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Abstract
We consider the problem of finding a subcomplex K′ of a simplicial complex K such that K′ is
homeomorphic to the 2-dimensional sphere, S2. We study two variants of this problem. The
first asks if there exists such a K′ with at most k triangles, and we show that this variant is
W[1]-hard and, assuming ETH, admits no O(no(

√
k)) time algorithm. We also give an algorithm

that is tight with regards to this lower bound. The second problem is the dual of the first, and
asks if K′ can be found by removing at most k triangles from K. This variant has an immediate
O(3kpoly(|K|)) time algorithm, and we show that it admits a polynomial kernelization to O(k2)
triangles, as well as a polynomial compression to a weighted version with bit-size O(k log k).
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1 Introduction

Topology is the study of the properties of spaces that are preserved under continuous
deformations of the space. Intuitively, this can be summed up by the joke description of a
topologist as a mathematician who cannot tell the difference between a coffee mug and a
doughnut, as each can be continuously deformed into the other. In this paper we discuss
manifolds, which are topological spaces that locally look like Euclidean space. That is to say,
every point in a d-manifold (without boundary) has a neighborhood homeomorphic to Rd.

The simplest manifold is the d-sphere, which is the boundary of a (d+ 1)-dimensional ball,
where the (d+1)-dimensional ball is simply a closed neighborhood of Rd+1. In particular, the
2-sphere which we will discuss is the 2-dimensional surface of a 3-dimensional ball (such as a
soccer ball) that would live in the 3-space of our physical world. The sphere is of interest as
it relates to the connected sum operation on manifolds. A connected sum of two d-manifolds
is found by removing a (d+ 1)-dimensional ball from each manifold, and identifying the two
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18:2 The Parameterized Complexity of Finding a 2-Sphere in a Simplicial Complex

components along the boundaries of the respective balls. The d-sphere forms the identity
element of this operation. Finding embedded d-spheres that can separate a manifold into two
non-trivial components is therefore the topological equivalent of the factorization of integers.
Indeed, a manifold that has no such spheres is called prime, and a prime decomposition of a
manifold is a decomposition into prime manifolds.

In this paper we will use (abstract) simplicial complexes to combinatorially represent
manifolds. At an informal level, a simplicial complex is a collection of simplices that are
glued by identifying some faces. In principle, the abstract simplicial complex does not live in
any ambient space, although we can always represent it geometrically using spaces of high
enough dimension. A formal definition is given in Section 2.

Arguably, the most natural question to ask regarding a simplicial complex is whether it
represents a manifold. The question is easy to answer for 2-manifolds: it suffices to check
whether each edge is adjacent to exactly two triangles. Additionally, in two dimensions we
can recognize the manifold by calculating the Euler characteristic of the simplicial complex,
itself a simple enumeration of vertices, edges and faces, and checking whether it is orientable.
Recognizing the manifold of a simplicial 3-complex is far harder, even for the 3-sphere [19].
The recognition of 4-dimensional manifolds and the 5-sphere is an undecidable problem (see
for example the appendix of [18]), while the recognition of the 4-sphere is a notorious open
problem. Interestingly, in dimensions 4 and higher there exists manifolds (such as the E8
manifold) which can not even be represented as a simplicial complex [10].

Our work. We return to a basic problem for 2-dimensional simplicial complexes: does a
given simplicial complex contain a subcomplex that is (homeomorphic to) a 2-sphere? The
problem is known to be NP-hard, and we study its parameterized complexity with respect to
the solution size (number of triangles in the subcomplex) and its dual (number of triangles
not in the subcomplex); we begin with the former problem.

2-dim-sphere
Input: A pair (K, k) where K is a 2-dimensional simplicial complex and k is a positive
integer.
Question: Does K contain a subcomplex with at most k triangles that is homeomorphic
to the 2-dimensional sphere?

We show that this problem is W[1]-hard with respect to k. In fact we show that, assuming
the Exponential Time Hypothesis (ETH; see preliminaries), the problem cannot be solved
in no(

√
k) time. ETH implies a core hypothesis of parameterized complexity, namely that

FPT 6= W[1] (comparable to the hypothesis that P 6= NP). Together with its twin SETH (the
Strong Exponential Time Hypothesis) it is known to imply a wide range of lower bounds,
often matching known algorithmic results, for various NP-hard problems. (To note, a very
active branch of research uses SETH for tight lower bounds for problems in P.)

I Theorem 1. The 2-dim-sphere problem is W[1]-hard with respect to parameter k and,
unless ETH fails, it has no f(k)no(

√
k)-time algorithm for any computable function f .

Note that the related problem variant of finding a subcomplex with at least k triangles
that is homeomorphic to the 2-dimensional sphere is NP-hard for k = 0, as this is simply
NP-hard problem of testing whether there is any subcomplex that is homeomorphic to the
2-sphere. (Note that hardness for finding a subcomplex with at most k triangles also implies
hardness for finding one with exactly k triangles.)

We complement Theorem 1 by giving an algorithm for 2-dim-sphere that runs in nO(
√
k)

time, which is essentially tight; it can also be used to find a solution with exactly k triangles.
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I Theorem 2. The 2-dim-sphere problem can be solved in time nO(
√
k).

For the dual problem, we are interested in the parameterized complexity relative to the
number k of triangles that are not in the solution (i.e., not in the returned subcomplex that
is homeomorphic to the 2-sphere). In other words, the question becomes that of deleting k
triangles (plus edges and vertices that are only incident with these triangles) to obtain a
subcomplex that is homeomorphic with the 2-sphere. Similarly to before, deleting at least k
triangles is NP-hard for k = 0 as that is just asking for existence of any subcomplex that is
homeomorphic to the 2-sphere. We consider the question of deleting at most k triangles.

Deletion-to-2-dim-sphere
Input: A pair (K, k) where K is a 2-dimensional simplicial complex and k is a positive
integer.
Question: Can we delete at most k triangles in K so that the remaining subcomplex
is homeomorphic to the 2-dimensional sphere?

There a simple O(3kpoly(|K|)) time algorithm for this problem: While there is an edge
incident with at least three triangles, among any three of these triangles at least one must be
deleted. Recursive branching on these configurations gives rise to search tree with at most
3k leaves, each of which is an instance with (1) k = 0 and at least one edge is shared by at
least three triangles, or (2) k ≥ 0 and each edge is shared by at most two triangles. The
former instances can clearly be discarded, the latter can be easily solved in polynomial time:
Connected components with a boundary can be discarded (updating budget k accordingly);
connected components without boundary have each edge being shared by exactly two triangles
and we can efficiently test which ones are homeomorphic to the 2-sphere (keeping the largest).

Knowing, thus, that Deletion-to-2-dim-sphere is fixed-parameter tractable for para-
meter k, we ask whether it admits a polynomial kernelization or compression, i.e., an efficient
preprocessing algorithm that returns an equivalent instance of size polynomial in k. We
prove that this is the case by giving, in particular, a compression to almost linear bit-size.

I Theorem 3. The Deletion-to-2-dim-sphere problem admits a polynomial kernelization
to instances with O(k2) triangles and bit-size O(k2 log k) and a polynomial compression to
weighted instances with O(k) triangles and bit-size O(k log k).

Related work. A sketch of NP-hardness for the 2-dim-sphere problem was given by
Ivanov [11] in a Mathoverflow question.

Our work is one of the few ones combining topology and fixed parameter tractability. In
this direction there have been recent results focused on algorithms in 3-manifold topology
[2, 4, 5, 6, 13]. The problem of finding a shortest 1-dimensional cycle Z2-homologous to a
given cycle in a 2-dimensional cycle was shown to be NP-hard by Chao and Freedman [8].
Erickson and Nayyeri [9] showed that the problem is fixed-parameter tractable for surfaces,
when parameterized by genus of the surface. The result has been extended [7] to arbitrary
2-dimensional simplicial complexes parameterized by the first Betti number. Finally, let us
mention that deciding whether a graph (1-dimensional simplicial complex) can be embedded
in surface of genus g is fixed-parameter tractable with respect to the genus [12, 16].

Organization. We begin with preliminaries on computational topology and parameterized
complexity (Section 2). The proofs for Theorems 1 and 2 about 2-dim-sphere are given in
Section 3 and 4. The preprocessing result for Deletion-to-2-dim-sphere, i.e., Theorem 3,
is proved in Section 5. We conclude in Section 6 with some open problems.
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2 Background and notation

For each positive integer n we use [n] to describe the set {1, . . . , n}.

Topological background. We give a very succinct summary of the topological background
we need and refer the reader to [15, Chapter 1] or [17, Chapter 1] for a comprehensive
introduction. The results we mention are standard and available in several books.

A homeomorphism between two topological spaces is a continuous mapping between the
two spaces whose inverse is also continuous. If such a homeomorphism exists, we say that the
two spaces are homeomorphic. Any topological property is invariant under homeomorphisms.

A d-manifold is a topological space where each point has a neighborhood homeomorphic
to Rd or the closed half-space {(x1, . . . , xd) ∈ Rd | x1 ≥ 0}. A point of the manifold where
no neighborhood is homeomorphic to Rd is a boundary point. In this paper we focus on
2-manifolds, often called surfaces, which are locally equivalent to the Euclidean plane or a
half-plane. It is known that the boundary of a (compact) 2-manifold is the union of finitely
many 1-manifolds (circles). A surface can be described by a collection of triangles and a
collection of pairs of edges of triangles that are identified. If each edge appears in some
pairing, then the surface has no boundary.

A geometric d-simplex is the convex hull of d+ 1 points in Rd′ that are not contained in
any hyperplane of dimension d − 1; this requires d′ ≥ d. A face of simplex σ is a simplex
of a subset of the points defining σ. A geometric simplicial complex K is a collection of
geometric simplices where each face of each simplex of K is also in K, and any non-empty
intersection of any two simplices of K is also in K. The carrier of K, denoted by ||K||, is
the union of all the simplices in K. A geometric simplicial complex K is a triangulation of
X if X and ||K|| are homeomorphic. Quite often we talk about properties of K when we
mean properties of its carrier ||K||. For example, we may say that a geometric simplicial
simplex K is homeomorphic to a topological space X when we mean that ||K|| and X are
homeomorphic.

An (abstract) simplicial complex K is a finite family of sets with the property that any
subset of any set of K is also in contained K. An example of abstract simplicial complex
is {∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {3, 4}, {1, 3, 4}}. The singletons of K are
called vertices and the set of vertices is denoted by V (K). We can assume without loss of
generality that V (K) = [n] for some natural number n, as we already had in the previous
example. The dimension of the (abstract) simplicial complex K is maxσ∈K |σ| − 1.

In this paper we focus on (abstract) simplicial complexes and we will remove the adjective
"abstract" when referring to them. Here we are interested in 2-dimensional simplicial
complexes. We can describe them by giving either the list of all simplices or a list of the
inclusion-wise maximal simplices. Since in dimension 2 the length of these two lists differ by
a constant factor, the choice is asymptotically irrelevant. (For unbounded dimensions, this
difference is sometimes relevant.)

A geometric realization of a simplicial complex K is an injective mapping f : V (K)→ Rd′

such that {CH(f(σ)) | σ ∈ K \ {∅}} is a geometric simplicial complex, where CH(·) denotes
the convex hull. It is easy to show that the carriers of any two geometric realizations of a
simplicial complex are homeomorphic. Abusing terminology, we will talk about properties
of a simplicial complex when (the carrier of) its geometric realizations have the property.
For example, we say that a simplicial complex K is triangulation of the 2-sphere when we
mean that some geometric realization of K is a triangulation of the 2-sphere (and thus all
geometric realizations of K are triangulations of the 2-sphere).
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Parameterized complexity. A parameterized problem is a language Q ⊆ Σ∗ × N where
Σ is any finite alphabet and N denotes the non-negative integers; the second component
k of an instance (x, k) ∈ Σ∗ × N is called its parameter. A parameterized problem Q is
fixed-parameter tractable if there is an algorithm A, a constant c, and a computable function
f : N→ N such that A correctly decides (x, k) ∈ Q in time f(k) · |x|c for all (x, k) ∈ Σ∗ × N.
A kernelization of a parameterized problem Q with size h : N → N is a polynomial-time
algorithm K that on input (x, k) ∈ Σ∗ × N takes time polynomial in |x|+ k and returns an
instance (x′, k′) of size at most h(k) such that (x, k) ∈ Q if and only if (x′, k′) ∈ Q. If h(k) is
polynomially bounded then K is a polynomial kernelization. If the output of K is instead an
instance of any (unparameterized) problem L′ then we called it a (polynomial) compression.

The prevalent method of showing that a parameterized problem Q′ ⊆ Σ′∗ × N is not
fixed-parameter tractable is to give a parameterized reduction from a problem Q ⊆ Σ∗ × N
that is hard for a class called W[1], which contains the class FPT of all fixed-parameter
tractable problems; it is assumed that FPT 6= W[1]. A parameterized reduction from Q to
Q′ is an algorithm R that on input (x, k) ∈ Σ∗ × N takes time f(k) · |x|c and returns an
instance (x′, k′) ∈ Σ′∗ × N such that: (x, k) ∈ Q if and only if (x′, k′) ∈ Q′ and such that
k′ ≤ g(k); here f, g : N→ N are computable functions and c is a constant, all independent of
(x, k). Parameterized reductions can also be used to transfer lower bounds on the running
time. A common starting point for this is the Exponential Time Hypothesis (ETH) which
posits that there is a constant δ3 > 0 such that no algorithm solves 3-SAT in time O(2δ3n)
where n denotes the number of variables. In particular, this rules out subexponential-time
algorithms for 3-SAT and, by appropriate reductions, for a host of other problems.

3 Hardness of 2-dim sphere

In this section we provide a proof for Theorem 1, namely that 2-dim-sphere is W[1]-hard for
parameter k and, under ETH, admits no O(no(

√
k)) time algorithm. To obtain the result we

give a polynomial-time reduction from the Grid Tiling problem introduced by Marx [14].

Grid Tiling
Input: A triple (n, k,S) where n is a positive integer, k is a positive integer, and S is
a tuple of k2 nonempty sets Si,j ⊆ [n]× [n], where i, j ∈ [k].
Question: Can we choose for each i, j ∈ [k] a pair (ai,j , bi,j) ∈ Si,j such that
ai,j = ai,j+1 for all i ∈ [k], j ∈ [k − 1], and bi,j = bi+1,j for all i ∈ [k − 1], j ∈ [k]?

It is convenient to visualize the input elements as displayed in a (k × k)-tiled square. The
squares are indexed like matrices: the top left tile corresponds to the index (i, j) = (1, 1) and
the bottom left tile corresponds to the index (i, j) = (k, 1). Inside the (i, j)-tile we put the
elements of Si,j . The task is to select a 2-tuple in each tile such that the selected elements in
each row have the same first coordinate and the selected elements in each column have the
same second coordinate. The following lower bound is known for Grid Tiling.

I Theorem 4 ([14]). Grid Tiling is W[1]-hard and, unless ETH fails, it has no f(k)no(k)-
time algorithm for any computable function f .

Consider an instance (n, k,S) of Grid Tiling. We are going to construct an equivalent
instance (K, k′) to 2-dim-sphere where k′ = Θ(k2).

Let σ be the simplicial complex shown in Figure 1, left. It is a triangulation of a square
with a middle vertex, denoted center(σ). We denote the consecutive 2-edge paths on the
boundary as left(σ), top(σ), right(σ) and bottom(σ). The orientation of the path, indicated

STACS 2017
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right(σ)left(σ)

top(σ)
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Figure 1 Left: The triangulated square σ. Right: back sheet when k = 4.

with an arrow, defines the way we glue in later steps of the construction. In our figures we will
always orient the squares to match these names in the intuitive way. For our construction, the
important property of σ is that there is no triangle containing center(σ) and one boundary
edge and that there is no triangle containing two boundary edges of σ.

For each (a, b) in each Si,j we make a new copy of σ and denote it by σ(a, b, i, j). We
make some identifications, according to the following rules:

For each i ∈ [k], j ∈ [k − 1], and a ∈ [n], we identify together all the 2-edge paths
right(σ(a, b, i, j)), where (a, b) ∈ Si,j , and all the 2-edge paths left(σ(a, b′, i, j+ 1)), where
(a, b′) ∈ Si,j+1. Thus, for each i, j, a we have identified |{b ∈ [n] | (a, b) ∈ Si,j}|+ |{b′ ∈
[n] | (a, b′) ∈ Si,j+1}| 2-edge paths into a single one.
For each i ∈ [k − 1], j ∈ [k], and b ∈ [n], we identify together all the 2-edge paths
bottom(σ(a, b, i, j)), where (a, b) ∈ Si,j , and all the 2-edge paths top(σ(a′, b, i + 1, j)),
where (a′, b) ∈ Si+1,j . Thus, for each i, j, b we have identified |{a ∈ [n] | (a, b) ∈
Si,j}|+ |{a′ ∈ [n] | (a′, b) ∈ Si+1,j}| 2-edge paths into a single one.
For each i, j ∈ [n], we identify the vertices center(σ(a, b, i, j)) over all (a, b) ∈ Si,j . Thus,
we identified |Si,j | vertices into a single one.

To finalize the construction, we triangulate a square such that it has 2k edges on each side, as
shown in Figure 1, right. We will refer to this simplicial complex as the back sheet. We split
the boundary of the square into 2-edge paths and label them, in a clockwise traversal of the
boundary of the square, by t1, . . . , tk, r1, . . . , rk, bk, . . . , b1, `k, . . . , `1. (We use t as intuition
for top, r as intuition for right, etc.) Note that the indices for b and ` run backwards. In
the figure we also indicate the orientation of the 2-edge paths, that are relevant for the
forthcoming identifications.

Then we make the following additional identifications.
For each i ∈ [n] and each (a, b) ∈ Si,1, we identify left(σ(a, b, i, 1)) and `i.
For each i ∈ [n] and each (a, b) ∈ Si,k, we identify right(σ(a, b, i, k)) and ri.
For each j ∈ [n] and each (a, b) ∈ S1,j , we identify top(σ(a, b, 1, j)) and tj .
For each j ∈ [n] and each (a, b) ∈ Sk,j , we identify bottom(σ(a, b, k, j)) and bj .

Note that whenever we identify the endpoints of two edges in pairs, we also identified the
edges. Thus, we have constructed a simplicial complex. (In any case, we could always use
barycentric subdivisions to ensure that we have a simplicial complex.) Let K = K(n, k,S)
denote the resulting simplicial complex. Set k′ = 16 · k2 + 8k. With the following lemmas we
prove that (K, k′) is yes for 2-dim-sphere if and only if (n, k,S) is yes for Grid Tiling.
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I Lemma 5 (∗1). If (n, k,S) is a yes-instance for Grid Tiling, then K contains a subcomplex
with k′ triangles that is homeomorphic to the 2-sphere.

Proof. Since (n, k,S) is a yes-instance for Grid Tiling, there are pairs (ai,j , bi,j) ∈ Si,j ,
where i, j ∈ [k], such that ai,j = ai,j+1 (for i ∈ [k], j ∈ [k − 1]) and bi,j = bi+1,j (for
i ∈ [k − 1], j ∈ [k]).

Consider the subcomplex K̃ of K induced by the squares σ(ai,j , bi,j , i, j), where i, j ∈ [k].
During the identifications we have glued σ(ai,j , bi,j , i, j) to σ(ai,j+1, bi,j+1, i, j + 1) when
making the identification right(σ(ai,j , bi,j , i, j)) = left(σ(ai,j+1, bi,j+1, i, j+1)) because ai,j =
ai,j+1 (for i ∈ [k], j ∈ [k − 1]). Similarly, we have glued σ(ai,j , bi,j , i, j) to σ(ai+1,j , bi+1,j , i+
1, j) when making the identification bottom(σ(ai,j , bi,j , i, j)) = top(σ(ai+1,j , bi+1,j , i+ 1, j))
because bi,j = bi+1,j (for i ∈ [k − 1], j ∈ [k]). Thus K̃ is a "big square" obtained by glueing
k2 copies of σ in a (k × k)-grid-like way. Together with the back sheet, that is glued to the
boundary of K̃, we get a triangulation of the 2-sphere. Since each square σ(·) has 16 triangles
and the back sheet has 8k triangles, the resulting triangulation has 16k2 + 8k triangles. A
formal argument to prove this can also be carried out using Euler’s formula. J

I Lemma 6. If K contains a subcomplex K′ homeomorphic to the 2-sphere, then (n, k,S) is
a yes-instance for Grid Tiling.

Proof. We show this by first demonstrating that, for any pair i, j ∈ [k], the subcomplex K′
cannot contain two distinct squares σ(a, b, i, j) and σ(c, d, i, j). We then show that for any
pair i, j ∈ [k], at least one of the squares σ(a, b, i, j) must be part of K′. Lastly we combine
these two facts to construct a solution for the Grid Tiling instance (n, k,S).

We begin by noting that K′ cannot be empty, and that if for any values of a, b, i, j, the
subcomplex K′ contains one triangle from σ(a, b, i, j), then K′ must contain all triangles from
σ(a, b, i, j). This follows from the fact that the 2-dimensional sphere has no boundary. In
the rest of this argument, we need only consider whether K′ does or does not contain all of
σ(a, b, i, j) for any values of a, b, i, j.

Now assume that, for some pair i, j ∈ [k], the subcomplex K′ contains two distinct squares
σ(a, b, i, j) and σ(c, d, i, j) and consider the neighborhood of center(σ(a, b, i, j)). Recalling
that center(σ(a, b, i, j)) is identified with center(σ(c, d, i, j)), we see that this point has no
neighborhood homeomorphic to a plane, and so clearly K′ cannot contain both of these
distinct squares.

We now show that, for any pair i, j ∈ [k], K′ must contain some square of the form
σ(a, b, i, j). If K′ contains no squares σ(·) at all then it can only contain either part of, or
the whole of, the back sheet but either way K′ cannot be a 2-sphere. Thus we know that
K′ must contain σ(a, b, i, j) for at least one set of values a, b, i, j. Given this, assume we
have a pair i′, j′ ∈ [n] such that σ(a′, b′, i′, j′) is not in K′ for each pair (a′, b′) ∈ Si′,j′ . Let
σ(a, b, i, j) be a square in K′ for some pair a, b, and without loss of generality, assume that
i′ = i− 1 and j′ = j. This is equivalent to choosing two adjacent cells where one contains a
square in K′ and the other does not contain any square in K′, and can always be achieved by
appropriate selection of values (and possibly rotating or flipping the whole construction).

Consider an edge of the 2-edge path top(σ(a, b, i, j)) in K′. Since K′ is a 2-dimensional
sphere, this edge cannot be a boundary and thus must separate two distinct triangles. One
of these triangles is present in σ(a, b, i, j). By our construction, the other triangle is either
in σ(a′, b, i − 1, j) (where top(σ(a, b, i, j)) is identified with bottom(σ(a′, b, i − 1, j))) or in

1 (Full) proofs of statements marked ∗ will appear in the journal version of this paper.
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Figure 2 A simplicial complex K (left side) and its barycentric subdivision Sd(K) (right side).

σ(c, b, i, j) with a 6= c (where top(σ(a, b, i, j) is identified with top(σ(c, b, i, j)). This means
that one of σ(c, b, i, j) or σ(a′, b, i− 1, j) must be in K′. By our earlier argument, σ(a, b, i, j)
and σ(c, b, i, j) cannot both be in K′. This means that σ(a′, b, i− 1, j) must be in K′, and
thus our assumption must be false. Therefore for each pair i, j ∈ [n], at least one square
σ(a, b, i, j) must be in the subcomplex K′.

Combining these results we see that if the subcomplex K′ is a 2-sphere, then K′ contains
exactly one square σ(ai,j , bi,j , i, j) for each pair i, j ∈ [n]. Since for each values i, j, a, b we
have that σ(ai,j , bi,j , i, j) ∈ K if and only if (ai,j , bi,j) ∈ Si,j , we obtain that (ai,j , bi,j) ∈ Si,j
for each i, j ∈ [k]. As top(σ(a, b, i, j)) is identified with bottom(σ(a′, b, i−1, j)), by induction
we see that, for each j ∈ [k], we have b1,j = b2,j = . . . = bk,j . A similar argument shows that
for each i ∈ [k] we have ai,1 = ai,2 = . . . = ai,k. We deduce that (ai,j , bi,j), for each pair
i, j ∈ [k], is a solution for (n, k,S). J

Lemmas 5 and 6 establish correctness of our reduction from Grid Tiling to 2-dim-
sphere. Clearly, the reduction can be performed in polynomial time, and the parameter
value of a created instance is O(k2). Thus, Theorem 1 now follows directly from Theorem 4.

4 A tight algorithm for 2-dim-sphere

For each simplicial complex K, let Sd(K) be its barycentric subdivision. Its construction for
the 2-dimensional case is as follows (see also Figure 2). Each vertex, edge and triangle of K
is a vertex of Sd(K). To emphasize the difference, for a simplex τ of K we use vτ for the
corresponding vertex in Sd(K). There is an edge vτvτ ′ in Sd(K) between any two simplices τ
and τ ′ of K precisely when one is contained in the other. There is a triangle vτ1vτ2vτ3 in
Sd(K) whenever there is a chain of inclusions τ1 ( τ2 ( τ3. It is well-known, and not difficult
to see, that Sd(K) and K are homeomorphic. See for example [15, Chapter 1] or [17, Chapter
2]. Let Sd1(K) be the 1-skeleton of Sd(K), which is a graph.

An isomorphism between two simplicial complexes K1 and K2 is a bijective map
f : V (K1) → V (K2) such that, for all {v1, . . . , vk} ⊆ V (K1), the simplex {v1, v2, . . . , vk}
is in K1 precisely when {f(v1), f(v2), . . . , f(vk)} is a simplex of K2. Two simplicial complexes
are isomorphic if and only if there exists some isomorphism between them. When two simpli-
cial complexes are isomorphic, then they are also homeomorphic. (We can make geometric
realizations for both simplicial complexes with the same carrier.) Note that isomorphism of
simplicial complexes of dimension 1 matches the definition of isomorphism of graphs.

Testing isomorphism of simplicial complexes can be reduced to testing isomorphism of
colored graphs, as follows. Let G and H be graphs and assume that we have colorings
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cG : V (G)→ N and cH : V (H)→ N. (The term coloring here refers to a labeling; there is no
relation to the standard graph colorings.) A color-preserving isomorphism between (G, cG)
and (H, cH) is a graph isomorphism f : V (G)→ V (H) such that, for each vertex v ∈ V (G),
it holds cH(f(v)) = cG(v). Thus, the isomorphism preserves the color of each vertex. We say
that (G, cG) and (H, cH) are color-preserving isomorphic if there is some color-preserving
isomorphism between them. We will use the dimension dim of the simplex as the coloring
for the graph Sd1(·). Thus dim(vτ ) = |τ | − 1 for each simplex τ of the simplicial complex.

I Lemma 7 (∗). Two simplicial complexes K1 and K2 are isomorphic if and only if
(Sd1(K1), dim) and (Sd1(K2), dim) are color-preserving isomorphic.

I Lemma 8. Let K1 and K2 be simplicial complexes. The simplicial complex K1 has a
subcomplex isomorphic to K2 if and only if Sd1(K1) has a subgraph G such that (G, dim) and
(Sd1(K2), dim) are color-preserving isomorphic.

Proof. Note that for each subcomplex K′1 of K1 we have that Sd1(K′1) is exactly the subgraph
of Sd1(K1) induced be the vertices vτ , for τ ∈ K′1 \{∅}. Therefore, if K1 has a subcomplex K′1
isomorphic to K2, then the graph G = Sd1(K′1) is a subgraph of Sd1(K1) and, by Lemma 7,
(G, dim) and (Sd1(K2),dim) are color-preserving isomorphic.

Assume, for the other direction, that (G, dim) and (Sd1(K2), dim) are color-preserving
isomorphic for some subgraph G of Sd(K1). Let f be such a color-preserving isomorphism.
First we show that G is Sd1(K′1) for some subcomplex K′1 of K1. Indeed, consider any vertex
vτ of G such that for no superset τ̃ of τ we have vτ̃ in G. The vertex f(vτ ) is a vertex vτ2 for
τ2 ∈ K2 and moreover |τ | = |τ2| as f preserves color and therefore dimension. Each subset τ ′2
of τ2 has some vertex vτ ′

2
in Sd1(K2). For each such τ ′2 ⊂ τ2 we have some distinct vertex vτ ′

1

in G such that f(vτ ′
1
) = vτ ′

2
and vτ ′

1
must be adjacent to vτ . Since τ and τ2 have the same

cardinality, they have the same number of subsets, and thus τ ′1 iterates over all subsets of τ ,
when τ ′2 iterates over the subsets of τ2. This means that vτ ′ is in G for all subsets τ ′ ⊂ τ .
Therefore, if we take K′1 = {τ ∈ K1 | vτ ∈ V (G)} ∪ {∅}, then K′1 is a simplicial complex and
G = Sd1(K′1). From Lemma 7 it follows that K′1 and Sd1(K2) are isomorphic. J

I Lemma 9. Let K be a simplicial complex with n simplices and let K′ be a simplicial
complex with k simplices. Let t be the treewidth of Sd1(K′). In time nO(t) we can decide
whether K contains a subcomplex isomorphic to K′.

Proof. Alon, Yuster and Zwick [1, Theorem 6.3] show how to find in a graph G a subgraph
isomorphic to a given graph H in time 2O(|V (H)|)|V (G)|O(tH ), where tH is the treewidth of
H. The technique is color-coding. For this, one tries several different colorings of the vertices
of G with |V (H)| colorings, and then uses dynamic programming to search for a copy of
H in G where all the colors of the vertices are distinct. Thus, if the vertices of H and G
are already classified into some classes, then this can only help the algorithm. The class
of a vertex can be considered as part of the coloring. This means that the algorithm can
be trivially adapted to the problem of subgraph color-preserving isomorphism: given two
pairs (G, cG) and (H, cH), where cG and cH are colorings of the vertices, is there a subgraph
G′ of G such that (G′, cG′) and (H, cH) are color-preserving isomorphic, where cG′ is the
restriction of cG to G′.

Because of Lemma 8, deciding whether K contains a subcomplex isomorphic to K′
is equivalent to deciding whether Sd1(K) contains a subgraph G such that (G,dim) and
(Sd1(K′), dim) are color-preserving isomorphic. Apply the color-coding algorithm of Alon et
al. as, discussed before, we spend 2O(|V (Sd1(K′))|)|V (Sd1(K))|O(t) = 2O(k)nO(t) time. J
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Proof of Theorem 2. There are 2O(k) different (unlabeled) triangulations of the 2-sphere
with at most k triangles; see for example [20, 3], using that k triangles entail having at most
O(k) vertices. For each such triangulation, let Ki be the corresponding simplicial complex.
Then Sd1(Ki) is a planar graph with O(k) vertices and thus has treewidth O(

√
k). Using

Lemma 9 we can decide in 2O(k)nO(
√
k) time whether K has a subcomplex isomorphic to Ki.

Iterating over all the 2O(k) triangulations we spend in total 2O(k) · 2O(k)nO(
√
k) time and the

result follows. J

5 Kernelization and compression for Deletion-to-2-dim-sphere

In this section, we prove that Deletion-to-2-dim-sphere admits a polynomial kernelization
that returns instances with O(k2) triangles and has bit-size O(k2 log k), respectively a
polynomial compression to a weighted version with bit-size O(k log k). We first give a few
simple reduction rules and then show how to reduce (and possibly encode) the resulting
instances. The rules are to be applied in order, i.e., preference is given to earlier rules.
Recall that input instances (K, k) consist of a 2-dimensional simplicial complex K and an
integer k, and ask whether deletion of at most k triangles from K yields a subcomplex that
is homeomorphic to the 2-dimensional sphere S2.

In what follows, we will delete subcomplexes from an instance of our problem and at
the same time reduce the value of k. If at any point in time k becomes negative we know
that our original instance was a no-instance, so we will assume that k is always non-negative.
Additionally we point out that whenever deleting a subcomplex from our simplicial complex,
any vertices or edges which would no longer be contained in any triangle are also deleted.

I Reduction Rule 1. If any triangle T ∈ K has an edge face that is not a face of any other
triangle in K then delete T from K and reduce k by one.

Clearly, such a triangle T cannot be contained in a subcomplex K′ ⊆ K that is homeo-
morphic to the 2-sphere, and hence it must be among the k deleted triangles in any solution
(if one exists). Note that when Rule 1 does not apply, each edge in K is shared by at least
two triangles of K. On the other hand, in the desired subcomplex that is homeomorphic
with the 2-sphere each edge is shared by exactly two triangles. Denote by T ⊆ K the set of
triangles that share at least one of their edges with more than one other triangle. There is a
simple upper bound for the size of T if (K, k) is a yes-instance.

I Proposition 10. If (K, k) is a yes-instance of Deletion-to-2-dim-sphere then |T | ≤ 7k.

Proof. Let D be a given solution with at most k triangles. Each triangle in T \D must share
at least one edge with a triangle in D. Additionally, each triangle in D can share an edge
with at most six triangles in T \ D, as each of the three edges of a triangle in D is shared
between at most two triangles of T \ D. Thus, |T \ D| ≤ 6 · |D|, giving |T | ≤ 7k. J

I Reduction Rule 2. Reject the instance if |T | > 7k.

Observe now that in KT := K \ T all edges are shared by at most two triangles, and
that edges shared with triangles in T are only part of one triangle in KT . Accordingly,
triangles in KT form connected components that can be homeomorphic to, e.g., the 2-sphere
or to a punctured disk. Say that the boundary of a component is the set of edges L that
are contained in exactly one triangle of the component; these are exactly the edges that
participate also in triangles of T . We distinguish components according to whether or not
they have a boundary.
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For any component without boundary the procedure is simple: It cannot have any edge
L in common with a triangle of T since then three or more triangles of K would share L and
all incident triangles would be in T . Accordingly, such a component can only be part of the
desired 2-sphere if it itself is homeomorphic to the 2-sphere since it is not connected with
other triangles in K. The only other option is to delete the entire component since deleting
it partially would always leave a boundary.

I Reduction Rule 3. Let C be a connected component of KT that has no boundary. If C is
homeomorphic to the 2-sphere S2 and |K \ C| ≤ k then answer yes (and return K \ C as a
solution). Else, if C is not homeomorphic to the 2-sphere or if |K \ C| > k, then delete all
triangles of C from K and reduce k by |C|.

Using Rules 1 through 3 we either solve the instance or we arrive at the situation where
|T | ≤ 7k and all components of KT = K\T have boundaries. Observe that, among these, we
can safely delete each component C that is not homeomorphic to a (punctured) disk: While C
may contain subcomplexes that are homeomorphic to a (punctured) disk, such a subcomplex
cannot be extended to a subcomplex of K that is homeomorphic to the 2-sphere since the
requirement of having two triangles incident with each edge implies using all triangles of C.

I Reduction Rule 4. If C is a connected component of KT that has a boundary but is not
homeomorphic to a (punctured) disk then delete all triangles of C from K and reduce k by |C|.

It remains to consider the case where |T | ≤ 7k and all components of KT (have boundaries
and) are homeomorphic to (punctured) disks. As a first step, let us observe an upper bound on
the total length of all component boundaries (in terms of number of edges) for yes-instances.

I Proposition 11. If (K, k) is a yes-instance of Deletion-to-2-dim-sphere then the total
length of all boundaries of components of KT is at most 21k.

Proof. By Rule 1 each boundary edge of a component of KT = K \ T is incident with at
least two triangles of K, and hence with at least one triangle of T . The upper bound of
3 · |T | ≤ 21k follows. J

Note that from the upper bound of 21k for the total boundary length we immediately
get an upper bound of 7k for the number of components of KT since each component with a
boundary must have at least three boundary edges. To get an upper bound on the number of
triangles it now suffices to replace large components by “equivalent” ones without changing
the status of the instance using Proposition 12. This has two vital aspects: (1) Replaced
components must have same boundary and topology. (2) We must avoid creating false
positives, as smaller components can be deleted at a lower cost. In Proposition 12 we show
how components with boundary length ` can be replaced by equivalent ones with O(`)
triangles, addressing (1), and later give two options for addressing (2).

I Proposition 12 (∗). Given a simplicial complex K of a punctured sphere where K contains
` boundary edges, there exists a simplicial complex K′ such that the following hold:
1. K′ contains O(`) triangles,
2. K is homeomorphic to K′,
3. there exists an isomorphism f : ∂(K) 7→ ∂(K′), and
4. if a, b are edges of K such that a, b ∈ ∂(K) and there exists a triangle t of K such that

a, b ∈ t, then there exists a triangle t′ ∈ K′ such that f(a), f(b) ∈ t′.

STACS 2017
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To avoid false positives we have two options. First, we can store for each component
its initial number of triangles, i.e., the cost for deleting it entirely, noting that costs larger
than k can be replaced by k + 1. (Recall that partially deleting a component is infeasible.)
The output would then be an instance of a weighted version of the problem, and we could
encode it using O(k log k) bits, where the log-factor is needed to encode costs in binary and
to represent a list of the triangles including vertex names. (We could also assign a larger
cost to one triangle per component such that the total is equal to the original value.)

Second, we could apply the replacement only to components with more than k triangles,
and afterwards increase their size to k +O(1) by adding additional triangles. Since budget
of k does not allow the deletion of large components, this yields an equivalent instance. The
total number of triangles per component is then O(k), and O(k2) for the entire instance; this
can be encoded in O(k2 log k) bits. This completes the proof of Theorem 3.

The compression result can be lifted to a smaller parameter, namely the number of
conflict triangles, i.e., triangles incident with at least one edge that is shared by at least three
triangles. Recall that nontrivial instances with budget k have O(k) conflict triangles, and
observe that having few conflict triangles does not bound the size k of the desired 2-sphere.

I Corollary 13 (∗). The Deletion-to-2-dim-sphere problem admits a polynomial com-
pression to weighted instances with O(t) triangles and bit-size O(t2) where t is the number
of conflict triangles in the input.

6 Conclusion

Our hardness results can be extended easily to cases of finding some other surfaces, such as
a torus. Indeed, we can replace in the construction the back sheet with any other shape that
has the target topology. Similarly, the positive results can also be extended to the search for
small surfaces, again like the torus.

It is clear that the simplicial complex we use to show hardness cannot be embedded in
3-dimensional space. It is unclear how hard the problem 2-dim-sphere is when restricted to
simplicial complexes that are embedded in R3. Note that it is not meaningful to parameterize
the problem by the dimension of some ambient space because any 2-dimensional simplicial
complex can be embedded in R5 using the moment curve ([15, Section 1.6]).

A simplicial complex can be generalized to something called, unsurprisingly, a generalized
triangulation (or sometimes just referred to as a triangulation). In this setting, we are allowed
to identify facets of a common simplex. That is, in a 2-dimensional generalized triangulation
we may identify together two distinct edges of the same triangulation. This relaxation can
make it harder to even detect a manifold, as there are more cases to consider. Our work
here, and related problems, are all still of interest in this setting.

Lastly, the problems discussed in this paper generalize, where possible, in the obvious
manner to higher dimensions. In particular, fast detection of 3-sphere subcomplexes (or
sub-triangulations) that do not bound a ball are of particular interest for the recognition of
the prime decomposition of 3-manifolds.
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