
33, 2002. doi:10.1089/10665270252833172.

18 Milan Ružić. Constructing efficient dictionaries in close to sorting time. In Luca Aceto,
Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and
Igor Walukiewicz, editors, Automata, Languages and Programming, ICALP 2008, Part I,
volume 5125 of LNCS, pages 84–95. Springer, 2008. doi:10.1007/978-3-540-70575-8_8.

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.4
http://dx.doi.org/10.1007/978-3-319-23660-5_7
http://dx.doi.org/10.1007/978-3-319-23660-5_7
http://dx.doi.org/10.5441/002/edbt.2016.37
http://dx.doi.org/10.1007/978-3-662-48054-0_24
http://dx.doi.org/10.1145/828.1884
http://dx.doi.org/10.1016/0925-7721(95)00022-2
http://dx.doi.org/10.1145/321812.321823
http://content.iospress.com/articles/fundamenta-informaticae/fi71-2-3-07
http://content.iospress.com/articles/fundamenta-informaticae/fi71-2-3-07
http://dx.doi.org/10.1006/jcss.2000.1727
http://bulletin.eatcs.org/index.php/beatcs/article/view/92
http://bulletin.eatcs.org/index.php/beatcs/article/view/92
http://dx.doi.org/10.1016/j.tcs.2008.01.015
http://dx.doi.org/10.1089/10665270252833172
http://dx.doi.org/10.1007/978-3-540-70575-8_8

	Introduction
	Preliminaries
	Profiles
	Weighted Sequences

	Profile Matching and Weighted Pattern Matching
	Profile Consensus as Multichoice Knapsack
	Weighted Consensus and General Weighted Pattern Matching
	Final Remarks

