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Abstract
Goemans showed that any n points x1, . . . xn in d-dimensions satisfying `22 triangle inequalities
can be embedded into `1, with worst-case distortion at most

√
d. We consider an extension of

this theorem to the case when the points are approximately low-dimensional as opposed to ex-
actly low-dimensional, and prove the following analogous theorem, albeit with average distortion
guarantees: There exists an `22-to-`1 embedding with average distortion at most the stable rank,
sr(M), of the matrixM consisting of columns {xi−xj}i<j . Average distortion embedding suffices
for applications such as the Sparsest Cut problem. Our embedding gives an approximation
algorithm for the Sparsest Cut problem on low threshold-rank graphs, where earlier work was
inspired by Lasserre SDP hierarchy, and improves on a previous result of the first and third au-
thor [Deshpande and Venkat, In Proc. 17th APPROX, 2014]. Our ideas give a new perspective
on `22 metric, an alternate proof of Goemans’ theorem, and a simpler proof for average distortion√
d.
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1 Introduction

A finite metric space consists of a pair (X , d), where X is a finite set of points, and
d : X × X → R≥0 is a distance function on pairs of points in X . Finite metric spaces arise
naturally in combinatorial optimization (e.g., the `1 space in cut problems), and in practice
(e.g., edit-distance between strings over some alphabet Σ). Since the input space may not
be amenable to efficient optimization, or may not admit efficient algorithms, one looks for
embeddings from these input spaces to easier spaces, while minimizing the distortion incurred.
Given its importance, various aspects of such embeddings have been investigated such as
dimension, distortion, efficient algorithms, and hardness results (refer to surveys [10, 16, 14]
and references therein). In this paper, we provide better distortion guarantees for embedding
approximately low-dimensional points in the `22-metric into `1, and give applications to the
Sparsest Cut problem.

In the Sparsest Cut problem, we are given graphs C, D on the same vertex set V , with
|V | = n, called the cost and demand graphs, respectively. They are specified by non-negative
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edge weights cij , dij ≥ 0, for i < j ∈ [n] and the (non-uniform) sparsest cut problem,
henceforth referred to as Sparsest Cut, asks for a subset S ⊆ V that minimizes

Φ(S) :=
∑
i<j cij |IS(i)− IS(j)|∑
i<j dij |IS(i)− IS(j)| ,

where IS(i) is the indicator function giving 1, if i ∈ S, and 0, otherwise. We denote the
optimum by Φ∗ := minS⊆V Φ(S). When the demand graph is a complete graph on n vertices
with uniform edge weights, the problem is then commonly referred to as the Uniform
Sparsest Cut problem.

The best known (unconditional) approximation guarantee for the Uniform Sparsest
Cut problem is O(

√
logn), due to Arora, Rao and Vazirani [3] (henceforth referred to as

the ARV algorithm). Building on techniques in this work, Arora, Lee and Naor [2] give a
O(
√

logn log logn) algorithm for non-uniform Sparsest Cut. These results come from a
semi-definite programming (SDP) relaxation to produce solutions in the `2-squared metric
space, i.e., a set of vectors {xi}i∈V in some high dimensional space that satisfy triangle
inequality constraints on the squared distances in the following sense.

‖xi − xj‖22 + ‖xj − xk‖22 ≥ ‖xi − xk‖
2
2 ∀ i, j, k ∈ [n].

Since the `1 metric lies in the non-negative cone of cut (semi-)metrics, ARV [3] and Arora-
Lee-Naor[2] round their solutions via low-distortion embeddings of the above `22 solution into
`1 metric. Embeddings with low average-distortion suffice for applications to the Sparsest
Cut problem.

Any n points satisfying `22 triangle inequalities make only acute angles among themselves,
and therefore must lie in Ω(logn) dimensions (Chapter 15, [1]). However, for low threshold-
rank graphs, or more generally, when the r-th smallest generalized eigenvalue of the cost
and demand graphs satisfies λr(C,D) � ΦSDP , the above SDP solution is known to be
approximately low-dimensional, that is, the span of its top r eigenvectors contains nearly all
of its total eigenmass (implicit in [9]). Moreover, it can be embedded into `1 using solutions
of higher-levels of the Lasserre SDP hierarchy to obtain a PTAS-like approximation guarantee
[9]. This motivates the quest for finding more efficient embeddings of low-dimensional or
approximately low-dimensional `22 metrics into `1.

Goemans (unpublished, appears in [15]) showed that if the points satisfying `22 triangle
inequalities lie in d dimensions, then they can be embedded into `2 (and hence into `1, since
there is an isometry from `2 ↪→ `1 [16]) with

√
d distortion.

I Theorem 1.1 (Goemans [15, Appendix B]). Let x1, x2, . . . , xn ∈ Rd be n points satisfying
`22 triangle inequalities. Then there exists an `22 ↪→ `2 embedding xi 7→ f(xi) with distortion√
d, that is,

1√
d
‖xi − xj‖22 ≤ ‖f(xi)− f(xj)‖2 ≤ ‖xi − xj‖

2
2 , ∀ i, j ∈ V.

Comparison of Goemans and ARV

Since n points satisfying `22 triangle inequalities must lie in d = Ω(logn) dimensions (Chapter
15, [1]), the ARV algorithm [3] implies an `22 ↪→ `1 embedding with average distortion O(

√
d),

and Arora-Lee-Naor [2] improve it to Õ(
√
d) worst-case distortion. In the other direction,

is it possible to extend Theorem 1.1 to give ARV-like guarantees? Here are two immediate
ideas that come to mind.
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Combine Theorem 1.1 with a dimension reduction to O(logn) dimensions for `22 metrics,
similar to the Johnson-Lindenstrauss lemma for `2. Such a dimension reduction for
`22 that approximately preserves all pairwise `22 distances is ruled out by Magen and
Moharrami [15], although their proof does not rule out dimension reduction for average
distortion.
Extend Theorem 1.1 to work with approximate `22 triangle inequalities, and then combine it
with the Johnson-Lindenstrauss lemma. The Johnson-Lindenstrauss lemma, when applied
to points satisfying `22 triangle inequalities, preserves their `22 triangle inequalities only
approximately. That is, the points after the Johnson-Lindenstrauss random projection
satisfy

‖xi − xj‖22 + ‖xj − xk‖22 ≥ (1−O(ε)) ‖xi − xk‖22 ∀ i, j, k ∈ [n].

We note that a generalization of Theorem 1.1 that accommodates approximate `22 triangle
inequalities (in the additive sense not multiplicative as above) does hold, but its only
proof (due to Trevisan [personal communication]) that we are aware of uses the technical
core of the analysis of the ARV algorithm.

Here we seek a robust generalization of Goemans’ theorem that avoids the above caveats.
Our version of Goemans’ theorem uses average distortion instead of worst-case. It is robust
in the sense that it works with approximate dimension instead of the actual dimension.
Such a robust version opens up another possible approach to the general Sparsest Cut
problem: reduce the approximate dimension while preserving the pairwise distances on
average, and then apply the robust version of Goemans’ theorem. Moreover, our definition
of the approximate dimension is spectral, and our results can be easily compared to those
of Guruswami-Sinop [9] on Lasserre SDP hierarchies and Kwok et al. [13] on higher order
Cheeger inequalities (see Sections 1.1 and 1.2 for comparisons).

1.1 Our Results
We consider a robust version of Goemans’ theorem, when the points x1, x2, . . . , xn are only
approximately low-dimensional. We quantify this approximate dimension by the stable rank of
the difference matrix M ∈ Rd×(n

2) having columns {xi−xj}i<j . Stable rank of the difference
matrix is a natural choice because (a) stable rank is a continuous proxy for rank or dimension
arising naturally in many applications [5, 17], (b) the difference matrix M is invariant under
any shift of origin, and (c) the difference matrix of the SDP solution for the Sparsest Cut
problem on low threshold-rank graphs indeed has low stable rank (implicit in [9]).

I Definition 1.2 (Stable Rank). Given x1, . . . , xn ∈ Rd, let M ∈ Rd×(n
2) be the matrix with

columns {xi−xj}i<j . The stable rank of the points is defined as the stable rank of M , given
by sr (M) := ‖M‖2F / ‖M‖

2
2, where ‖M‖F and ‖M‖2 are the Frobenius and spectral norm

of M respectively.

Note that sr (M) ≤ rank (M) ≤ d, when the points x1, x2, . . . , xn ∈ Rd. Our robust version
of Goemans’ theorem is as follows.

I Theorem 1.3 (Embedding almost low-dimensional vectors). Let x1, x2, . . . , xn ∈ Rd be n
points satisfying `22 triangle inequalities. Then there exists an `22 ↪→ `2 embedding xi 7→ h(xi)
with average distortion bounded by the stable rank of M , that is,

‖h(xi)− h(xj)‖2 ≤ ‖xi − xj‖
2
2 , ∀i, j ∈ V,

FSTTCS 2016
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and

1
sr (M)

∑
i<j

‖xi − xj‖22 ≤
∑
i<j

‖h(xi)− h(xj)‖2 .

We note that the above theorem is not a strict generalization of Goemans’ theorem to
the approximate dimension case. To obtain a truly robust version of Goemans’ theorem
quantitatively, one might ask if the dependence on sr (M) in the above theorem can be
improved from sr (M) to

√
sr (M).

Our proof technique gives a new perspective on `22 metric, an alternate proof of Goemans’
theorem, and a simpler algorithmic proof for average distortion

√
d based on a squared-length

distribution (see Section 4, and the remark following the proof of Theorem 4.1). Also,
the result can be quantitatively compared to guarantees given by higher-order Cheeger
inequalities [13]; we discuss this in more detail at the end of this section. While most known
embeddings from `22 to `1 are Frechet embeddings, our embedding is projective (similar in
spirit to [9, 7]).

Theorem 1.3 immediately implies an sr (M)-approximation to the Uniform Sparsest
Cut problem. In fact, with a slight modification, we obtain a similar result for the general
Sparsest Cut problem (see theorem below).

I Theorem 1.4. There is an r/δ-approximation algorithm for Sparsest Cut instances
C,D satisfying λr(C,D) ≥ ΦSDP /(1 − δ), where λr(C,D) is the r-th smallest generalized
eigenvalue (see Section 2) of the Laplacians of the cost and demand graphs.

The precondition on λr(C,D) is the same as in previous works [9, 7], and we improve the
O(r/δ2)-approximation of [7] by a factor of 1/δ. Our proof follows from the robust version
of Goemans’ embedding into `2 whereas these previous works gave embeddings directly into
`1 by either using higher levels of Lasserre explicitly [9] or using only the basic SDP solution
but inspired by the properties of Lasserre vectors [7]. We can infer the following corollary
almost immediately:

I Corollary 1.5. For any ε > 0 and a d-regular cost graph C satisfying λr(C) ≥ εd, there is
a max

{
O(r), 1√

ε

}
approximation to Uniform Sparsest Cut.

Proof. The implicit demand graph here is Kn, the complete graph on n vertices, and thus
the generalized eigenvalues are λr(C,Kn) = λr/n. Consider two cases: If ΦSDP ≤ εd/100n
then λr/n ≥ 100ΦSDP yielding an O(r) approximation by Theorem 1.4. Otherwise, if
ΦSDP ≥ εd/100n, then running a basic Cheeger rounding and analysis on (one co-ordinate
of) the SDP solution would itself give a cut of sparsity O(d

√
ε/n) ≤ ΦSDP /

√
ε. Thus, using

the minimum of these gives a cut within a factor max {O(r), 1/
√
ε} of the optimum. J

1.2 Related work
We recall that the best known upper bound for the worst-case distortion of embedding
`22 ↪→ `1 is O(

√
logn · log logn) [3, 2], while the best known lower bound is (logn)Ω(1) for

worst-case distortion [6], and exp(Ω(
√

log logn)) for average distortion [11]. Guarantees to
Sparsest Cut on low threshold-rank graphs were obtained using higher levels of the Lasserre
hierarchy for SDPs [4, 9]. In contrast, a previous work of the first and third author [7] showed
weaker guarantees, but using just the basic SDP relaxation. Oveis Gharan and Trevisan [8]
also give a rounding algorithm for the basic SDP relaxation on low-threshold rank graphs,
but require a stricter pre-condition on the eigenvalues (λr � log2.5 r · Φ(G)), and leverage it
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to give a stronger O(
√

log r)-approximation guarantee. Their improvement comes from a
new structure theorem on the SDP solutions of low threshold-rank graphs being clustered,
and using the techniques in ARV for analysis.

Kwok et al. [13] showed that a better analysis of Cheeger’s inequality gives a O(r ·
√
d/λr)

approximation to Uniform Sparsest Cut on d-regular graphs. In particular, when
λr(G) ≥ εd, this gives a O(r/

√
ε) approximation for the Uniform Sparsest Cut problem.

Note that Corollary 1.5 gives a slightly better approximation in this setting.
Further, while the Kwok et al. result is tight with respect to the spectral solution, our

approach allows for an improvement in terms of the dependence on r to
√
r, since it uses the

SDP relaxation rather than a spectral solution.

2 Preliminaries and Notation

Sets, Matrices, Vectors

We use [n] = {1, . . . , n}. For a matrix X ∈ Rd×d, we say X � 0 or X is positive-semidefinite
(psd) if yTXy ≥ 0 for all y ∈ Rd. The Gram-matrix of a matrix M ∈ Rd1×d2 is the matrix
MTM , which is psd.

Every matrix M has a singular value decomposition M =
∑
i σiuiv

T
i = UDV T . Here,

the matrices U, V are Unitary, and D is the diagonal matrix of the singular values σ1 ≥
σ2 ≥ . . . ≥ σn, in non-increasing order. When not clear from context, we denote the singular
values of M by σi(M).

The Frobenius norm of M is given by ‖M‖F :=
√∑

i σ
2
i (M) =

√∑
i∈[d1],j∈[d2]M(i, j)2.

In our analysis, we will sometimes view a matrix M as a collection of its columns viewed
as vectors; M = (mj)j∈[d2]. In this case, ‖M‖2F =

∑
j ‖mj‖22. The spectral norm of M is

‖M‖2 := σ1.

Generalized Eigenvalues

Given two symmetric matrices X,Y ∈ Rd × d with Y � 0, and for i ≤ rank(Y ), we define
their i-th smallest generalized eigenvalue as the following:

λi = max
rank(Z)≤i−1

min
w⊥Z;w 6=0

wTXw

wTY w

Rank and Stable Rank

The rank of the matrix M (denoted by rank (M)) is the number of non-zero singular
values. Recall that the stable rank of the matrix M , sr (M) = ‖M‖2

F

σ1(M)2 . Note that sr (M) =∑rank(M)
i=1 σ2

i (M)/σ2
1(M) ≤ rank (M).

Metric spaces and embeddings

For our purposes, a (semi-)metric space (X , d) consists of a finite set of points X =
{x1, x2, . . . , xn} and a distance function d : X × X 7→ R≥0 satisfying the following three
conditions:
1. d(x, x) = 0, ∀x ∈ X .
2. d(x, y) = d(y, x).
3. (Triangle inequality) d(x, y) + d(y, z) ≥ d(x, z).

FSTTCS 2016
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An embedding from a metric space (X , d) to a metric space (Y, d′) is a mapping f : X → Y.
The embedding is called a contraction, if

d′(f(xi), f(xj)) ≤ d(xi, xj), ∀xi, xj ∈ X .

For convenience, we will only deal with contractive mappings in this paper. A contractive
mapping is said to have (worst-case) distortion ∆, if

sup
i,j

d(xi, xj)
d′(f(xi), f(xj))

≤ ∆.

It is said to have average distortion β, if∑
i<j d(xi, xj)∑

i<j d(f(xi), f(xj))
≤ β.

Note that a mapping with worst-case distortion ∆ also has average distortion ∆, but not
necessarily vice-versa.

The `2
2 space

A set of points {x1, x2, . . . , xn} ∈ Rd are said to satisfy `22 triangle inequality constraints, or
said to be in `22 space, if it holds that

‖xi − xj‖22 + ‖xj − xk‖22 ≥ ‖xi − xk‖
2
2 ∀i, j, k ∈ [n].

These satisfy the triangle inequalities on the squares of their `2 distances. The corresponding
metric space is (X , d), where d(i, j) := ‖xi − xj‖22.

Graphs and Laplacians

All graphs will be defined on a vertex set V of size n. The vertices will usually be referred
to by indices i, j, k, l ∈ [n]. Given a graph with weights on pairs W :

(
V
2
)
7→ R+, the graph

Laplacian matrix is defined as:

LW (i, j) :=
{
−W (i, j) if i 6= j∑
kW (i, k) if i = j.

Note that LW � 0. We will denote the eigenvalues of (the Laplacian of) G by 0 = λ1 ≤
λ2 . . . ≤ λn, in increasing order.

Sparsest Cut SDP

The SDP we use for Sparsest Cut on the vertex set V with costs and demands cij , dkl ≥ 0
and corresponding cost and demand graphs C :

(
V
2
)
7→ R+ and D :

(
V
2
)
7→ R+, is effectively

the following:

SDP: ΦSDP := min
∑
i<j

cij ‖xi − xj‖22

subject to
{
‖xi − xj‖22 + ‖xj − xk‖22 ≥ ‖xi − xk‖

2
2 ∀i, j, k ∈ [n].∑

k<l dkl ‖xk − xl‖
2
2 = 1.

Note that the solution to the above SDP is in `22 space.
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`1 embeddings and cuts

Since `1 metrics are exactly the cone of cut-metrics, it follows from the previous discussion
on embeddings, that producing an embedding of the SDP solutions X = {x1, . . . .xn} in
`22 space to `1 space with distortion α would give an α-approximation to Sparsest Cut.
Producing one with average distortion α would give an α-approximation to Uniform
Sparsest Cut. Furthermore, since `2 embeds isometrically (distortion 1) into `1, it suffices
to show embeddings into `2 for the above purposes.

Key Lemma

The following lemma about `22 spaces was observed by Deshpande and Venkat [7]. We will
reuse this in the rest of the paper.

I Lemma 2.1 ([7, Proposition 1.3]). Let x1, x2, . . . , xn be n points satisfying `22 triangle
inequalities. Then〈

xi − xj ,
xk − xl
‖xk − xl‖2

〉2
≤ |〈xi − xj , xk − xl〉| ≤ ‖xi − xj‖22 , ∀i, j, k, l ∈ V.

An immediate consequence of this lemma is that we can show that a large class of naturally
defined `22 ↪→ `2 embeddings are contractions.

I Lemma 2.2 (Contraction). Let x1, x2, . . . , xn be n points satisfying `22 triangle inequalities.
For any probability distribution {pkl}k<l, let P be the symmetric psd matrix defined as
P :=

∑
k<l pkl (xk − xl)(xk − xl)T . Then the `22 ↪→ `2 embedding given by xi 7→ P 1/2xi is a

contraction, that is,∥∥∥P 1/2(xi − xj)
∥∥∥

2
≤ ‖xi − xj‖22 , ∀i, j ∈ V.

Proof. The following holds for all i, j:∥∥∥P 1/2(xi − xj)
∥∥∥

2
=
(
(xi − xj)TP (xi − xj)

)1/2
=
(∑
k<l

pkl 〈xi − xj , xk − xl〉2
)1/2

≤

(∑
k<l

pkl ‖xi − xj‖42

)1/2

[By Lemma 2.1]

= ‖xi − xj‖22 . [Since
∑
k<l

pkl = 1]

J

3 Embedding almost low-dimensional vectors

We now prove the robust version of Goemans’ theorem in terms of stable rank. We give two
proofs, and show an application to round solutions to Sparsest Cut on low-threshold-rank
graphs. As before, given a set of points x1, . . . , xn in Rd, define their difference matrix
M ∈ Rd×(n

2) as the matrix with columns as {xi − xj}i<j .

FSTTCS 2016
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Proof of Theorem 1.3. Let u and v be the top left and right singular vector of M , respect-
ively, and σ1 ≤ σ2 ≤ . . . ≤ σd be the singular values of M . Then Mv = σ1u, or in other
words, σ1u =

∑
k<l vkl(xk − xl). Now consider the embedding xi 7→ h(xi) = P 1/2xi, where

the probability distribution pkl ∝ |vkl|, that is

P =
∑
k<l

|vkl|
‖v‖1

(xk − xl)(xk − xl)T .

This embedding is a contraction by Lemma 2.2. Now let’s bound its average distortion.∑
i<j

‖h(xi)− h(xj)‖2 =
∑
i<j

∥∥∥P 1/2(xi − xj)
∥∥∥

2

=
∑
i<j

(
(xi − xj)TP (xi − xj)

)1/2
=
∑
i<j

(∑
k<l

|vkl|
‖v‖1

〈xi − xj , xk − xl〉2
)1/2

≥
∑
i<j

∑
k<l

|vkl|
‖v‖1

|〈xi − xj , xk − xl〉| [By Jensen’s inequality]

≥
∑
i<j

1
‖v‖1

∣∣∣∣∣
〈
xi − xj ,

∑
k<l

vkl(xk − xl)
〉∣∣∣∣∣ [By triangle inequality]

= 1
‖v‖1

∑
i<j

|〈xi − xj , σ1u〉|

= 1
‖v‖1

∑
i<j

σ2
1 |vij |

= σ2
1 =
‖M‖2F
sr (M)

= 1
sr (M)

∑
i<j

‖xi − xj‖22 .

J

3.1 An alternative proof
We can alternatively get the same guarantee as in Theorem thm:stable-rank, by giving a
one-dimensional `2 embedding (and hence also `1 embedding without any extra effort) along
the top singular vector of the difference matrix M . This gives an interesting “spectral”
algorithm that uses spectral information about the point set, akin to spectral algorithms in
graphs that use the spectrum of the graph Laplacian.

I Theorem 3.1. Let x1, x2, . . . , xn ∈ Rd be n points satisfying `22 triangle inequalities with
M as their difference matrix. Let u ∈ Rd and v ∈ R(n

2) be its top left and right singular
vectors, respectively. Then xi 7→ σ1

‖v‖1
〈xi, u〉 is an `22 ↪→ `2 embedding with average distortion

bounded by the stable rank of M .

Proof. We have Mv = σ1u, or equivalently, σ1u =
∑
k<l vkl(xk − xl). Our embedding is a

contraction since
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σ1

‖v‖1
|〈xi − xj , u〉| =

1
‖v‖1

∣∣∣∣∣
〈
xi − xj ,

∑
k<l

vkl(xk − xl)
〉∣∣∣∣∣

≤ 1
‖v‖1

∑
k<l

|vkl| |〈xi − xj , xk − xl〉|

≤ 1
‖v‖1

∑
k<l

|vkl| ‖xi − xj‖22 [By Lemma 2.1]

= ‖xi − xj‖22 .

Now let’s bound the average distortion.∑
i<j

σ1

‖v‖1
|〈xi − xj , u〉| =

∑
i<j

σ1

‖v‖1
|σ1vij | [Since uTM = σ1v

T ]

= σ2
1 =
‖M‖2F
sr (M)

= 1
sr (M)

∑
i<j

‖xi − xj‖22 .

J

3.2 Application to Sparsest Cut on low-threshold rank graphs
We first state a property of SDP solutions on low threshold-rank graphs, proved by Guruswami
and Sinop [9] using the Von-Neumann inequality.

I Proposition 3.2 (Von-Neumann inequality [9, Theorem 3.3]). Let 0 ≤ λ1 ≤ . . . ≤ λm be the
generalized eigenvalues of the Laplacian matrices of the cost and demand graphs. Let σ1 ≥
σ2 ≥ . . . ≥ σn ≥ 0 be the singular vectors of the matrix M with columns {

√
dij(xi − xj)}i<j .

Then∑
t≥r+1 σ

2
j∑n

t=1 σ
2
j

≤ ΦSDP
λr+1

.

In particular, note that on graphs where λr ≥ ΦSDP /(1 − δ),
∑
i≤r σ

2
i ≥ δ

∑
i σ

2
i . This

implies that sr (M) =
∑
i σ

2
i /σ

2
1 ≤ r ·

∑
i σ

2
i /
∑
i≤r σ

2
i ≤ r/δ.

We can now modify the proof of Theorem 3.1 to prove Theorem 1.4.

Proof of Theorem 1.4. Let x1, . . . , xn be the SDP solution on given instance C,D. We now
let M be the matrix with columns {

√
dkl(xk−xl)}k<l, and u, v, σ1 to be the top left singular

vector, top right singular vector, and the maximum singular value respectively of M . By the
preceding remark, sr (M) ≤ r/δ. The mapping we use is as follows

xi 7→
1∑

kl

√
dklvkl

〈xi, u〉 .

The proofs to show contraction and bound the distortion follow exactly as in the proof of
Theorem 3.1. Note that while looking at the distortion, we need to lower bound the quantity∑

ij dij ‖g(xi)− g(xj)‖2. J

As in Deshpande and Venkat [7], the above algorithm is a fixed polynomial time algorithm
and does not grow with the threshold rank unlike the algorithm of Guruswami and Sinop [9]
where they use r-levels of the Lasserre SDP hierarchy to secure the guarantee. Furthermore,
the above analysis improves the guarantee of Deshpande and Venkat [7] by a factor of O(1/δ).
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4 Embedding low-dimensional vectors à la Goemans

In this section, we first view the proof of Goemans’ theorem in the framework of Lemma 2.2
by giving a probability distribution using the minimum volume enclosing elliposid of the
difference vectors (xi − xj)’s. We then give a simpler proof, albeit for the average distortion
case, based on a probability distribution arising from a squared-length distribution. Via
a well-known duality statement, this technique recovers Goemans’ theorem for worst-case
distortion for embeddings into `1, although non-constructively.

4.1 An alternate proof of Goemans’ theorem
Here is an adaptation of the proof from [15] re-stated in our framework. The following proof
is arguably simpler and more straightforward as it works with the difference vectors instead
of the original vectors and their negations.

I Theorem 1.1 (restated – Goemans [15, Appendix B])). Let x1, x2, . . . , xn ∈ Rd be n points
satisfying `22 triangle inequalities. Then there exists an `22 ↪→ `2 embedding xi 7→ f(xi) with
distortion

√
d, that is,

1√
d
‖xi − xj‖22 ≤ ‖f(xi)− f(xj)‖2 ≤ ‖xi − xj‖

2
2 , ∀ i, j ∈ V.

Proof. Consider all the difference vectors (xi−xj)’s, and let their minimum volume enclosing
ellipsoid be given by E := {x : xTQx ≤ 1}, for some psd matrix Q ∈ Rd×d. By John’s
theorem (or Lagrangian duality for the corresponding convex program), we have Q−1 =∑
k<l αkl (xk−xl)(xk−xl)T , with all αkl ≥ 0. Moreover, αkl 6= 0 iff (xk−xl)TQ(xk−xl) = 1.

Notice that d = Tr (Id) = Tr
(
Q1/2Q−1Q1/2) =

∑
k<l αkl. We define the embedding as

f(xi) := 1√
d
Q−1/2xi.

This embedding is a contraction by Lemma 2.2. We now bound the distortion:

‖f(xi)− f(xj)‖2 = 1√
d

∥∥∥Q−1/2(xi − xj)
∥∥∥

2

≥ 1√
d

‖xi − xj‖22∥∥Q1/2(xi − xj)
∥∥

2
[By Cauchy-Schwarz inequality]

≥ 1√
d
‖xi − xj‖22 . [Since (xi − xj)TQ(xi − xj) ≤ 1, for all i, j]

J

4.2 A simpler proof for average distortion embedding
We now give an average distortion version of Goemans’ theorem using a simple squared-length
distribution on the difference vectors (xi − xj)’s in the Lemma 2.2. Interestingly, this can be
modified to weighted averages and gives yet another proof of Goemans’ worst-case distortion
result, although non-constructively.

I Theorem 4.1. Let x1, x2, . . . , xn ∈ Rd be points satisfying `22 triangle inequalities. Then
there exists an `22-to-`2 embedding xi 7→ g(xi) with average distortion

√
d, that is,

‖g(xi)− g(xj)‖2 ≤ ‖xi − xj‖
2
2 , for all i, j,

and 1√
d

∑
i<j

‖xi − xj‖22 ≤
∑
i<j

‖g(xi)− g(xj)‖2
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Proof. Let {pkl}k<l define a probability distribution with pkl ∝ ‖xk − xl‖22. Given this
distribution, let P be the symmetric psd matrix defined as P :=

∑
k<l pkl (xk−xl)(xk−xl)T ∈

Rd×d. Consider the embedding that maps xi to g(xi) := P 1/2xi. The embedding is a
contraction by Lemma 2.2.

Now let’s bound the average distortion. First, note that:

‖g(xi)− g(xj)‖2 =
∥∥∥P 1/2(xi − xj)

∥∥∥
2
≥

‖xi − xj‖22∥∥P−1/2(xi − xj)
∥∥

2
,

where the inequality follows from the Cauchy-Schwarz inequality.
Summing over all pairs i, j and using the definition of pij we have

∑
i<j

‖g(xi)− g(xj)‖2 ≥
(∑
k<l

‖xk − xl‖22

) ∑
i<j

pij√
(xi − xj)TP−1(xi − xj)

≥

(∑
k<l

‖xk − xl‖22

)∑
i<j

pij (xi − xj)TP−1(xi − xj)

−1/2

[by Jensen’s inequality]

=
(∑
k<l

‖xk − xl‖22

) (
Tr
(
P−1/2PP−1/2

)−1/2
)

=
(∑
k<l

‖xk − xl‖22

)
Tr (Id)−1/2

= 1√
d

∑
i<j

‖xi − xj‖22 .

We note that if P is not invertible then the same proof can be carried out using pseudo-inverse
of P instead. J

I Remark. Although an enclosing ellipsoid of approximately optimal volume can be computed
by a convex program [12], the proof of Theorem 1.1 requires a stronger, spectral approximation
to the quadratic form of the minimum enclosing ellipsoid. We are not aware of any efficient
algorithms for this. On the other hand, sampling (i, j) with probability ∝ ‖xi − xj‖22 can
be done in O(nd) time as follows. First we compute the mean µ =

∑n
i=1 xi/n, and all the

marginals for (i, .) using

n∑
j=1
‖xj − xi‖22 =

n∑
j=1
‖xj − µ‖22 + n ‖µ− xi‖22 .

Now we can first sample i from the marginals, and then sample j with probability∝ ‖xi − xj‖22.
This takes O(nd) time in total.

Theorem 4.1 immediately gives an efficient
√
d approximation algorithm for Uniform

Sparsest Cut when the SDP optimum solution resides in Rd. Furthermore, as we point
out next, the same proof can be tweaked to yield a similar result for the general Sparsest
Cut problem.

I Theorem 4.2 (Sparsest Cut SDP rounding in dimension d). A Sparsest Cut instance
C,D with SDP optimum solution in Rd has an integrality gap of at most

√
d.

FSTTCS 2016



10:12 Embedding Approximately Low-Dimensional `2
2 Metrics Into `1

Proof. Let x1, . . . xn be the optimum solution in Rd to the Sparsest Cut SDP. We slightly
modify the embedding given in the proof of Theorem 4.1, by choosing the pij ’s based
on the demand graph D. Let P =

∑
k<l pkl (xk − xl)(xk − xl)T ∈ Rd×d, where pkl’s

define a probability distribution with pkl ∝ dkl ‖xk − xl‖22. We define the embedding as
xi 7→ g(xi) = P 1/2xi. Lemma 2.2 shows that it is a contraction. We now need to show∑
i<j dij ‖g(xi)− g(xj)‖2 ≥

1√
d

∑
i<j dij ‖xi − xj‖

2
2. It is easy to check that the same proof

goes through without any major changes. J

By a well-known duality (cf. [16, Proposition 15.5.2 and Exercise 4]), Theorem 4.2 also
implies Goemans’ worst-case distortion result (Theorem 1.1), although non-constructively.

Acknowledgements. We thank Luca Trevisan for helpful discussions and suggestions,
in particular, for bringing to our attention that Goemans’ Theorem was true even with
approximate triangle inequalities.
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