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Abstract
A rectifier network is a directed acyclic graph with distinguished sources and sinks; it is said to
compute a Boolean matrix M that has a 1 in the entry (i, j) iff there is a path from the jth
source to the ith sink. The smallest number of edges in a rectifier network that computes M is
a classic complexity measure on matrices, which has been studied for more than half a century.

We explore two techniques that have hitherto found little to no applications in this theory.
They build upon a basic fact that depth-2 rectifier networks are essentially weighted coverings of
Boolean matrices with rectangles. Using fractional and greedy coverings (defined in the standard
way), we obtain new results in this area.

First, we show that all fractional coverings of the so-called full triangular matrix have cost
at least n logn. This provides (a fortiori) a new proof of the tight lower bound on its depth-2
complexity (the exact value has been known since 1965, but previous proofs are based on different
arguments). Second, we show that the greedy heuristic is instrumental in tightening the upper
bound on the depth-2 complexity of the Kneser-Sierpiński (disjointness) matrix. The previous
upper bound is O(n1.28), and we improve it to O(n1.17), while the best known lower bound is
Ω(n1.16). Third, using fractional coverings, we obtain a form of direct product theorem that
gives a lower bound on unbounded-depth complexity of Kronecker (tensor) products of matrices.
In this case, the greedy heuristic shows (by an argument due to Lovász) that our result is only
a logarithmic factor away from the “full” direct product theorem. Our second and third results
constitute progress on open problem 7.3 and resolve, up to a logarithmic factor, open problem 7.5
from a recent book by Jukna and Sergeev (in Foundations and Trends in Theoretical Computer
Science (2013)).
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1 Introduction

Introduced in the 1950s, rectifier networks are one of the oldest and most basic models in the
theory of computing. They are directed acyclic graphs with distinguished input and output
nodes; a rectifier network is said to compute (or express) the Boolean matrix M that has
a 1 in the entry (i, j) iff there is a path from the jth input to the ith output. Equivalently,
rectifier networks can be viewed as Boolean circuits that consist entirely of OR gates of
arbitrary fan-in. This simple model of computation has attracted a lot of attention [11],
because it captures the “topological” core of other models: complexity bounds for rectifier
networks extend in one way or another to Boolean circuits (i.e., circuits with Boolean gates)
and to switching circuits [24, 21].

Given a matrix M , what is the smallest number of edges in a rectifier network that
computes M? Denote this number by OR(M) – this is a complexity measure on Boolean
matrices. This measure is fairly well understood: it is known, by the results of Nechiporuk [23],
that the maximum of OR(M) grows as n2/2 logn as n→∞ if M is n× n; it is also known
that random n× n-matrices have complexity very close to n2/2 logn. The “shape” of these
two facts is reminiscent of the standard circuit complexity of Boolean functions over AND,
OR, and NOT gates – but for them, the maximum is 2n/n instead of n2/2 logn.

However, much more is, in fact, known about the measure OR(·): there are explicit
sequences of matrices that have complexity within a factor no(1) from the maximum. In
this context, such factors are usually regarded as small (note that, in contrast, for circuits
over AND, OR, and NOT gates, exhibiting a single sequence of functions that require a
superlinear number of gates would be a tremendous breakthrough). In fact, nowadays a
range of methods are available for obtaining upper and lower bounds on OR(M) for specific
matrices M ; we refer the interested reader to the recent book by Jukna and Sergeev [11].

Many natural questions, however, remain open. Jukna and Sergeev list 19 open problems
about OR(·) and related complexity measures. Several of them refer to very restricted
submodels, such as rectifier networks of depth 2: that is, networks where all paths contain
(at most) 2 edges. A depth-2 rectifier network expressing a matrix M is essentially a covering
of M – a collection of (rectangular) all-1 submatrices of M whose disjunction is M . In our
work, we look into the corresponding complexity measure OR2(·) as well as OR(·). We build
upon the connection between rectifier networks and (weighted) set coverings and explore two
ideas that have previously found few applications in the study of rectifier networks: they are
associated with fractional and greedy coverings respectively.

Fractional coverings are a generalization of usual set coverings. In the usual set cover
problem, each set S can be either included or not included in the solution (i.e., in the
covering); in the fractional version each set can be partially included: a solution assigns
to each set S a real number xS ∈ [0; 1], and for every element s of the universe the sum∑
s∈S xS should be equal to or exceed 1. In other words, fractional coverings arise from linear

relaxation of the integer program that expresses the set cover problem. Greedy coverings are,
in contrast, usual coverings; they are the outcome of applying the standard greedy heuristic
to an instance of the set cover problem: at each step, the algorithm picks a set S that covers
the largest number of yet uncovered elements s. In our work, we use fractional and greedy
coverings to obtain estimates on the values of OR2(M) and OR(M).

Our results

First, we demonstrate that OR2(Tn) = n(blog2 nc+ 2)− 2blog2 nc+1, where Tn is the so-called
full triangular matrix: an upper-triangular matrix that has 1s everywhere above the main
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diagonal and 0s on the diagonal and below. In this problem, the upper bound is easy and the
challenge is to prove the lower bound. This bound was obtained by Krichevskii [15], and our
paper provides a new proof of independent interest (which also serves as an illustration of our
techniques). In fact, we prove an even stronger statement: all fractional coverings of Tn have
large associated cost (Theorem 4). To this end, we take the linear program that expresses
the fractional set cover problem and find a good feasible solution to the dual program. The
value of this solution then gives a lower bound on the cost of all feasible solutions to the
primal – that is, on the cost of fractional coverings. Since integral coverings are just a special
case of fractional coverings, the result follows.

Second, we improve the upper bound on the value of OR2(Dn), whereDn is the disjointness
matrix, also known as the Kneser-Sierpiński matrix. This constitutes progress on open
problem 7.3 in Jukna and Sergeev’s book [11], where the previously known bounds are
obtained. The previous upper bound is O(n1.28), and our Theorem 9 improves it to O(n1.17),
while the best known lower bound is Ω(n1.16). To achieve this improvement, we subdivide
the instance of the weighted set cover problem (in which the optimal value is OR2(Dn)) into
polylog(n) natural subproblems and reduce them, by imposing an additional restriction, to
instances of unweighted set cover problems. We then solve these instances with the greedy
heuristic; the upper bound in the analysis invokes the so-called greedy covering lemma
by Sapozhenko [27], also known as the Lovász–Stein theorem [17, 31]. This gives us the
desired upper bound on OR2(Dn); in fact, the greedy strategy turns out to be optimal, and
the optimal exponent in OR2(Dn) comes from a numerical optimization problem. As an
intermediate result we determine, up to a polylogarithmic factor, the value of OR2(Dm

k )
where Dm

k is the adjacency matrix of the Kneser graph on 2
(
k
m

)
vertices.

Finally, we obtain (Theorem 13) a form of direct product theorem for the OR(·) measure:
OR(K ⊗M) ≥ rk∗∨(K) ·OR(M), where K ⊗M denotes the Kronecker product of matrices K
and M , and rk∗∨(K) is a fractional analogue of the Boolean rank of K. This resolves, up to a
logarithmic factor, open problem 7.5 in the list of Jukna and Sergeev [11], which asks for the
lower bound of rk∨(K) · OR(M) where rk∨(K) ≥ rk∗∨(K) is the Boolean rank of K. (In fact,
a related question for unambiguous rectifier networks, or SUM-circuits, is originally due to
Find et al. [5]; our technique applies to this model as well, giving an analogous inequality
for the measure SUM(·), see Corollary 14.) Suppose K is an m × n matrix; then, by the
argument due to Lovász [18], the greedy heuristic shows that rk∗∨(K) ≥ rk∨(K)/(1 + logmn),
so our lower bound is indeed at most a logarithmic factor away from the “full” direct product
theorem. To prove our lower bound, we take the linear programming formulation of the
fractional set cover problem for the matrix K and use components of the optimal solution
to the dual program to guide our argument. It is interesting to see how reasoning about
coverings, or, equivalently, about depth-2 rectifier networks, enables us to obtain meaningful
lower bounds on the size of rectifier networks that have unbounded depth.

2 Discussion and related work

We use the matrix language in this paper, but all results can be restated in terms of biclique
coverings of bipartite graphs.

The OR2-complexity of full triangular matrices, Tn, is tightly related to results
on biclique coverings of complete undirected (non-bipartite) graphs from the early days
of the theory of computing. The n logn lower bound, in one form or another, was known
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to Hansel [7], Krichevskii [15], Katona and Szemerédi [14], and Tarján [32].1 On the one
hand, our lower bound is obtained in a setting with an asymmetry restriction: for OR2(Tn),
one needs to cover entries (i, j) with i < j in the matrix, whereas in biclique coverings of
undirected graphs, it suffices to cover either of (i, j) and (j, i). On the other hand, to the best
of our knowledge, ours is the only proof that goes via linear programming (LP) duality and
provides a tight lower bound on the size of fractional coverings. This result is new; moreover,
we are not aware of any other lower bounds for rectifier networks that come from feasible
solutions to the LP dual (in approximation algorithms, a related technique is known as “dual
fitting” [37, Section 9.4]). Apart from purely combinatorial considerations, the interest in
the problem is motivated by its applications in formula and switching-circuit complexity of
the Boolean threshold-2 function (which takes on the value 1 iff at least two of its inputs are
set to 1). For more context, see treatments by Radhakrishnan [26] and Lozhkin [20].

As for the greedy heuristics, while we are not the first to use them in the context
of rectifier networks (see Nechiporuk [24, Sect. 1.6]), they were never previously used to
study the complexity of individual matrices. The disjointness matrix, Dn, which we apply
this technique to, is a well-studied object in communication complexity [16]; it is a discrete
version of the Sierpiński triangle. For arbitrary-depth networks, the values OR(Dn) and
SUM(Dn) are Θ(n logn), as shown by Boyar and Find [1] and Selezneva [28].2 In depth 2,
the previous bounds are due to Jukna and Sergeev [11]; it is unknown if greedy heuristics
are also of use for SUM-circuits, as our upper bound for Dn does not extend to this model
(our coverings are not partitions).

Direct sum and direct product theorems in the theory of computing are statements
of the following form: when faced with several instances of the same problem on different
independent inputs, there is no better strategy than solving each instance independently.3
For rectifier networks, these questions are associated with the complexity of Kronecker
(tensor) products of matrices. Indeed, denote the k × k-identity matrix by Ik, then Ik ⊗M
is the block-diagonal matrix with k copies of M on the diagonal. It is not difficult to show
that OR(Ik ⊗M) ≥ k · OR(M), and a natural generalization asks whether OR(K ⊗M) ≥
rk∨(K) ·OR(M) for any matrix K – see Find et al. [5] and Jukna and Sergeev [11, Sections 2.4,
3.6, and open problem 7.5]. To date, this inequality is only known to hold in special cases.
For example, Find et al. [5] can show this lower bound when the matrix K has a fooling set
of size rk∨(K); however, the size of the largest fooling set does not approximate the Boolean
rank, as observed, e.g., by Gruber and Holzer [6] (they use the graph-theoretic language,
with bipartite dimension instead of rk∨). As another example, denote by |M | the number of
1s in the matrix M and assume that M has no all-1 submatrices of size (k + 1) × (l + 1).
Then the inequality OR(M) ≥ |M |/kl is a well-known lower bound due to Nechiporuk [24],
subsequently rediscovered by Mehlhorn [21], Pippenger [25], and Wegener [36]; Jukna and
Sergeev [11, Theorem 3.20] extend it to OR(K ⊗M) ≥ rk∨(K) · |M |/kl for any square
matrix K. To the best of our knowledge, the current literature has no stronger lower bounds
on the OR-complexity of Kronecker products; our Theorem 13 answers this need, coming
logarithmically close to the bound in question. For SUM-complexity, the previous state of
the art and our contribution are analogous to the OR case. The related notion of a fractional
biclique cover has appeared, e.g., in the papers of Watts [35] and Jukna and Kulikov [10].

1 Not all of these arguments compute the exact value of OR2(Tn).
2 Recall that the SUM(·) measure corresponds to unambiguous rectifier networks, in which every input-

output pair is connected by at most one path; or, equivalently, to arithmetic circuits over nonnegative
integers with addition (SUM) gates. For any matrix M , OR(M) ≤ SUM(M) and OR2(M) ≤ SUM2(M).

3 In some contexts, the terms “direct sum theorem” and “direct product theorem” have slightly different
meanings [29], but in the current context we do not distinguish between them.
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(a) Rectifier network of depth 3

B =
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
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(b) Matrix B
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(c) Rectifier network of depth 2

Figure 1 Illustrations for Example 1.

Also related to our work is the study of the size of smallest biclique coverings, under the
name of the bipartite dimension of a graph (as opposed to the cost of such coverings and the
OR2-complexity; see Section 3). This quantity corresponds to the Boolean rank of a matrix and
is known to be PSPACE-hard to compute [6] and NP-hard to approximate to within a factor of
n1−ε [2]. Finally, we note that results on OR2-complexity have corollaries for descriptional
complexity of regular languages. Indeed, take a language where all words have length two,
L ⊆ Σ ·∆, with Σ = {a1, . . . , am} and ∆ = {a1, . . . , an}. Let ML be its characteristic m×n
matrix: ML

i,j = 1 iff ai · aj ∈ L. Then OR2(ML) coincides with the alphabetic length of the
shortest regular expression for L; for example, it follows from Corollary 5 that the optimal
regular expression for the language Ln = {aiaj | 1 ≤ i < j ≤ n} has n(blog2 nc+2)−2blog2 nc+1

occurrences of letters (Σ = ∆ = {a1, . . . , an}). The values of OR(ML) and OR2(ML) are also
related to the size of the smallest nondeterministic finite automata accepting L; see [8] and
the full version of the present paper (see http://arxiv.org/abs/1509.07588) for details.

3 Rectifier networks and coverings

Rectifier networks

Define a rectifier network with n inputs and m outputs as a 4-tuple N = (V,E, in, out),
where V is a set of vertices, E ⊆ V 2 a set of edges such that the directed graph GN = (V,E)
is acyclic, and in : {1, . . . , n} → V and out : {1, . . . ,m} → V are injective functions whose
images contain only sources (resp., only sinks) of GN . The network N is said to have size |E|.

A rectifier network N expresses a Boolean m×n matrix M = M(N ) such that Mij = 1 if
GN contains a directed path from in(j) to out(i) and Mij = 0 otherwise. A rectifier network
N is said to have depth d if all maximal paths in GN have exactly d edges. Given a Boolean
matrix A ∈ {0, 1}m×n, let OR2(A) denote the smallest size of a depth-2 rectifier network that
expresses A and let OR(A) denote the smallest size of any rectifier network that expresses A.

This notation is justified by the following observation. A rectifier network N may be
viewed as a circuit: its Boolean inputs are located at the vertices in({1, . . . , n}), and gates at
all other vertices compute the disjunction (Boolean OR) of their inputs. From this point of
view, the circuit computes a linear operator over the monoid ({0, 1},OR), and the matrix of
this linear operator is exactly the Boolean matrix expressed by the rectifier network N .

I Example 1. A depth-3 rectifier network is shown in Figure 1a. It expresses the matrix B
in Figure 1b, showing that OR3(B) ≤ 19. In fact, this network is optimal and OR3(B) = 19;
see the full version of the paper for a proof of a more general statement. At the same time,
OR2(B) = 20: the upper bound is achieved by the network in Figure 1c, and the lower bound
is due to Jukna and Sergeev [11, Theorem 3.18].
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∑
S∈F

w(S)xS → min

xS ∈ {0, 1} for all S ∈ F∑
S∈F :
u∈S

xS ≥ 1 for all u ∈ U

(a) Integer program

∑
S∈F

w(S)xS → min

0 ≤ xS ≤ 1 for all S ∈ F∑
S∈F :
u∈S

xS ≥ 1 for all u ∈ U

(b) Linear relaxation

∑
u∈U

yu → max

yu ≥ 0 for all u ∈ U∑
u∈S

yu ≤ w(S) for all S ∈ F

(c) Dual of the linear relaxation

Figure 2 Integer and linear programs for the set cover problem.

Coverings of Boolean matrices

Let us describe an alternative way of defining the function OR2(·). Given a Boolean
matrix A ∈ {0, 1}m×n, a rectangle (or a 1-rectangle) is a pair (R,C), where R ⊆ {1, . . . ,m}
and C ⊆ {1, . . . , n}, such that for all (i, j) ∈ R× C we have Aij = 1. A rectangle (R,C) is
said to cover all pairs (i, j) ∈ R× C. The cost of a rectangle (R,C) is defined as |R|+ |C|.

Suppose a matrix A is fixed; then a collection of rectangles is called a covering of A if for
every (i, j) ∈ {1, . . . ,m} × {1, . . . , n} there exists a rectangle in the collection that covers
(i, j). The cost of a collection is the sum of costs of all its rectangles.

Given a Boolean matrix A ∈ {0, 1}m×n, the cost of A is defined as the smallest cost of a
covering of A. It is not difficult to show that the cost of A equals OR2(A) as defined above.

Similarly, we can think of minimizing the size of a covering, i.e., the number of rectangles
in a collection instead of their total cost. The smallest size of a covering of A is called the
OR-rank (or the Boolean rank) of A, denoted rk∨A.

4 Fractional and greedy coverings

In the rest of the paper we interpret the covering problems for Boolean matrices as special
cases of the general set cover problem. In this section we recall this general setting and present
two main techniques that we apply: linear programming duality and greedy heuristics.

An instance of the (weighted) set cover problem consists of a set U , a family of its subsets,
F ⊆ 2U , and a weight function, which is a mapping w : F → N. Every set S ∈ F is said to
cover all elements s ∈ S ⊆ U . The goal is to find a subfamily F ′ ⊆ F that is a covering (i.e.,
it covers all elements from U :

⋃
S∈F ′ S = U) and has the smallest possible total weight (i.e.,

it minimizes the functional
∑
S∈F ′ w(S) amongst all coverings). In the unweighted version of

the problem, w(S) = 1 for all S ∈ F , so the total weight of a covering is just its size (number
of elements in F ′). In both versions, F is usually assumed to be a feasible solution, which
means that every s ∈ U belongs to at least one set from F : that is,

⋃
S∈F S = U .

It is instructive, throughout this section, to have particular instances of the set cover
problem in mind, namely those of covering Boolean matrices with rectangles as in Section 3. In
the following sections, we refer to them as weighted and unweighted set covering formulations;
their optimal solutions correspond to the values of OR2(A) and rk∨A respectively.

Fractional coverings

The set cover problem can easily be recast as an integer program: see Figure 2a. For each
S ∈ F , this program has an integer variable xS ∈ {0, 1}: the interpretation is that xS = 1
if and only if S ∈ F ′, and the constraints require that every element is covered. Feasible
solutions are in a natural one-to-one correspondence with coverings of U , and the optimal
value in the program is the smallest weight of a covering.
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The linear programming relaxation of this integer program is obtained by interpreting
variables xS over reals: see Figure 2b. Now 0 ≤ xS ≤ 1 for each S ∈ F . Feasible solutions
to this program are called fractional coverings. Suppose the optimal cost in the original
set cover problem is τ . Then the integer program in Figure 2a has optimal value τ , and its
relaxation in Figure 2b optimal value τ∗ ≤ τ .

Finally, define the dual of this linear program: this is also a linear program, and it has a
(real) variable yu for each element u ∈ U ; see Figure 2c. This is a maximization problem,
and its optimal value coincides with τ∗ by the strong duality theorem.

The following lemma (see, e.g., [12]) summarizes the properties needed for the sequel.

I Lemma 2. If (yu)u∈U is a feasible solution to the dual, then
∑
u∈U yu ≤ τ∗ ≤ τ . There

exists a feasible solution to the dual, (y∗u)u∈U , such that
∑
u∈U y

∗
u = τ∗.

We use the first part of Lemma 2 in Section 5 to obtain a lower bound on τ and the
second part in Section 7 to associate “weights” with 1-elements in the matrix.

Greedy coverings

The greedy heuristic for the unweighted set cover problem works as follows. It maintains the
set of uncovered elements, initially U , and iteratively adds to F ′ (which is initially empty) a
set S ∈ F which covers the largest number of yet-uncovered elements. Any covering obtained
by this (nondeterministic) procedure is called a greedy covering. (There is a natural extension
to the weighted version as well.)

A standard analysis of the greedy heuristic is performed in the framework of approximation
algorithms: the size of a greedy covering is at most O(log |U |) times larger than that of
the optimal covering [3, 18]. But for our purposes a different upper bound will be more
convenient: an “absolute” upper bound in terms of the “density” of the instance. Such a
bound is given by the following result, which is substantially less well-known:

I Lemma 3 (greedy covering lemma). Suppose every element s ∈ U is contained in at least
γ|F| sets from F , where 0 < γ ≤ 1. Then the size of any greedy covering does not exceed⌈

1
γ

ln+(γ|U |)
⌉

+ 1
γ
,

where ln+(x) = max(0, ln x) and ln x is the natural logarithm.

Several versions of the lemma can be found in the literature. It was proved for the first
time in 1972 by Sapozhenko [27] and appears in later textbooks [33, Lemma 9 in Section 3,
pp. 136–137], [34, pp. 134–135]. A slightly different form, attributed to Stein [31] and
Lovász [17], was independently obtained later and is sometimes known as the Lovász–Stein
theorem; yet another proof is due to Karpinski and Zelikovsky [13]. Recent treatments with
applications and more detailed discussion can be found in Deng et al. [4] and in Jukna’s
textbook [9, pp. 34–37].

Since the upper bound of Lemma 3 is hardly a standard tool in theoretical computer
science as of now, a remark on the proof is in order. A standalone proof goes via the following
fact: on each step of the greedy algorithm the number of yet-uncovered elements shrinks
by a constant factor, determined by the density parameter γ and the size of the instance.
Alternatively, one can use the result due to Lovász [17] that the size of any greedy covering is
within a factor of 1 + log |U | from the optimal fractional covering. Since assigning the value
(mins∈U |{S ∈ F : s ∈ S}|)−1 = 1/γ|U | to all xS , S ∈ F , in the linear program in Figure 2b
leads to a feasible solution, an upper bound of (1/γ) · (1 + log |U |) follows.

STACS 2017
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i\j 0 1 2 3 4 5 6 7 8 9 10111213141516
0 0 2 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1
1 0 0 2 1 0 1 0 0 0 1 0 0 0 0 0 0 0
2 0 0 0 2 1 0 1 0 0 0 1 0 0 0 0 0 0
3 0 0 0 0 2 1 0 1 0 0 0 1 0 0 0 0 0
4 0 0 0 0 0 2 1 0 1 0 0 0 1 0 0 0 0
5 0 0 0 0 0 0 2 1 0 1 0 0 0 1 0 0 0
6 0 0 0 0 0 0 0 2 1 0 1 0 0 0 1 0 0
7 0 0 0 0 0 0 0 0 2 1 0 1 0 0 0 1 0
8 0 0 0 0 0 0 0 0 0 2 1 0 1 0 0 0 1
9 0 0 0 0 0 0 0 0 0 0 2 1 0 1 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 2 1 0 1 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 1 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 1
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(a) Portion of the matrix M .

c = max R→

b→

a→

0
0
6=0
0
0
6=0

↓
e = max C

↓
d

6=0

rows R

columns C

(b) Definition of a, b, c, d, e.

Figure 3 Illustrations for the proof of Theorem 4.

We use Lemma 3 in Section 6 to obtain an upper bound on the OR2-complexity of
Kneser-Sierpiński matrices. We remark that instead of greedy coverings one can use random
coverings to essentially the same effect (cf. Deng et al. [4]).

5 Lower bound for the full triangular matrices

Define the n × n full triangular matrix Tn = (tij)0≤i,j<n by tij = 1 if i < j and tij = 0
otherwise. This matrix Tn is the adjacency matrix of the Hasse diagram of the strict linear
order 0 < 1 < · · · < n − 1; it has 1s everywhere above the main diagonal and 0s on the
diagonal and below. In this section, we study the smallest size of depth-2 rectifier networks
that express Tn.

Define s(n) = n(blog2 nc+2)−2blog2 nc+1 for n ≥ 1. Note that s(n) is the so-called binary
entropy function, sequence A003314 in Sloane’s Encyclopedia of Integer Sequences [30]. Its
properties were studied previously by Morris [22] because of its connection with mergesort.

I Theorem 4. All fractional coverings of Tn have cost of at least s(n).

I Corollary 5. OR2(Tn) = s(n).

We discuss the proof of Theorem 4 below. Note that the equality of Corollary 5 gives
the exact value of OR2(Tn). The upper bound of the theorem is an easy divide-and-conquer
argument, and the main challenge is to obtain the lower bound.

Consider the weighted set covering formulation for Tn, where the optimal value is OR2(Tn)
as discussed in Section 4. By Lemma 2, it suffices to find a feasible solution to the dual linear
program with the value s(n). Our feasible solution is given by a certain infinite diagonal
matrix M , with rows and columns indexed by the natural numbers, defined as follows:

Mi,j =


2, if j − i = 1;
1, if j − i = 2q for some q ≥ 1;
0, otherwise.

The first 17 rows and columns of M are displayed in Figure 3a. Notice that each row is a
shift, by 1, of the preceding row.

I Lemma 6. The sum of the elements of M (n), the n × n upper left submatrix of M , is
equal to s(n).

http://oeis.org/A003314
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Proof. M (n+1) is obtained from M (n) by concatenating a row of 0’s on the bottom, and a
column that contains a single 2 and 1’s corresponding to the powers of 2 that are ≤ n. In
other words, s(n+ 1) = s(n) + blog2 nc+ 2. The result now follows by an easy induction. J

I Lemma 7. yi,j = Mi,j for 0 ≤ i < j < n is a feasible solution to the dual program.

Proof. Let R correspond to a choice of rows of M and C to a choice of columns. To prove
feasibility, we need to see that for each pair of nonempty sets R,C ⊆ {0, 1, . . . , n− 1} with
maxR < minC – only such pairs (R,C) are rectangles of Tn, because the matrix has 0s
everywhere on the main diagonal and below – we have∑

i∈R
j∈C

Mi,j ≤ |R|+ |C|. (1)

Suppose there exists a counterexample to (1). Among all counterexamples to (1), consider
one with the smallest possible value of |R|+ |C|. If |R| = 1 then since at most one entry in
each row is 2 and all others are either 0 or 1, we clearly have

∑
i∈R
j∈C

Mi,j ≤ |C|+1 = |R|+ |C|.
Hence |R| ≥ 2. The same argument applies if |C| = 1. Thus the minimal counterexample to
(1) has at least two rows and columns.

We now observe that the row sum of each row in our counterexample is at least 2. For
if it is 0 or 1 we could omit that row, and (1) would still be violated. The same argument
applies to the column sums. We can prove the following statement (the details can be found
in the full version of the paper):

I Claim 8. Suppose there are at least two nonzero elements in the submatrix of M formed
by rows 0, 1, . . . , b and column e of M . Then e ≤ 2b.

Now let us assume that our minimal counterexample has c = maxR. Let e = maxC.
Since column e has 2 nonzero elements, by the Claim above we know e ≤ 2c. Now let b be
the largest element ≤ c in R for which there is a nonzero element in column e; this must
exist since column e has at least two nonzero elements. Let a be any row < b in R with a
nonzero element in column e. Again, this must exist since column e has at least two nonzero
elements. Finally, let d be any column < e in C with a nonzero element in row a. This must
exist because every row in R has at least two nonzero elements. We claim d ≤ c.

To see this, note that b = e − 2j ≤ c for some j ≥ 0. (In fact, j = dlog2(e − c)e.)
Then we must have a = e − 2k ≥ 0 where k ≥ j + 1. Then d − a = 2` for some `. So
d − a = d − (e − 2k) = 2` and hence d = e + 2` − 2k. Since d < e, we have ` < k. So
d ≤ e+ 2k−1 − 2k = e− 2k−1 ≤ e− 2j = b ≤ c. This is illustrated in Figure 3b.

Now maxR < minC, but d ≤ c while d ∈ C and c ∈ R, a contradiction. Hence there are
no minimal counterexamples and no counterexamples at all. Thus (1) holds. It follows that
M represents a feasible solution. This concludes the proof of Lemma 7. J

Let us complete the proof of Theorem 4. Apply the first part of Lemma 2 to the weighted
set covering formulation of the problem and take the solution yi,j = Mi,j , 0 ≤ i < j < n,
as described above. This solution has value s(n) by Lemma 6 and is feasible by Lemma 7.
Hence, all fractional coverings have cost at least s(n).

6 Upper bound for Kneser-Sierpiński matrices

Suppose n = 2k. A Kneser-Sierpiński matrix (or a disjointness matrix) of size 2k × 2k is the
matrix Dn defined as follows. Rows and columns of the matrix are indexed from 0 to 2k − 1.
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The matrix has a 1 at all positions (i, j) such that i and j have no common 1 in their binary
expansion; all other elements of the matrix are 0.

Note that if we identify each number from {0, . . . , n− 1} with a subset of {1, . . . , k} in
the natural way, then Dn is naturally associated with a Boolean function that maps a pair
of subsets of {1, . . . , k} to 1 if they are disjoint, and to 0 if they have an element in common.
An alternative way to define Dn is by a recurrence D2n =

(
Dn Dn

Dn 0
)
for n ≥ 1; D1 = (1);

here subsets of {1, . . . , k} are ordered lexicographically. Using the antilexicographic order for
rows and the lexicographic order for columns would lead to a lower triangular matrix.

What is the size of smallest depth-2 rectifier networks that express Kneser-Sierpiński
matrices? Jukna and Sergeev [11, Lemma 4.2] prove that

n
1
2 log 5/ polylog(n) ≤ OR2(Dn) ≤ nlog(1+

√
2) · polylog(n), (2)

and in this section, we prove the following result:

I Theorem 9. OR2(Dn) ≤ nlog(9/4) · polylog(n).

Note that 1
2 log 5 ≈ 1.16096, log(9/4) ≈ 1.16993, and log(1 +

√
2) ≈ 1.27.

Suppose n = 2k as above, and let Dx,y
[k] be the submatrix of Dn whose rows and columns

correspond to x-sized and y-sized subsets of {1, . . . , k}, respectively. This matrix Dx,y
[k] has

size
(
k
x

)
×
(
k
y

)
. If x = y, then Dx,x

[k] is the adjacency matrix of the Kneser graph [19].
For 0 ≤ y ≤ x ≤ k, write z = (k − x− y)/2 and f(x, y) =

(
k

x,z,k−x−z
)
/
(2z
z

)
.4 Jukna and

Sergeev [11, Lemma 4.2] show that all coverings of Dx,x
[k] have cost at least f(x, x)/ poly(k),

and this gives the lower bound in equation (2): taking x = 0.4k brings f(x, x) to its maximum
of n 1

2 log 5, if we disregard factors polylogarithmic in n = 2k. Our Theorem 9 follows from
Lemmas 10 and 12 below.

I Lemma 10. There exists a covering of Dx,y
[k] with cost at most f(x, y) · poly(k).

Proof. Consider F , the family of all ordered bipartitions of {1, . . . , k} into sets of size x+ z

and y + z, where z = (k − x− y)/2. Technically, an ordered bipartition is simply a subset
of {1, . . . , k}, but it is more instructive to view it as an ordered pair: this subset and its
complement. Every such bipartition, (S, S), corresponds to a (maximal) rectangle in Dx,y

[k] ;
elements of Dx,y

[k] covered by the rectangle are pairs (X,Y ) of disjoint sets that respect the
bipartition: X ⊆ S and Y ⊆ S.

Use the greedy covering lemma (Lemma 3) for the unweighted set covering formulation
with F . There are

(
k
x+z
)
bipartitions in this family, and every pair of disjoint sets (X,Y ) of

size x and y respects
(2z
z

)
of them, so γ =

(2z
z

)
/
(
k
x+z
)
and any greedy covering will contain

at most N sets, where

N =
(
k
x+z
)(2z

z

) · (1 + ln(4k)) + 1 =
(
k
x+z
)(2z

z

) · poly(k).

For every bipartition in the covering, the corresponding 1-rectangle in Dx,y
[k] will include

(
x+z
z

)
rows and

(
y+z
z

)
columns; its cost will be at most 2

(
x+z
z

)
as y ≤ x. So the total cost of the

covering will not exceed(
x+z
z

)
· 2N = 2 ( k

x+z)(x+z
z )·poly(k)

(2z
z ) = ( k

x,z,k−x−z)·poly(k)

(2z
z ) = f(x, y) · poly(k). J

4 We use the standard notation for multinomial coefficients:
(

k
a,b,c

)
= k!

a! b! c! provided that a + b + c = k.
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I Corollary 11. Suppose 0 ≤ m ≤ k/2 and let Dm
k = Dm,m

[k] be the adjacency matrix of
the (bipartite) Kneser graph: vertices in each part are size-m subsets of {1, . . . , k}, and
two vertices from different parts are adjacent if and only if the subsets are disjoint. Then
d(m, k)/ poly(k) ≤ OR2(Dm

k ) ≤ d(m, k) · poly(k) where d(m, k) =
(

k
m,k/2−m,k/2

)
/
(
k−2m
k/2−m

)
.

I Lemma 12. If 0 ≤ y ≤ x ≤ k, then f(x, y) ≤ 2k log(9/4) · poly(k), and there exists a pair
(x∗, y∗) such that f(x∗, y∗) ≥ 2k log(9/4)/ poly(k).

To complete the proof of Theorem 9, it remains to note that a union of coverings
of matrices Dx,y

[k] for all pairs x, y with 0 ≤ x, y ≤ k constitutes a covering of Dn. For
0 ≤ y ≤ x ≤ k, the coverings are constructed by Lemma 10, and for x ≤ y the construction
just swaps the roles of x and y. Since there are only (k + 1)2 = polylog(n) pairs x, y in total,
the desired upper bound follows from Lemma 12.
I Remark. Although Theorem 9 leaves a gap between the bounds on OR2(Dn), the greedy
strategy is, in fact, optimal up to a polylog(n) factor: For each Dx,y

[k] , it suffices to use
bipartitions into sets of size ` and k − `, for some ` = `(k;x, y). (See the full version of the
paper for details.) Our choice of ` in Lemma 10 is ` = x+ (k − x− y)/2, and the optimal
choice, ` = `∗(k;x, y), will deliver a tight upper bound on OR2(Dn). Numerical experiments
seem to indicate that the actual value of OR2(Dn) is within a polylog(n) factor from n

1
2 log 5,

but no formal proof is known to us.

7 Lower bound for Kronecker products

Given two matrices K ∈ {0, 1}m1×n1 and M ∈ {0, 1}m2×n2 , their Kronecker (or tensor)
product is the Boolean matrix K ⊗M of size (m1 ·m2) × (n1 · n2) defined as follows. Its
rows are indexed by pairs (i1, i2) and its columns by pairs (j1, j2) where 1 ≤ is ≤ ms and
1 ≤ js ≤ ns for s = 1, 2. The entry of K ⊗M at position ((i1, i2), (j1, j2)) is defined as
Ki1,j1 ·Mi2,j2 .

In this section we prove a lower bound on the OR(·)-measure of Kronecker products.
Recall that the Boolean rank rk∨(K) is the optimal value of the unweighted set covering
formulation (as in Figure 2a) where the set of 1-entries in the matrix K is covered by all-1
rectangles. In the linear relaxation of this problem (as in Figure 2b), the goal is to assign
weights w(R) ∈ [0, 1] to each 1-rectangle R such that

∑
(i,j)∈R w(R) ≥ 1 for each 1-entry (i, j)

of K, minimizing
∑
w(R). Let the fractional rank rk∗∨(K) be the optimal value of this linear

relaxation. The integrality gap result for the set cover problem [17] and the duality theorem
imply that rk∨(K)/(1 + logm1n1) ≤ rk∗∨(K) ≤ rk∨(K). In the graph-theoretic language, the
number rk∗∨(K) is the fractional biclique cover number, denoted by bc∗(G) where K is the
adjacency matrix of the (bipartite) graph G. Fractional rank is known to be bounded from
below by the fooling set number, see Watts [35, Theorem 2.2].

I Theorem 13. For any pair K, M of Boolean matrices, OR(K ⊗M) ≥ rk∗∨(K) · OR(M).

Proof. First consider the unweighted set covering formulation for K, where the optimal
value is rk∨(K) as discussed in Section 4, and take its linear relaxation, with the optimal
value rk∗∨(K). By Lemma 2, there is an assignment of weights to 1-elements of this matrix,
w(i, j) ∈ [0, 1] for all (i, j) with Ki,j = 1, such that the following two conditions are satisfied
(see Figure 2c). First, for each 1-rectangle R × C of K, the sum

∑
(i,j)∈R×C w(i, j) is at

most 1. Second,
∑

(i,j):Ki,j=1 w(i, j) = rk∗∨(K).
Now let N = (V,E, in, out) be a rectifier network of size OR(K ⊗M) that expresses

Q = K ⊗ M , where K and M have size as above. For an edge e ∈ E, let To(e) ⊆
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{1, . . . ,m1}× {1, . . . ,m2} be the set of row indices (i1, i2) of Q such that the node out(i1, i2)
is reachable from the target of e. Similarly, let From(e) ⊆ {1, . . . , n1} × {1, . . . , n2} be the
set of column indices (j1, j2) of Q such that the source of e is reachable from in(j1, j2). Then
R(e) = (To(e),From(e)) is a rectangle of Q. Moreover, define πs((i1, i2), (j1, j2)) = (is, js)
for s = 1, 2 and πs(R) = {πs(r, c) : (r, c) ∈ R}. Then π1(R(e)) and π2(R(e)) are rectangles
in K and M respectively.

We assign real weights based on w to each edge e of N by the following rule:

w′(e) =
∑

(i,j)∈π1(R(e))

w(i, j).

Since π1(R(e)) is a rectangle of K, one of the constraints on w ensures that w′(e) ≤ 1 for each
edge e of N . Consequently,

∑
e∈E w

′(e) ≤ |E| = OR(K ⊗M); furthermore, the following
chain of inequalities holds:

OR(K ⊗M) ≥
∑
e∈E

w′(e) =
∑
e∈E

∑
(i1,j1)∈π1(R(e))

w(i1, j1)

=
∑

(i1,j1):Ki1,j1 =1

w(i1, j1) · |{e ∈ E : (i1, j1) ∈ π1(R(e))}|

=
∑

(i1,j1):Ki1,j1 =1

w(i1, j1) · |{e ∈ E : i1 ∈ π1(To(e)), j1 ∈ π1(From(e))}|. (3)

Fix an arbitrary entry (i1, j1) of K with Ki1,j1 = 1. Consider the subgraph Nj1 i1 of N
induced by the nodes that are reachable from some source of the form in(j1, j2) and from
which a node of the form out(i1, i2) is reachable – in other words, take all nodes and edges
on all paths from in(j1, j2) to out(i1, i2) for some i2, j2. Then, since Ki1,j1 = 1, the node
out(i1, i2) is reachable from in(j1, j2) in Nj1 i1 if and only if Mi2,j2 = 1. So the network
Nj1 i1 expresses M (with the mappings in′(j2) = in(j1, j2) and out′(i2) = out(i1, i2)). Hence,
the number of edges in Nj1 i1 is at least OR(M). But by our definitions, the relations
i1 ∈ π1(To(e)) and j1 ∈ π1(From(e)) hold together exactly for the edges e of N present in
Nj1 i1 . Thus |{e ∈ E : i1 ∈ π1(To(e)), j1 ∈ π1(From(e))}| ≥ OR(M) and we conclude from
equation (3) that

OR(K ⊗M) ≥
∑

(i1,j1):Ki1,j1 =1

w(i1, j1) · OR(M) = rk∗∨(K) · OR(M). J

I Remark. Let SUM(K) be the smallest size of an unambiguous rectifier network that
expresses K. A rectifier network is unambiguous if for all i, j it has at most one path from
in(j) to out(i). Such networks are also known under the names of SUM-circuits [11] and
cancellation-free circuits [1]. The same construction as above also proves the inequality
SUM(K ⊗M) ≥ rk∗∨(K) · SUM(M).

I Corollary 14. For any pair of matrices K ∈ {0, 1}m1×n1 and M ∈ {0, 1}m2×n2 , and
L ∈ {OR,SUM}, it holds that L(K ⊗M) ≥ rk∨(K) · L(M)/(1 + logm1n1).

Acknowledgements. We are grateful to Stasys Jukna, Alexander Kulikov, Igor Sergeev,
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